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Abstract6

This paper presents a new method for the localization of a Wireless Sensor Network (WSN)7

by means of collaboration with a robot within a Network Robot System (NRS). The method8

employs the signal strength as input, and has two steps: an initial estimation of the position9

of the nodes is obtained centrally by one robot and is based on particle filtering. It does10

not require any prior information about the position of the nodes. In the second stage,11

the nodes refine their position estimates employing a decentralized information filter. The12

paper shows how the method is able to recover the 3D position of the nodes, and is very13

suitable for WSN outdoor applications. The paper includes several implementation aspects14

and experimental results.15
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Information Filter17

1 INTRODUCTION18

In Network Robot Systems (NRS), a team of robots is expected to cooperate with19

sensors embedded in the environment for tasks like information gathering, track-20

ing, surveillance, etc. Several different kinds of sensor networks can be expected,21

like surveillance cameras, RFID readers, etc. Latest advances in low-power elec-22

tronics and wireless communication systems have made possible a new generation23

of devices able to communicate, sense environmental variables and even process24

this information, the Wireless Sensor Networks (WSNs). In WSNs, the sensors are25

cheap and the whole network can consist of hundreds of sensors. In addition, the26
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recent commercialization of some of these devices has increased the applicability27

and research efforts in this area.28

Collaborative perception between robots and the sensor networks require to anchor29

all the data gathered to the same reference frame. Therefore, the localization of30

sensor nodes for sensor network deployment is an essential problem for NRS. It31

can be also important for the network performance when geographic-based routing32

methods are used. While most of the WSNs installed indoors are manually local-33

ized, localization of all the nodes in outdoor applications is still an open problem34

because GPS-based solutions are usually not viable due to the cost, the energy con-35

sumption and the satellite visibility from each node.36

This paper addresses the WSN localization problem in outdoor environments by37

using a mobile robot. The paper describes a probabilistic framework where the38

localization of an entire WSN can be estimated by analyzing the interactions of39

a robot with the network. The approach takes advantage of the good localization40

capabilities of the robot and its mobility to compute an initial estimation of the41

node positions. The estimated position of the nodes could be used by the robot42

to better plan actions for data recovering. Moreover, once an initial estimation is43

obtained, a second localization stage is launched to refine the position of the nodes44

in a distributed manner. The received signal strength from neighbor nodes is used45

to improve their position employing a decentralized scheme based on Information46

Filtering.47

The paper is structured as follows. Firstly, the full approach is outlined in section48

2. Section 3 details the proposed method to compute an initial estimation of the49

position of the nodes. Then, a distributed technique for localization refinement is50

described in section 4. Finally, some experimental results with a real network are51

shown.52

1.1 Related work53

Localization of WSNs is an active field of research and some methods have been54

proposed. Most of them [2,11,15] are based on a small and well distributed set of55

nodes with known positions, called beacon-nodes. The position of these nodes is56

computed by means of a positioning sensor such as GPS or active/passive posi-57

tioning devices. Sometimes this position is simply pre-computed and stored in the58

node. This information is propagated to the entire network and, finally, the radio59

interface of the wireless nodes is used to estimate the distance to the beacon-nodes60

which is used to estimate the localization of the nodes using triangulation, maxi-61

mum bounding or other techniques.62

A pre-calibrated relation between the Received Signal Strength Indication (RSSI)63

provided by the communication circuitry and the distance is used to obtain a low-64
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accuracy estimation which worsens with the distance from the node to the beacon-65

nodes, see [12]. Improvements in the radio interface to increase the directivity, as66

in [19], or the inclusion of new features like time-of-flight have been proposed [18]67

but, in general, they lead to a power consumption growth and to a radio coverage68

reduction. In [9] time of arrival and direction of arrival are used to successfully69

localize a wireless sensor network but a number of requirements such as sensor70

node processor clock synchronization, special signal source devices and direction71

of arrival are needed. Unfortunately, even having well localized beacon-nodes and a72

reliable system to propagate this information, the results will be poor if the beacon-73

nodes are not appropriately distributed in the network.74

This paper proposes to use a mobile robot equipped with a DGPS device for WSN75

calibration. A mobile node can substitute a set of fixed beacon-nodes. Some au-76

thors have proposed the use of mobile robots for calibration of sensor networks.77

