
This is a preprint of an article published in Journal of Field Robotics, Vol. 23, Iss 3-4, pp. 165-184, Available online 
http://www3.interscience.wiley.com/cgi-bin/jhome/111090262 Copyright © 2006 Wiley Periodicals Inc. 

 1 

A cooperative perception system for multiple UAVs: Application to automatic 

detection of forest fires 

Luis Merino1, Fernando Caballero2, J. R. Martínez-de Dios2, Joaquín Ferruz2 and Aníbal Ollero2 
Robotics, Vision and Intelligent Control Group 

1Dpt. Environmental Sciences, Pablo de Olavide University, Seville, Spain 
2Dpt. Systems Engineering and Automatic Control, University of Seville, Seville, Spain 

 
ABSTRACT: This paper presents a cooperative perception system for multiple heterogeneous 

UAVs. It considers different kind of sensors: infrared and visual cameras and fire detectors. The 

system is based on a set of multipurpose low-level image-processing functions including 

segmentation, stabilization of sequences of images and geo-referencing, and it also involves data 

fusion algorithms for cooperative perception. It has been tested in field experiments that pursued 

autonomous multi-UAV cooperative detection, monitoring and measurement of forest fires. This 

paper presents the overall architecture of the perception system, describes some of the 

implemented cooperative perception techniques and shows experimental results on automatic 

forest fire detection and localization with cooperating UAVs. 
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experimentation. 



This is a preprint of an article published in Journal of Field Robotics, Vol. 23, Iss 3-4, pp. 165-184, Available online 
http://www3.interscience.wiley.com/cgi-bin/jhome/111090262 Copyright © 2006 Wiley Periodicals Inc. 

 2 

1. Introduction 

In the last decade unmanned aerial vehicles (UAVs) have attracted a significant interest in many 

field robotics applications. The higher mobility and maneuverability of UAVs respect to ground 

vehicles have made aerial vehicles the natural way to approach a target to get information or 

even to perform some actions such as the deployment of instrumentation. Aerial robotics seems a 

useful approach to perform tasks such as data and image acquisition of targets and areas 

inaccessible using ground means, localization of targets, tracking, map building and others. 

UAVs have been widely used for military applications but, recently they are being extended to 

civilian applications such as natural and human made disasters scenarios, search and rescue, law 

enforcement, aerial mapping, traffic surveillance, inspection and cinematography (Ollero & 

Merino, 2004). 

Many of these applications require robust and flexible perception systems. The most common 

perception devices in UAVs are cameras and range sensors. Range sensors are used for some 

specific operations such as autonomous landing and mapping (Miller & Amidi, 1998). Computer 

vision plays the most important role and has been applied for different tasks. It has been used as 

a method to sense relative position, as in the approach by Omidi, Kanade & Fujita (1999), where 

it is implemented the concept of visual odometer, in Zhang & Hintz (1995), where a video-based 

attitude and height sensor for low altitude aerial vehicles is presented, or in Corke, Sikka & 

Roberts (2001), where a stereo vision system is used for height estimation. Vision-based 

methods have been also considered for safe landing of a helicopter (Saripalli, Montgomery & 

Sukhatme, 2003). Lacroix, Jung & Mallet (2001) describe Simultaneous Localization and 

Mapping (SLAM) techniques with stereo vision systems on board an autonomous airship. UAV 

SLAM with vision is also presented in Kim & Sukkarieh (2003).  

Furthermore, computer vision has been used for detection and monitoring. Thus, algorithms for 

dense motion estimation have been applied to traffic monitoring with an UAV (Farnebäck & 

Nordberg, 2002). Vidal, Sastry, Kim, Shakernia & Shim (2002) used computer vision to detect 



This is a preprint of an article published in Journal of Field Robotics, Vol. 23, Iss 3-4, pp. 165-184, Available online 
http://www3.interscience.wiley.com/cgi-bin/jhome/111090262 Copyright © 2006 Wiley Periodicals Inc. 

 3 

evaders. Other applications include road identification and tracking (Bueno et al., 2002) and 

inspection of power lines (Del-Cerro, Barriento, Campoy & García, 2002). 

Many of the above-mentioned systems and methods involve only one UAV. However, the 

complexity of some applications requires cooperation between UAVs or between UAVs and 

other robots. Systems with multiple UAVs are very scarce and have been applied mainly for 

military applications. The coordination of multiple homogeneous UAVs in close-formation flight 

has been usually studied using control approaches; for example (Hall & Pachter, 1999) and 

(Giulietti, Polline & Innocenti, 2000). In this paper we consider the cooperation of multiple 

heterogeneous UAVs. The heterogeneity increases the complexity of the problem, but also 

provides several advantages for the application such us the possibility to exploit the 

complementarities of different UAV platforms with different mobility attributes and also 

different sensor and perception functionalities. It should be noted that many applications require 

several sensors that can not be carried by only one UAV due to payload limitations. In these 

cases the cooperation between the UAVs equipped with different sensors should be established 

also at a perception level. 

This paper presents a multi-UAV cooperative perception system. The architecture of the 

perception system allows both single-UAV and cooperating UAVs perception. It considers 

mainly infrared and visual cameras, and also a specialized fire sensor, but can be adapted to 

other kind of sensors. The system includes multipurpose image-processing functions appropriate 

for a wide range of tasks including –among others– surveillance, detection, monitoring and, 

measuring. The proposed perception system has been demonstrated for the autonomous 

detection, monitoring and measuring of forest fires. This is a very relevant application in many 

countries where forest fires have disastrous social, economic and environmental impact. 

Furthermore, forest fire fighting is a very dangerous activity that originates many casualties 

every year. This paper presents results of field experiments on fire detection, confirmation and 

precise localization with cooperating UAVs.  
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The work described in the paper has been carried out in the framework of project “COMETS: 

Real-time coordination and control of multiple heterogeneous unmanned aerial vehicles” (IST-

2001-34304) of the IST Programme of the European Commission. The objective of the 

COMETS project was to design and implement a system for cooperative activities using 

heterogeneous UAVs. The heterogeneity of the UAVs considered in the system is manifold. On 

one hand, complementary platforms are considered: helicopters, and airships. The helicopters 

have high maneuverability and the hovering ability to perform efficiently inspection and 

monitoring tasks that require to maintain a position and to obtain detailed views. Airships have 

much less maneuverability and can be used to provide global views or to act as communications 

relay. 

On the other hand, the UAVs considered are also heterogeneous in terms of on board processing 

capabilities, ranging from fully autonomous aerial systems to conventional radio controlled 

systems with minimal on-board capabilities required to record and transmit information. Thus, 

the planning, perception and control functionalities of the UAVs can be either implemented on-

board the vehicles, if enough on-board processing power is available, or on ground stations when 

light, low-cost aerial vehicles are used. Finally, the UAVs are also heterogeneous respect to the 

sensors they carry on board. This characteristic plays an important role in the co-operative 

perception work described in this paper. 

In order to achieve this general objective, the COMETS project produced a new decisional 

architecture (Gancet, Hattenberger, Alami & Lacroix, 2005a), (Gancet, Hattenberger, Alami & 

Lacroix, 2005b), (Ollero et al., 2005). This architecture is used to coordinate the fleet of vehicles. 

It allows to decompose, either in a centralized or partially decentralized way, a complex mission 

plan into atomic tasks to be processed by the vehicles. These tasks include cooperative 

perception tasks, such as the synchronized perception of a target. The cooperative perception 

system is linked to the decisional architecture, and the fleet can react depending on the data and 

events raised by the perception algorithms, through re-planning. 



This is a preprint of an article published in Journal of Field Robotics, Vol. 23, Iss 3-4, pp. 165-184, Available online 
http://www3.interscience.wiley.com/cgi-bin/jhome/111090262 Copyright © 2006 Wiley Periodicals Inc. 

 5 

Although the COMETS system could give support to a wide range of application, the specific 

problem of forest fire detection and monitoring was chosen for testing and validation purposes. 

UAVs cooperation is very valuable in this highly challenging context. Missions involve fire 

alarm detection, confirmation and localization, and fire monitoring. Several field tests with 

controlled fires have been carried out during the past years. Figure 1 shows some pictures of 

these experiments. 

 

 

Figure 1: Left Marvin and Heliv during a experiment. Right, Karma flying over Marvin and 
Heliv in a cloudy day. 

The following UAVs were deployed during the COMETS experiments: the helicopter Marvin, 

the airship Karma and the helicopter Heliv. Marvin is an autonomous helicopter developed by 

the Real-Time Systems & Robotics Group of the Technische Universität Berlin (Remuß, Musial 

& Hommel, 2002). Karma is an autonomous 18m3 electrically propelled airship developed by  

LAAS (Laboratoire d'Architecture et d'Analyse des Systèmes) at Toulouse (Lacroix, Jung, 

Soueres, Hygounenc & Berry, 2003). Heliv is the result of the evolution of a conventional 

remotely piloted helicopter which has been transformed by the Robotics, Vision and Control 
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Group at the University of Seville by adding sensing, perception, communication and control 

functions. Figure 1 shows the three vehicles during the field experiments presented in this paper. 

The rest of the paper is structured as follows. Section 2 presents the cooperative perception 

system for UAVs including the hardware and software architectures and communications. 

Section 3 describes some of the computer vision techniques included in the perception system, 

with special emphasis on techniques for stabilization of sequences of images, image 

segmentation and image geo-location. Section 4 deals with the cooperative perception 

algorithms. Section 5 presents field experiments on autonomous fire detection, fire alarm 

confirmation and localization with cooperating UAVs. Conclusions and acknowledgements are 

the final sections. 

2. The Perception System  

This section presents the multi-UAV distributed perception system with special emphasis on 

sensors, its software architecture and communications. 

2.1 Sensors 

The UAVs are heterogeneous also in the sense of the sensors carried by them. They are equipped 

with DGPS, gyroscopes and Inertial Measurement Units and other sensors required for 

navigation. The main environment perception sensors considered in this paper are visual and 

infrared cameras, and a specialized fire sensor. 

Marvin carries a fire sensor, whose main component is a photodiode set-up to limit its sensibility 

to the band of [185, 260] nm, normally associated to fires. The output of the sensor is a scalar 

value, proportional to the radiation energy, received every 2 seconds. Being a magnitude sensor, 

it is not possible to determine if a measure is due to a big fire far away or a nearby small fire. 

Also, the sensor cannot directly provide the position of the fire. Section 4 will present the 

procedure used to detect and localize fires by using this sensor. Marvin also carries a Canon S40 

digital photo camera. 
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Heliv is equipped with infrared and visual video cameras. Each video camera is connected to a 

video server which digitizes and sends the image streams using standard net protocols. The 

infrared camera is a low-cost non-thermal OEM micro-camera (see Figure 2 right) in the far 

infrared band (7-14 microns). The visual camera is a low-weight color device with 320x240 

pixel resolution.  

Both helicopters, Marvin and Heliv, have motorized pan and tilt units that allow orientating the 

cameras independently from the body of the vehicle (see Figure 2 left). Those units have 

encoders that measure the pan and tilt angles.  

Finally, Karma carries a stereo bench with two visual cameras in order to generate depth maps. 

These cameras are also used for event monitoring. 

 

 

Figure 2: Left: Infrared and visual cameras of Heliv mounted in the pan and tilt unit. Right: 
detail of the infrared micro-camera. 

2.2 Software architecture 

Figure 3 shows the software architecture of the Perception System (PS). This system consists of 

a distributed subsystem, called Application-Independent Image Processing (AIIP), and two 

centralized subsystems (which deal with the cooperative algorithms): Detection/Alarm 

Confirmation, Localization and Evaluation Service (DACLE) and, the Event Monitoring System 

(EMS). 
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Figure 3: PS subsystems interconnection and architecture. The communications system 
employed allows to locate the AIIP on-board UAVs (in the FS) or on ground (in the GS) 
transparently. Left: partially distributed configuration. Right: fully distributed configuration. 