For instance, in [1] the authors present a similar approach based on particle filters78

for the calibration of a network of cameras. A particle filter is used to estimate the79

pose of the cameras, and it employs as data the position on the image plane of a80

localized robot. It also combines this with a Kalman Filter for position refinement.81

However, results with only one camera are presented, and no distributed approach is82

proposed. In [13], the authors consider the use of a mobile robot carrying a calibra-83

tion pattern for the simultaneous localization, mapping and calibration of a indoors84

network of cameras. There, a centralized Extended Kalman Filter is employed to85

fuse all the information and the use of the artificial pattern allows to fully observe86

the position of the robot relative to the camera.87

A technique for WSN localization using mobile robots has been also presented88

recently in [3]. The authors detail a technique based on potential fields that exploits89

the position information of a team of Unmanned Aerial Vehicles (UAVs) to localize90

the nodes. The concept underlying the approach is similar to ours, although the91

solution adopted is different; moreover, an accurate range sensor is required for92

computing the distance from the UAVs to the nodes. Here no special device for93

distance computation is used.94

2 TECHNIQUE OVERVIEW95

The purpose of the presented technique is to localize all the nodes of the network by96

using the information gathered by a mobile robot. The robot is able to communicate97

with the WSN in order to obtain environmental information. These data are sent to98

the robot by using a radio frequency stage that informs about the signal strength on99

reception (the RSSI value).100

The approach, outlined in Fig. 1, uses the received signal strength to estimate the101

position of the emitter. The technique can be divided into two basic steps. Firstly,102
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(a) (b)

Fig. 1. (a): Scheme of the approach. The signal strength is used to estimate the position of
the nodes of the network. The mobile robot computes centrally an initial estimation em-
ploying a separate Particle Filter per node. In the second step, a decentralized Information
Filter integrates at each node information received from neighbor nodes and the robot. (b):
An example, a ground robot (Romeo) driving through the network

a Particle Filter is used to process the RSSI value received from each node to com-103

pute an initial estimation of node locations in a static wireless network. The filter104

takes into account the uncertainty associated with the RSSI value and with the robot105

position (provided by a DGPS device) in order to optimally compute the position of106

the node. In the second step, the initial estimation of the position of the nodes (rep-107

resented by mean and standard deviation) is sent to them. A distributed Information108

Filter is implemented in each node in order to easily improve the localization using109

the signal strength received from other nodes of the network, including the mobile110

robot.111

The following characteristics differentiate this technique from other approaches:112

• A Bayes filter is employed for the estimation of the localization of the nodes. The113

estimated position of the nodes will be represented by a probability distribution.114

This allows to take into account the uncertainty on measures involved in the115

process, mainly the relationship between RSSI and distance.116

• The mobile robot position is included in the localization process and integrated117

along time. It allows to reduce one of the endemic problems of the RSSI-based118

localization algorithms: the distortion induced by radio-frequency effects. The119

chance of measuring the RSSI at different robot positions and orientations per-120

mits automatic detection of outliers and, hence, an improvement in the distance121

computation.122

• Once an initial solution is computed, the network is able to use the localization123

information of all the nodes, including the position of the robot, to improve the124

estimation. This increases the flexibility of the technique.125

• There is no triangulation but an estimation process so that the algorithm can126

consider hypotheses in which the estimated position is spread over a certain area.127
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3 PARTICLE FILTER BASED NODES LOCALIZATION128

3.1 Filter overview129

The objective of the localization algorithm is to estimate the position of the nodes130

of the network from the data provided by the node onboard the robot equipped with131

DGPS. A separate filter is implemented per node. Then, the state to be estimated132

consists of the position of each node x =
(

X Y Z
)T

. The information about the133

state will be obtained from the set of measurements z1:k received up to time k. This134

set of measurements consists of pairs of RSSI and robot position values {xr
k,RSSIk}135