The AIIP subsystem is the processing front-end, the module of the Perception System closest to 

the sensors. There is one AIIP module for each camera, and for each UAV, its AIIPs can be 

located on-board if they have enough processing capabilities (case of UAVi of Figure 3) or on 

ground stations, otherwise (case of UAVj of Figure 3 left). The AIIP applies a first processing 

step over the data, reducing its dimensionality (and hence, the bandwidth needed to transmit 

them). The AIIP mainly deals with the low-level image processing functions that are common to 

the DACLE and EMS subsystems such as stabilization of image sequences, segmentation and 

geo-referencing. These functionalities will be described in Section 3. Also, the AIIP acts as a 

virtual image channel, being able to modify the resolution and region of interest of the images. 

The objective of the DACLE is to perform fire detection/alarm confirmation and localization. At 

its request, the DACLE subsystem receives information about possible fire alarms and other data 

from the AIIPs of the UAVs. DACLE applies sensor data fusion techniques to exploit the 

complementarities of the information gathered by the different sensors on board the different 

UAVs. Particularly, DACLE performs cooperative reliable detection and includes techniques for 

false alarm reduction. It also improves the localization of the alarms by fusing the locations 

given by the sensors of several vehicles and taking into account their uncertainties in a statistical 

framework. These techniques are presented in Section 4. 
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The EMS is in charge of the multi-UAV fire monitoring functionalities. This subsystem is not 

described in this paper due to space limitations. 

2.3 Communications 

The distributed perception system employs a custom communication system, called BlackBoard 

Communication System (BBCS) as communication layer for the different subsystems. The 

BBCS, developed by the Technical University of Berlin (Remuss, Musial & Brandenburg, 

2004), (Remuss & Musial, 2004), is implemented via a distributed shared memory, called 

blackboard. The consistency of this shared memory is ensured by a real-time aware protocol. 

The BBCS API also offers a set of functions to deal with wireless communications and include 

functions robust to periods of degraded bandwidth, not infrequent in forest scenarios. Its high 

configuration capability allows implementing network communications with low delay using a 

simple software structure.  

The BBCS is built on top of existing transport layers (UDP, TCP), and can be adapted to 

different kinds of operating systems and hardware platforms (ranging from PCs to 

microcontrollers), always offering the same services and interfaces. The subsystems of the PS 

can then be located on board the UAVs or on laptops on the ground, over different architectures, 

without significant changes in the configuration of the network.  

3. Low level perception techniques  

This section presents some of the functionalities currently considered within the AIIP subsystem 

(outlined in Figure 4). These functions are required for automatic forest fire detection and 

localization. Although tested for this specific scenario, it should be noted that these tools, as well 

as the cooperative techniques described in Section 4, can be adapted to a wide spectrum of 

applications.  
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Figure 4: Scheme of AIIP functionalities and their relations. 

3.1 Fire segmentation 

Fire segmentation is a function of the AIIP essential for fire detection, carried out by DACLE. 

The main objective is to differentiate fire pixels from background pixels. Two segmentation 

techniques have been applied depending on the type of image: visual or infrared. A binary 

correction algorithm is applied in both cases after segmentation to filter out isolated fire and 

background pixels (Haralick & Shapiro, 1992). 

3.1.1 Fire segmentation in visual images 

The technique used is a training-based algorithm similar to those described by Kjedlsen & 

Kender (1996) and Philips, Shah & da Vitoria-Lobo (2002). The method requires some training 

images in which an experienced user has determined the pixels that correspond to the fire. In the 

training stage a RGB histogram is built by adding Gaussian-type distributions centered at the 

RGB coordinates of the pixels considered as a fire pixel in the training images. If the pixel is 

considered as background in the training images, a Gaussian-type distribution centered at the 

RGB coordinates is subtracted from the RGB histogram. Finally, this RGB histogram is 

thresholded and a look-up table for the RGB color space is built. The look-up table contains a 



This is a preprint of an article published in Journal of Field Robotics, Vol. 23, Iss 3-4, pp. 165-184, Available online 
http://www3.interscience.wiley.com/cgi-bin/jhome/111090262 Copyright © 2006 Wiley Periodicals Inc. 

 11 

Boolean value indicating whether the color represents fire or background. In the application 

stage the RGB coordinates of the pixels are mapped in the trained look-up table and are 

considered fire pixels if the value in the look-up table is ‘1’ and, background otherwise. Figure 5 

right shows the image resulting from segmenting the image in Figure 5 left (See 

http://grvc.us.es/comets/jfr , Video 1, for a video showing more results). 

  

Figure 5: Left: Visual image of a fire experiment; Rigth: the resulting segmented image.  

3.1.2 Fire segmentation in infrared images 

The infrared camera used in the experiments was a low-cost OEM non-thermal camera. It does 

not provide temperature measures but estimations of the radiation intensity throughout the scene. 

Black and white colors represent low and high radiation intensities, respectively. Thresholding is 

proposed for fire segmentation. For robust fire segmentation, the thresholding technique should 

consider the particularities of the application.  The solution adopted was to use the training-based 

thresholding method described in Martínez-de Dios & Ollero (2004). Its main idea is to extract 

the particularities of a computer vision application and use them to supervise a multiresolution 

histogram analysis. The technique is applied in two stages: training and application, see Figure 

6. The training stage requires a set of training images and their corresponding desired threshold 

values given by an experienced user. The training stage identifies the conditions under which 

pixels should be considered to belong to the object of interest. These particularities are 

introduced in a system via ANFIS training method (Jang, 1993). In the application stage, features 

of the image are used to determine a suitable threshold value according to these particularities. A 
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detailed description can be found in Martínez-de Dios & Ollero (2004). At 

http://grvc.us.es/comets/jfr , Video 2 shows some results. 

 

Figure 6: General scheme of the training-based threshold selection. 

3.1.3 Characterization of the fire segmentation algorithms 

The previous algorithms are used for fire detection. The vehicles of the fleet will cooperate to 

reduce the number of false alarms by means of data fusion (see Section 4), and this requires the 

probabilistic characterization of the above segmentation algorithms. The algorithms are modeled 

by the probabilities PD of detection and PF of false positive outputs. These values have been 

experimentally determined for both algorithms with a large set of images, some of which present 

actual fires. The probabilities have been computed as follows: 

• PD is the ratio between the alarms correctly detected and the total number of fire alarms 

presented in the set of images. 

• PF is the ratio between the number of images where the algorithm detected fire 

incorrectly and the total number of images of the sequence.  

Table I shows the obtained values for the algorithms used for fire segmentation in visual and 

infrared images. 

TABLE I 

CHARACTERISTIZATION OF FIRE SEGMENTATION ALGORITHMS 

 IR Visual 

PD 100% 89.2% 

PF 8.9% 3.1% 
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3.2 Geolocation 

The determination of the geo-referenced location of the objects observed on the images is 

required for many applications. Besides, it is very useful to obtain an estimation of the 

uncertainty in the computed location. 

The sensors onboard the different UAVs are used to compute, in a global and common 

coordinate frame, the position and orientation of each UAV itself and also of the sensors that are 

carried on board (these position and orientation will be denoted by xs). For the later, the UAV 

attitude angles measured by the IMU units have to be combined with those of the pan and tilt 

devices. Also, the UAVs provide an estimation of the covariance matrix Cs of the errors of these 

quantities.  

If the camera is calibrated and a digital elevation map, denoted by D, is available, it is possible to 

obtain the geo-referenced location xm of an object in the common global coordinate frame from 

its position on the image plane, o:  

),,( Dsm xofx =  (1) 

The function f inverts the camera projection obtained by, for example, a pin-hole model of the 

camera. This model is obtained through calibration for all the cameras, using the algorithm 

developed by Zhang (2000). Clearly, the function f is non-linear, and in the general case the 

dependence on the map D cannot be expressed analytically. Notice that the errors in the position 

and orientation of the camera (represented by Cs) and the errors in the position of the object on 

the image plane (represented by Co) are propagated into xm (see Figure 7) through (1). The 

covariances Cm of these errors are estimated by using the so-called Unscented Transform (Julier 

& Uhlmann, 1997), (Schmitt, Hanek, Beetz, Buck & Radig, 2002).  

The Unscented Transform is chosen because it allows to consider a more general class of 

functions than the usual first order expansion. Also the estimated covariance matrix is more 

accurate than that obtained by means of a Taylor expansion of f (Julier & Uhlmann, 1997). 
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Thus, by using the geolocation procedure, each UAV will provide measures of the form [xm,Cm], 

where xm is the measured geo-referenced location of the event of interest (for instance, a 

segmented fire given by the segmentation functions) in the common coordinate frame and Cm is 

the estimated covariance of the errors on this location.  

 

Figure 7: Scheme of the uncertainty propagation during the geolocation process.  

3.3 Feature matching and stabilization 

Many applications, such as monitoring, require having motion-free sequences of images. Thus, 

tools to compensate the motion induced on the image plane by the motion of the UAV are 

required. Using these tools, the AIIP system can provide sequences of stabilized images. The 

approach adopted obtains the apparent image motion by means of a robust interest point 

matching algorithm, and compensates the motion by warping the images to a common image 

frame. For specific configurations, the image motion model used for this warping is a 

homography. 

3.3.1 Feature matching method 

The computation of the approximate ground plane homography needs a number of good 

matching points between pairs of images in order to work robustly. The image matching method 

adopted is related to that described by the authors in Ferruz & Ollero (2000), with significant 

improvements (Ollero, Ferruz, Caballero, Hurtado & Merino, 2004). Although the same feature 

selection procedure of corner points is used, and a combination of least residual correlation error 

and similarity between clusters of features is still the disambiguation constraint, a new matching 

strategy has been implemented. Instead of searching for individual matching points, clusters are 

built as persistent structures and searched for a whole. This allows to change the disambiguation 
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algorithm from a relaxation procedure to a more efficient predictive approach. Selected matching 

hypothesis are used as starting points to locate a full cluster; the position of additional cluster 

members is predicted from the cluster deformation model.  

The practical result of the approach is to drastically reduce the number of matching tries, which 

are by far the main component of processing time when a significant number of features have to 

be tracked, and large search zones are needed to account for high speed image plane motion. 

This is the case in non-stabilized aerial images, especially if only video streams of relatively low 

frame rate are available (see http://grvc.us.es/comets/jfr, Video 3, for some results). 

As explained in Ollero et al. (2004), the detected corners define image windows which are 

tracked in subsequent frames; the result of such tracking is a set of window sequences. For a 

cluster of windows iΦ ,  { }n��,�� 21 �= , the shape similarity constraints that must hold are 

equivalent to assume that the changes  in window distribution can be approximately described by 

euclidean transformation and scaling. The effects of noise and the innacuracies of the model are 

accounted for through tolerance factors.  

Under the assumption that such constraints hold, it is easy to verify that two hypothesized 

matching pairs allow to predict the position of the other members of the cluster. The generation 

of candidate clusters for a previously known cluster can start from a primary hypothesis, namely 

the matching window proposed for one of its window sequences (see Figure 8), selected because 

of the low grey-level residual error between it and the last known window of the sequence. This 

assumption allows to restrict the search zone for other sequences of the cluster, which are used to 

generate at least one secondary hypothesis. Given both hypothesis, the full structure of the 

cluster can be predicted with the small uncertainty imposed by the tolerance parameters, and one 

or several candidate clusters can be added to a data base. The creation of any given candidate 

cluster can trigger the creation of others for neighbour clusters, provided that there is some 

overlap among them; in Figure 8, for example, the creation of a candidate for cluster 1 can be 
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used immediately to propagate hypothesis and find a candidate for cluster 2. Direct search of 

matching windows is thus kept to a minimum. 