(the algorithm considers a moving robot, and thus the time subscript for the robot136

position).137

The method is based on Particle Filtering. This technique allows implementing re-138

cursive Bayesian filtering by Monte Carlo sampling. The key idea is to represent139

the posterior density at time k p(xk|z1:k) by a set of independent and identically140

distributed (i.i.d.) random particles {x(i)
k } according to the distribution. Each par-141

ticle is accompanied by a weight ω(i)
k . Sequential observations and model-based142

predictions will be used to update the weight and particles respectively. See [4] for143

more details.144

Particle Filters allow Bayesian estimation to be carried out approximately but in145

a structured and iterative manner, that simplifies the implementation. In general,146

it is very suitable for non-gaussian stochastic processes with non-linear dynamics147

and very useful when the posterior p(xk|z1:k) has no parametric form or this form is148

unknown. 3D localization of nodes with non prior information implies a completely149

unknown posterior, so that Particle Filter seems to be a good solution to address the150

node localization problem.151

Although there are many possible implementations, in the proposed algorithm the152

prior probability distribution p(x0) is used as the importance (or proposal) distribu-153

tion to draw the initial set of particles at time 0, i.e. x(i)
0 ∼ p(x0). Then, these parti-154

cles are recursively re-estimated following the algorithm shown in Algorithm 1.155

Next subsections describes the main issues in the actual implementation of the al-156

gorithm. As the likelihood function is the core of the algorithm, it is described first.157

Then the updating step, the prior distribution, the prediction step and the resam-158

pling procedure are detailed. Finally, some guidelines for computing the mean and159

standard deviation in the filter are mentioned.160
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Algorithm 1 {x(i)
k ,ω(i)

k ; i = 1, . . . ,L} ← Particle filter({x(i)
k−1ω(i)

k−1; i =
1, . . . ,L},zk = {xr

k,RSSIk})
1: for i = 1 to L do
2: sample x(i)

k ∼ p(xk|x(i)
k−1)

3: Compute d(i)
k = ‖x(i)

k −xr
k‖

4: Determine µ(d(i)
k ) and σ(d(i)

k )
5: Update weight of particle i ω(i)

k = p(RSSIk|x(i)
k )ω(i)

k−1 with p(RSSI|x(i)
k ) =

N (µ(d(i)
k ),σ(d(i)

k ))
6: end for
7: Normalize weights {ω(i)

t }, i = 1, . . . ,L
8: Compute Ne f f
9: if Ne f f < Nth then

10: Resample with replacement L particles from {x(i)
k ,ω(i)

k ; i = 1, . . . ,L}, accord-

ing to the weights ω(i)
k

11: end if

3.2 The likelihood function161

The likelihood function p(zk|xk) plays a very important role in the estimation pro-162

cess. In this case, this function expresses the probability of obtaining a given RSSI163

value on the node onboard the robot (at position xr
k) given the position of the emitter164

node xk.165

Experimental results (Fig. 2) show that there exists a correlation between the dis-166

tance that separate both nodes and the RSSI value, although this correlation de-167

creases with the distance between the two nodes, transmitter and receiver. This is168

mainly caused by radio-frequency effects such as radio reflection, multi-path or169

antenna polarization.170

The model used here considers that the conditional density p(zk|xk) can be approx-171

imated as a Gaussian distribution for a given distance dk = ‖xk−xr
k‖ as follows:172

RSSIk = µ(dk)+N (0,σ(dk)) (1)

where the functions µ(dk) and σ(dk) are non-linear functions of the distance (which173

itself is a non-linear function of the state).174

These functions are estimated offline from a training data set. A couple of nodes
have been distanced from 0 to 30 meters and the RSSI has been recorded for each
distance. This experiment has been repeated with several antenna polarizations. A
least squares process was used to compute the µ(dk) and σ(dk) functions that best
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Fig. 2. RSSI-Distance functions, µ(dk) and σ(dk). These functions relate the distance be-
tween two nodes and the RSSI received in mean and std. deviation. It has been experimen-
tally computed using a large set of RSSI/distance couples. The RSSI representation is the
one used in the Mica2 nodes, 0 is the maximum signal strength and 375 the minimum.
Dots: A sub-set of the experimental set of data. Solid line: Estimated mean µ(dk). Dashed
lines: standard deviation confidence interval based on σ(dk).

fit the set of data. The computed equations are the following:

µ(dk) = 360 · (1− e−0.2·dk), σ(dk) = 2.11 ·dk +25.36 (2)

These equations are also shown in Fig. 2. As expected, it can be seen that the175

standard deviation increases with the distance dk.176

Note that the empirical model defined by (1) and (2) consider not only the antenna177

properties, but also the filtering and data conversions carried out by the communica-178

tions circuitry. For that reason, the model does not match with the classic logarith-179

mic free space propagation equations. Nevertheless, the experiment data agree with180

those obtained in [14], where the authors also identify quasi-gaussian distributions181

in the relations RSSI/distance for a fixed distance.182

This experiment is only carried out for a couple of nodes of the network. Unfor-183

tunately, the nodes on a WSN are similar but not exactly the same, and therefore184

the previous relations should be computed for all the nodes of the network. To185

avoid this problem, the computed standard deviation has been intentionally over-186

estimated in order to include as much nodes as possible. As a result, this overes-187

timation increases the time needed to converge to a correct solution in the Particle188

Filter. Moreover, this overestimation does not solve the problem of biased measure-189

ments that could produce nodes which RSSI/Distance relation differs significantly190

from the one of the nodes used for the calibration. However, in the experimental191

results, with 25 nodes, no divergence was observed in the estimation due to biased192

measurements.193
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Fig. 3. Prior distribution. The initial samples are drawn from an uniform distribution over
a spherical annulus. The inner (r1) and outer (r2) radius are a function of the estimated
distance from the RSSI and its variance.

3.3 Updating194

Once obtained, the functions µ(dk) and σ(dk) are used online in the estimation pro-195

cess. Each time a new measure is received, the weights of the particles are updated196

considering the likelihood of the received data (lines 3, 4 and 5 of Algorithm 1).197

The procedure is as follows. For each particle, the distance d(i)
k = ‖x(i)

k − xr
k‖ is198

obtained. From this distance, the mean and variance of the conditional distribution199

p(zk|x(i)
k ) are obtained, so that p(zk|x(i)

k ) = N (µ(d(i)
k ),σ(d(i)

k )).200

The probability of the actual RSSI value under this distribution is finally employed201

to update the weight of the particle ω(i)
k .202

ω(i)
k =

1

σ(d(i)
k )
√

2π
exp(−(RSSIk−µ(d(i)

k ))2

2σ(d(i)
k )2

)ω(i)
k−1 (3)

After each update stage, the weights are normalized to have a sum equal to one203

(line 7 of Algorithm 1).204

3.4 Initializing the filter. The prior model205

The filter associated with a specific node is initiated when the first message is re-206

ceived in the mobile robot (it should be recalled that there is a separate filter per207

node). In this case, the RSSI distance functions of (2) are used inversely as in the208

estimation process. From the RSSI values, an initial distance is estimated, and also209

a corresponding variance on the distance.210
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The prior considered is then a uniform distribution on a spherical annulus, in which211

the inner and outer radius depend on the estimated mean and variance (see Fig.212

3). As the number of particles is limited, not all the messages received initiate the213

filter. Only when a RSSI value corresponding to a variance below a threshold is214

received, the filter is initiated, in order to have a good resolution (particles per vol-215

ume unit) with a limited number of particles. In the experiments show in this paper,216

this threshold has been set to RSSI = 300, that (according to Fig. 2) corresponds to217

distances shorter than 8 meters approximately.218

3.5 Prediction219

The nodes of the WSN are static, so the prediction step might be ommitted (that is,220

with probability 1 each node is in the same position at time k and k−1). However,221

as the resolution of particles over the state space is limited, a random move is added222

to the particles, in order to search locally over the area around the position of the223

previous time step. Therefore, the prediction model is:224

p(xk|xk−1) = N (xk−1,Σk−1) (4)