At the final stage of the method, the best cluster candidates are used to generate clusters in the 

last image, and determine the matching windows for each sequence. Cluster size is used as a 

measure of local shape similarity; a minimum size is required to define a valid cluster. If a 

matching pair cannot be included in at least one valid cluster, it will be rejected, regardless its 

residual error. 

 

Figure 8: Generation of cluster candidates. 
 

3.3.2 Homography computation 

By using the above algorithm, a set of matches between two consecutive images can be 

computed. The main idea here is to compute an image motion model from these matches and, 

then, inverse this model to undo the motion induced in the image. 

The motion model selected is a homography, so a planar surface or a pure camera rotation are 

assumed as hypotheses. Homography-based techniques have been proven to be frequently valid 

for aerial images: planar surface model holds if the UAV flies at a sufficiently high altitude; and 

pure rotation model holds for a hovering helicopter. Thus, if a set of points in the scene lies in a 

plane, and they are imaged from two viewpoints, then the corresponding points in images i and j 
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are related by a plane-to-plane projectivity or planar homography (Faugeras, Luong & 

Papadopoulo, 2001), H: 

jis mHm ~~ = , (2) 

where [ ]1,,~
kkk vu=m  is the vector of homogenous image coordinates for a point in image k, H is 

a 3x3 non-singular matrix and s is a scale factor.  

Only four correspondences are needed to determine H. In practice, more than four 

correspondences are available by using the above matching procedure, and the 

overdetermination is used to improve accuracy. A robust outlier rejection procedure is used in 

this work, based on LMedS (Least Median Square Estimator) and further refined by the Fair M-

estimator (Xu & Zhang, 1996), (Zhang, 1996), (Zhang, 1995). Once the homography matrix H 

has been computed, the images are warped to a common frame. The warping was optimized due 

to real-time constraints (Ollero et al., 2004). The computation time for motion compensation in 

images of 384x287 pixels is 30 ms. in a Pentium III at 1GHz (see http://grvc.us.es/comets/jfr, 

Video 4, for a stabilized sequence). Figure 9 shows a mosaic of the scenario of the field 

experiments of Section 5 built from images gathered by the blimp Karma of the LAAS team 

using the stabilization procedure techniques to reduce the global image positioning error. 
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Figure 9: Mosaic of Lousa airfield (Portugal). Mosaic constructed using more than 500 images 
taken by Karma. The square shows a detail of the mosaic. 

4. Cooperative fire detection 

The objective of the DACLE subsystem is, from the measures provided by each vehicle of the 

fleet, to cooperatively estimate the geographical location of potential fire alarms while trying to 

reduce the number of false alarms. The DACLE subsystem can receive as measures the fire 

sensor data from Marvin and the geolocated fire alarms from the AIIP subsystems of the UAVs 

that carry cameras onboard. This section extends the work presented in Merino, Caballero, 

Martínez-de Dios & Ollero (2005). There, the authors presented the algorithms to deal with 

information provided only by cameras. Here, this work is extended to cope with fire sensor data 

and the final scheme is presented.  Figure 10 shows a scheme of the DACLE operation. 

At time k, the current information about every alarm i stored by DACLE is defined by 

[ ])(),(),( kpkk iaiai Cx . where xai(k) is the estimated geo-referenced location for alarm i at time k, 

Cai(k) is the estimated covariance matrix of the errors in xai(k) and pi(k) is the estimated 

probability for this alarm to be a fire. 



This is a preprint of an article published in Journal of Field Robotics, Vol. 23, Iss 3-4, pp. 165-184, Available online 
http://www3.interscience.wiley.com/cgi-bin/jhome/111090262 Copyright © 2006 Wiley Periodicals Inc. 

 19 

 

Figure 10: Scheme of the DACLE functionalities. 

The fire detection procedure consists of two stages, called detection and confirmation. 

4.1 Fire detection 

In this stage one or several UAVs are commanded to survey non-overlapping areas searching 

potential fire alarms. In this case, no cooperative perception is actually performed, but each UAV 

sends to the Control Centre the position of the alarms. Two different data sources come from the 

UAVs: images and data from the fire sensor. 

4.1.1 Detection of fire alarms in images 

By using the fire segmentation and geolocation algorithms of the AIIP subsystem, the UAVs 

equipped with cameras provide direct estimations of the locations xai(k) and the covariance 

Cai(k) of the fire alarms. These estimations are complemented by the probabilities PD and PF 

associated to the fire detection algorithms. These values are used to compute the initial 

probability pi(0) as: 

FD

D
i PP

P
p

+
=)0(  (3) 

The justification of this expression will be given in Section 4.2, where it will be proven that the 

expression considers an initial probability of fire at position xai of value 0.5. 

4.1.2 Detection of fire alarms with the fire sensor 



This is a preprint of an article published in Journal of Field Robotics, Vol. 23, Iss 3-4, pp. 165-184, Available online 
http://www3.interscience.wiley.com/cgi-bin/jhome/111090262 Copyright © 2006 Wiley Periodicals Inc. 