The value of Σ depends on the spatial distribution of particles, mainly the density225

of particles per volume unit. The idea behind is to make the particles move around226

their position in order to approximately cover the half of the distance to the neigh-227

bor particles. This way, the particle will integrate the mean value of the weight228

associated to its area, not only the given position.229

3.6 Resampling230

In general, the mission of the resampling step is to spatially distribute the particles231

in order to increase the sampling of the posterior in the areas where the likelihood232

is high. Thus, the resampling step will duplicate particles with high weights and233

will eliminate those with very low weights.234

If no resampling is carried out in the Particle Filter, it will slowly converge to235

an only one particle with a weight close to 1, while the rest of particles will be236

weighted by 0. There are two problems related with this behavior: first, the es-237

timated std. dev. becomes clearly sub-estimated, leading to the filter divergence,238

and, second, the spatial resolution of the filter is strongly limited by the number of239

particles, it leads to poor estimations. However, resampling reduces the diversity of240

the particle set [16].241

Therefore, a resampling step (line 10 of Algorithm 1) is included in the filter to242
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Fig. 4. An example of particles evolution at three stages. In the first one, it can be identi-
fied the sphere-like shape. As more messages are received, the particles concentrate into a
unimodal distribution. The color represents the weight of the particle: Red between 0 and
0.25, Yellow between 0.25 and 0.5, Green between 0.5 and 0.75, Blue between 0.75 and 1.

increase the accuracy of the estimated position and to reduce the required particles.243

Two considerations are taken into account in this resampling step: first, resampling244

only takes place when the effective number of particles Ne f f is below a threshold.245

The effective number is computed as follows:246

Ne f f =

[
L

∑
i=1

(ω(i)
k )2

]−1

(5)

The threshold is set to the 10% of the number of particles, so Nth = 0.1L.247

Second, the algorithm employed for sampling the particles space is a low variance248

sampler, particularly the algorithm described in [16] (p. 110). This method reduces249

the loss of diversity on the particle set in the resampling step.250

3.7 Estimation of mean and standard deviation251

The filter mean and standard deviation at time k can be computed as follows:252

µk =
L

∑
i=1

[x(i)
k ω(i)

k ], σ2
k =

L

∑
i=1

[(x(i)
k −µk)2ω(i)

k ] (6)

One of the benefits of the Particle Filter is that allows to face multi-modal or non-253

parametric hypothesis. While the posterior distribution will depend on the measures254

during the transient state, the filter approximately converge to a Normal distribution255

in the position of the node. Figure 4 shows an example of the evolution of the256

particles for one node. It has been considered that the filter converges when σk257

is below a certain threshold during a period of time. In the implementation the258

threshold was set to 3m during at least 20 messages.259

If the filter converges at time k0, the belief on the position of the node can be mod-260
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eled as a Normal distribution such as N (µk0,σk0). This allows switching to another261

filter implementation like Extended Kalman Filter (EKF) or Extended Information262

Filter (EIF) which will efficiently take into account the gaussian nature of the poste-263

rior distribution. Next Section focus on the use of Information Filtering for refining264

the initial estimation given by the Particle Filter approach.265

4 DECENTRALIZED NODES POSITION REFINEMENT EMPLOYING266

INFORMATION FILTERS267

4.1 Description268

Once the particle filter on the mobile robot has obtained a unimodal distribution for269

the position of one node, the mean µ and covariance matrix Σ are transmitted to it.270

Then, the node can locally refine its own position by using the information received271

from the mobile robot and also from its neighbor nodes (which also have an initial272

estimation of their positions). The messages exchanged among the nodes will be273

always accompanied by the estimated position of the emitter. This information,274

joined to the RSSI at the receiver, introduces a constraint on the possible positions275

of emitter and receiver. By using measures from several neighbors or the mobile276

robot, the position of the node can be further refined (see Fig. 5). Moreover, if277

a node also maintains an estimation of the position of the neighbor nodes in its278

communication range, this can be used for geographic routing of data.279

The main issue for a decentralized estimation that runs on the nodes are the memory280

restrictions that these nodes have, with a storage space of a few kilobytes.281

4.2 Local filters282

The information from neighbor nodes is integrated employing an Information Filter283