 20 

The fire sensor provides a scalar value indicating the presence of fire. Using a threshold, this 

value is used to obtain a Boolean value, s, indicating that a fire alarm is present. To estimate the 

position of the alarm a grid-based localization technique is used. Each cell i of the grid is 

associated to an area of the searching zone of the UAV centered at position xi. Cell i is assigned 

with a value, p(xi
k), that represents the probability that fire alarm is present in its area at time k 

(see Figure 11 left). The values of the grid are updated iteratively with the new data gathered by 

the sensor. At time k=0, with no information about the presence of fire alarms, all the cells are 

initiated with p(xi
0)=0.5. When a new measure sk+1 arrives, the conditional probability 

p(xi
k+1|sk+1) for each cell within the field of view of the sensor is computed. p(xi

k+1|sk+1) is the 

probability of having a fire alarm in cell i conditioned to sk+1. p(xi
k+1|sk+1) is computed by using 

the well-known Bayes rule: 
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The sensor model p(sk+1|xi
k) used in (4), the probability of having the measure sk+1 given a fire at 

location xi , is also characterized by the probabilities PD and PF of the sensor, as in Section 3.1 

for the image-based detection algorithms. The integral in (4) is a sum over the two possible states 

of cell i (having fire, i.e. TRUE, or not, i.e. FALSE). If sk+1 is TRUE (that is, a fire is detected in 

the field of view of the fire sensor), (4) becomes: 
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while if sk+1=FALSE, then the update equation is: 
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The values of the cells of the grid within the field of view of the fire sensor are recursively 

updated using (5) and (6) as new data gathered by the fire sensor arrive. The field of view of the 

sensor is defined by a maximum range and the horizontal and vertical aperture angles (see Figure 
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11 left). The actual values of PD and PF in equations (5) and (6) depend on the relative position 

of cell i respect to the sensor. Both values decrease with the distance from the cell to the sensor 

and with the angles that the cell forms with the sensor.   

When a set of connected cells of high probability (higher than 0.7) is obtained, then an alarm is 

generated and the mean position of this region xai is computed. The second order moments of the 

region of cells are used as an estimation of the covariance of the localization errors, Cai. Figure 

11 right shows a high probability region in the grid, with these moments represented as an 

ellipse. As a result, the processing of the fire sensor generates also alarms of the form [xai, Cai, 

pi]. 

  

Figure 11: Left: Scheme of the fire sensor field of view. The cells within a maximum distance 
from the sensor are updated when new sensor data are available. Also, the field of view is 
defined by horizontal and vertical aperture angles (here, only the horizontal angle is shown). 
Right: a set of cells of high probability. Its mean position and second order moments are 
computed, and a fire alarm is raised. 

4.2 Fire alarm confirmation 

When a fire alarm is detected and localized, the mission is replanned, and more UAVs are sent to 

confirm the alarm using their cameras. The objective is to cooperatively re-estimate the state of 

the alarms by fusing the fire measures gathered by all these UAVs. Figure 12 illustrates the 

procedure that consists of the following stages: Prediction, Data Association and Update. 
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Figure 12: Alarms tracking scheme. Left: prediction. The previous detected alarms and their 
uncertainties (presented as ellipses). Center: The UAVs gather new measures. These measures 
are associated to the tracks of the currently-detected alarms. Right: the update stage reduces 
the uncertainties of the tracks with the new data inputs. New tracks are added. 

4.2.1 Prediction stage 

As previously stated, [ ]{ })(,,1,)(),(),()( kLikpkkkA iaiai �== Cx  is the list of all the potential 

alarms in time k, where L(k) is the number of alarms at time k. In this stage A(k) is used to 

predict the states of the alarms at time k+1. For such a prediction, a motion model for the alarms 

is required. Through this paper, the positions of the alarms are assumed to be static, i.e. 

A(k+1)=A(k). This is realistic for the scenario considered, and also allows the measures to be 

fused with arbitrary latency (Ridley, Nettleton, Sukkarieh & Durrant-White, 2002). However, the 

same scheme could be used with more complicated models, such as moving vehicles in traffic 

surveillance applications. 

4.2.2 Data association 

At time k+1, using the fire segmentation and geolocation procedures of Sections 3.1 and 3.2, the 

AIIP subsystems of the different UAVs provide a set of measures of the form: 

[ ]{ })1(,,1,,),1(),1()1( +=++=+ kNjPPkkkM FjDjmjmj �Cx , (7) 

where N(k+1) is the total number of measures provided by the UAVs at time k+1, xmj(k+1) is the 

estimated position of each measure, Cmj(k+1) is the estimated covariance matrix for the errors in 

xmj(k+1) and PDj and PFj are the parameters that characterize the segmentation algorithm used.  
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Data association tries to assign each measure j in M(k+1) with one alarm i in A(k), see Figure 12, 

center. A well-known gated nearest neighbor technique is used (Feder, Leonard & Smith, 1999). 

The measure j is associated with alarm i if they satisfy: 

212 )]1()()[1()]1()([)1( dkkkkkkd mjaiij
T

mjaiij ≤+−++−=+ − xxSxx , (8) 

where Sij(k+1)=Cai(k)+Cmj(k+1). If xai(k) and xmj(k+1) are Gaussian, d2
ij(k+1) follows a 2χ  

distribution. d2 is chosen as 9 (less than 0.1% probabilities that a correct association gives a 

greater value (Feder et al., 1999), (Bar-Shalom & Fortmann, 1987)). 

If there are more than one measure provided by the same UAV that accomplish (8), then the 

nearest (that of minimum dij(k+1)) is chosen as the correct association with alarm i. Several 

measures from different UAVs can be associated to the same alarm. 

4.2.3 Update stage 

Assume that measures {j=1,…,Mi} have been associated to alarm i. Then, the estimated position 

xai and covariance matrix Cai are updated by the following equations: 
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These equations follow the information form of the Kalman filter scheme as described in (Ridley 

et al., 2002). This leads to a reduction on the uncertainties on the location of the alarm, as 

illustrated in Figure 12, right. 

The probability pi(k) of being a fire alarm is updated following the Bayes rule. Assuming that the 

measures from different cameras are independent (each one characterized by PDj, PFj), pi(k) is 

updated by the following expression: 
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Also, negative information is used for alarm confirmation. If alarm track i is in the field of view 

of the camera on board a UAV (with fire segmentation characteristics PD and PF) and has not 
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been associated to any fire measure from this UAV, the probability of alarm track i is updated by 

the following expression:  
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Finally, if a measure j has not been associated with any of the alarms, then a new alarm track is 

initialized (see Figure 12, right). The prior belief of this new alarm track pi(k+1) is computed as 

in (3). Expression (3) follows from (11) considering a probability pi(k)=0.5. 

Using equations (11) and (12), the systems discard as false alarms those tracks whose 

probabilities drop below a given threshold (0.2), while confirms those over a probability of 0.9. 

5. Field Experiments 

The perception system and all the techniques described in previous sections have been tested 

during field experiments carried out at the airfield of Lousa, Portugal. The experiments were 

performed with real controlled fires in order to test the system in close-to-operational conditions. 

The vehicles presented in the introduction participated in these experiments. Figure 13 shows 

two photos of these experiments. 

  

Figure 13: Left: Karma and Heliv involved in a real experiment at the Lousa Airfield (Portugal). 
Right: a view of the airfield from Marvin. 

The mission described below is a particular instance of a more general mission that could be 

called fire detection, confirmation and precise localization with several cooperating UAVs, and 

that could include different combinations of UAV and sensors. The mission described below was 
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carried out in May 2005. Aspects related to the coordination of the mission, task decomposition 

and task allocation are not described in the paper. 

The mission is decomposed in the following stages: fire search, fire confirmation, fire 

observation. The fire search stage starts by searching potential fires. In this stage, only Marvin 

autonomous UAV is used. A search path is planned for it, and the fire sensor is used to look for 

potential fires. If one (or several) fire alarm is detected, then the fire confirmation stage starts. 

The task for Marvin UAV is replanned. It is commanded to hover at a safety distance from the 

fire alarm. Another UAV, in this case Heliv, is sent to confirm the alarm by using its infrared 

camera. If the alarm is found to be false, then the fire search stage is resumed. If the alarm is 

confirmed as a fire, then the fire observation stage starts. Then, the tasks for Marvin and Heliv 

are re-planned: both are commanded to hover on to the fire alarm and to synchronously obtain 

stabilized images of the fire from different points of view. Besides, the blimp Karma is sent to 

obtain overview images of the scenario. Below are some of the results obtained along the 

mission. 

5.1 Fire search 

The data from the fire sensor are processed to evolve a fire probability grid over the searching 

zone (Lousã airfield) by using the techniques described in Section 4.1.2. The grid covers 

310x400 square meters and each cell corresponds to an area 1 m2. Initially all the cells are set to 

a probability value of 0.5. Figure 14 shows the initial stages of the evolution of the probability 

values of the grid every 40 s. Black color is low probability and white is high probability. 

  

Figure 14: Evolution of fire probability of the grids cells. White indicates high probability and 
black low probability. 
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Connected cells with high probability (higher than 0.7) are considered as fire alarms and their 

locations are obtained. In the whole duration of this stage, three potential alarms are detected. 

They are shown in Figure 15 left. Figure 15 shows a georeferenced schematic map of the Lousa 

airfield. The solid polygonal object represents the concrete area where the UAVs take off and 

land. The axes are shifted UTM coordinates in meters. Only one of the three fire alarms is a true 

fire. The position of the controlled fire is marked with a solid square: 
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Figure 15: Left: Fire search stage. Fire alarms detected using the fire sensor. The ellipses 
represent the uncertainties in the computed positions of the alarms. The square indicates the 
actual position of the fire. The trajectory of Marvin is shown. Right: Fire confirmation stage. 
New measures from Heliv (dotted ellipse) are used to refine the location of the alarms. Heliv 
trajectory is also shown (dotted). 

5.2 Fire confirmation 

During confirmation, Heliv infrared images are processed and the procedure of Section 4.2 is 

followed (Figure 15 right). Figure 16 shows the previously detected alarms projected onto the 

segmented infrared images (also the uncertainty ellipses on their locations). The white patch is a 

region segmented as fire in the infrared image. Only one of the three uncertainty ellipses 

associated to alarms intersects its area. Thus, following (12), the probabilities pi for the two other 

alarms are decreased. The associated data are used to update the probability of being fire for each 

object, and also to refine the estimation of its location using equations (9), (10), (11) and (12) 

(see Figure 16).  
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Figure 16: Current alarms projected on the image plane of segmented infrared images. The 
ellipses indicate the uncertainty on the projection. Two ellipses do not intersect the fire 
segmented on the image and are considered to be false alarms. 

Figure 17 shows how the uncertainties in the position of the true alarm are recursively reduced, 

while the probabilities of the false alarms drop to values close to 0, when the alarm information 

obtained from the fire sensor is combined with the data from the infrared camera of Heliv. Table 

II presents the position of the fire alarm (mean and standard deviation) estimated with the fire 

sensor and the infrared camera. The actual location of the controlled fire measured using a GPS 

is also shown. The similarities between the actual and estimated position are evident. 
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Figure 17: Evolution in the localization of the alarm. Left: The graphic shows the estimated 
standard deviation for the location of the alarm (Easting, Northing and Height). The alarm is 
obtained from the fire sensor data at time 450. The initial errors are high. Around time 570, 
images from Heliv are used to confirm the alarm and to refine the position. Right: evolution 
of the probabilities of the three alarms. 
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TABLE II 

ESTIMATED FIRE POSITION AND UNCERTAINTIES, AND GROUND TRUTH 

 Easting Northing Height 

True location of the fire 564627 4443961 200 

Final estimated location (fusion) 564628.9 4443961.4 200.04 

Estimated standard deviation 1.5 2 0.28 

 

5.3 Fire observation 

Once the detection phase has concluded, the observation phase starts. Marvin and Heliv are 

commanded to hover on to the fire (approximately forming 120º with the fire) and to send 

stabilized sequences of images of the event (an operator could then observe the dynamic 

evolution of the fire), see Figure 18. As stated in Section 1, the system allows synchronizing the 

vehicles to send images close in time. The images are stabilized in real-time, using the 

procedures of Section 3.3. Also, in some missions the blimp Karma is sent to take overview 

images of the zone (Figure 9 presented a mosaic built from these images). Video 5 at 

http://grvc.us.es/comets/jfr summarizes the full mission. 

  

Figure 18: During the fire observation stage, sequences of stabilized images from different 
points of view are obtained by using the Marvin and Heliv visual cameras.  

6. Conclusions and lessons learned 

Unmanned aerial vehicles (UAVs) have attracted a significant interest in many field robotics 

applications. The complexity of some applications requires cooperation between UAVs. 
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Although perception systems based on computer vision have been applied for different tasks, 

perception systems with multiple cooperating UAVs are scarce, especially in civil applications. 

The paper presents a multi-UAV cooperative perception system. The system considers 

heterogeneous UAVs (helicopters and blimps), with heterogeneous sensors (infrared and visual 

cameras, fire sensors and others). The perception system is distributed within the fleet, with 

functions local to the robots and a centralized part that fuses the data provided by the different 

UAVs. It includes local multipurpose image-processing functions such as image segmentation, 

stabilization of sequences of images and geo-referencing. Using these functions, the UAVs can 

provide estimations of the localization of objects of interest.  

The main contribution of the paper is the cooperative module. This module uses a probabilistic 

framework to perform cooperative multi-UAV detection and tracking. The module allows to 

determine the belief on the status of objects of the same class (for instance, fire alarms) from 

estimations provided by each UAV locally.  The advantage of this approach is that, if the 

processing can be carried out on-board, the required bandwidth to transmit the local estimations 

is greatly reduced. 

An important aspect of the system is the proper probabilistic characterization of the detection 

algorithms. Here, a simple model based on the detection capabilities and the false positive 

outputs is used, although more complicated models could be integrated. 

The proposed perception system and algorithms has been demonstrated on-line for the 

autonomous detection of forest fires. The results from these experiments demonstrate that the 

principles can be effectively applied for fire detection and precise localization. The fusion of data 

from heterogeneous sensors allows to reduce the false alarm ratio. It can be seen in the results 

from the experiments that the false alarms generated by the fire sensor are discarded by using the 

images. This is very interesting, because UAVs that carry sensors with high detection 

capabilities but relatively high false alarm ration could be used for an initial exploration, while 



This is a preprint of an article published in Journal of Field Robotics, Vol. 23, Iss 3-4, pp. 165-184, Available online 
http://www3.interscience.wiley.com/cgi-bin/jhome/111090262 Copyright © 2006 Wiley Periodicals Inc. 

 30 

other UAV can be used to discard or confirm these alarms. Moreover, the planning phase can 

take into account the different configurations when assigning tasks to the robots. 

Also, the information is fused to estimate the position of the fire alarm. The recovered position is 

within 1 meter of the actual position. The experiment show that it is very important to get a good 

estimation of the uncertainties on the estimated position for the alarms. The Unscented 

Transform (Julier & Uhlmann, 1997), used to approximate the non-linear nature of the projection 

transformation during geolocation, allows to integrate the different sources of uncertainty 

(position and orientation of the robot, position of the objects on the image plane, map 

uncertainties) to compute the associated uncertainty to measures provided by the UAVs. 

It should be noted that the multi UAV-based mission demonstrated by the proposed system is 

very similar (at a different scale) to fire detection operations currently performed by the fire 

extinguishing services but with manned helicopters and airplanes. Due mainly to the high cost, 

such operations are normally applied only in high-risk or high-interest protected areas. The use 

of the presented system UAVs has evident advantages.  

The described techniques can be adapted to other kind of sensors and applications. The block fire 

segmentation can be substituted for other detection functions that provide the positions of objects 

of a certain class on the image plane. For instance, the motion estimation algorithm can be used 

to detect events like moving objects. The measures obtained can be integrated in the same 

cooperative scheme. Moreover, other segmentation algorithms tuned to other applications could 

be easily included. 

Regarding the particular problems faced during the field experiments, there are some points that 

are worth to mention. Thus, when the AIIP subsystem is not onboard, it receives the raw image 

sequences through the wireless links. The images were compressed using JPEG in order to 

reduce the required bandwidth but the influence of the compression on the image processing 

algorithms aroused serious concern. After several experiments it was possible to determine a 

compression factor that guaranteed the correct operation of the perception system functionalities. 
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The fire segmentation algorithms from visual and infrared cameras were successfully trained to 

work with compressed images. The tracking functionality parameters were tuned to deal with the 

distortions introduced by the JPEG compressor. It is important to point out that, at least in the 

scope of the experiments carried out in this paper, is possible to used JEPG compression to 

reduce the wireless bandwidth needed to send images from the UAVs to the ground segment 

(DS). 

Furthermore, during the experiments all the communications between the UAVs and the ground 

segment (GS) were carried out by using 802.11 wireless systems. Although this standard is 

mainly designed for static nodes, these experiments demonstrated that if the UAV motion is 

smooth, its speed is moderate and the distance to the wireless base is shorter that one hundred 

meters a robust communication channel can be established in the open field. For other conditions 

it would be needed a more robust data link. However, if the image processing is carried on 

board, the required bandwidth is considerably reduced and can be sustained by a radio-modem 

data link. 

It is also interesting to point out how small details like the sensor coordinate system can generate 

serious problems from the beginning to the end of the development. If a fleet of heterogeneous 

UAVs have to cooperate, it is necessary to carefully set a common coordinate system for the 

measures given by the sensors. Incoherent coordinates systems lead to erroneous and potentially 

dangerous results. 

Regarding future developments, in the present formulation, the cooperative algorithms for 

precise localization are based on the Kalman filter. The problem of data association is solved by 

using a nearest neighbor technique which may lead to false matches in a cluttered environment. 

More complex techniques as multiple hypothesis tracking (Schmitt et al., 2002) will be applied.  

Furthermore, pure Bayesian approaches for data fusion, based on likelihood functions, will be 

also researched. 
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Besides, the application of the proposed multi-UAV perception system to inspection of buildings 

(in particular thermal leakages) is object of current research, as well as the integration of 

multiple UAVs with wireless sensor networks. 
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