(IF) [16]. The IF is a Gaussian Filter that employs the so-called canonical represen-284

tation for the Gaussian distribution. The fundamental elements are the information285

matrix Ω = Σ−1 and the information vector ξ = Σ−1µ . The properties of the Infor-286

mation Filter allow easy decentralized data fusion at low computational cost thanks287

to an efficient updating stage and to the naturally sparse characterization of the288

information matrix respectively [16,5]. The sparseness of the information matrix289

has been employed, for instance, in batch algorithms for the full SLAM problem,290

as in [17]. Here, it will be employed to devise online algorithms for decentralized291

estimations that are efficient in term of memory requirements.292

In the most general case, each node maintains a local estimation of its position and293
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Fig. 5. The RSSI values received from neighbor nodes can be used as constraints over the
positions of the different nodes of the network. These constrains are integrated by the nodes
by using a decentralized Information Filter.

the position of its surrounding nodes. The state is maintained in information form.294

It is considered that nodes only have information about their own position at time295

0. Thus, for node 1 (denoted by ξ 1 and Ω1), the initial state is given by:296

Ω1
0 =




Ω1
11 0 . . . 0

0 0 . . . 0
...

... . . . ...

0 0 . . . 0




ξ 1
0 =




ξ 1
1

0
...

0




(7)

The state to be estimated (the node position and that of its neighbors) is static, so297

no prediction step is performed. Each node updates its map with the information298

received from its neighbors. In the general case, the received messages consists of299

the estimated position of the emitter. For instance, if the sender is node i, it sends its300

own position estimation as a pair ξ i
i and Ωi

ii. The receiver also computes the RSSI1i301

value of the incoming message.302

As shown in Section 3.2 and illustrated in Fig. 2, the measurement function RSSIt =303

h(x) is non-linear on the state, so the Extended Information Filter (EIF) is em-304

ployed. The updating equations for the EIF are:305

Ω1
t = Ω1

t−1 +MT
t S−1

t Mt (8)

ξ 1
t = ξ 1

t−1 +MT
t S−1

t [zt −h(µt)+Mt µt ] (9)

The updating equations of the EIF require an estimation of the variance σ2
rssi of306
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the received RSSI value in information form S−1
t = 1

σ2
rssi

. This value is estimated307

by using the expression (2) evaluated at the mean distance between nodes. Also,308

the Jacobian M of the measurement equation is required, which is obtained by309

linearizing the relation (2) around the current estimated mean of the state x. The310

RSSI is a scalar value that depends on the distance between the two nodes d1i =311

‖x1−xi‖=
√

(x1−xi)T (x1−xi):312

RSSI1i = h(d1i) = h(‖x1−xi‖) (10)

Then,313

M =
∂RSSI1i

∂x
=

∂h
∂d1i

∂d1i

∂x
=

∂h
∂d1i

2
2d1i︸ ︷︷ ︸

M

(
(x1−xi)T 0 · · · −(x1−xi)T · · · 0

)

(11)

where M is a scalar dependant on the mean distance between the nodes. It can be314

seen, from the form of M, that the updating equations only affect the part of the315

information vector and matrix related to nodes 1 and i. Removing the time indexes,316

the final updating equations when receiving information from node i are:317

Ω1
t =


Ω1

11 Ω1
1i

Ω1
i1 Ω1

ii


+


0 0

0 Ωi
ii




︸ ︷︷ ︸
f usion

+
M2

σ2
rssi


 (x1−xi)(x1−xi)T −(x1−xi)(x1−xi)T

−(x1−xi)(x1−xi)T (x1−xi)(x1−xi)T




(12)

ξ t =


ξ 1

1

ξ 1
i


+


 0

ξ i
i




︸ ︷︷ ︸
f usion

+
M

σ2
rssi


 x1−xi

−(x1−xi)


 [RSSI−h(x)+Mx]

(13)

where x1 and xi are evaluated at the current means µ1 and µ i. As shown in [17], this318

estimation procedure is equivalent to obtaining the optimal position of the nodes319

under the restrictions on their positions x induced by the RSSI values, which are of320

the form [zt −h(x)]S−1
t [zt −h(x)]T (see Fig. 5).321

There are several issues to be pointed out. First, the application of all the previous322

equations maintains a sparse structure for the information matrix about the position323
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Fig. 6. Structure of the information matrix for the case considered.

of all the neighbor nodes that have communicated with node 1 (see Fig. 6). Then, it324

can be seen that the memory requirements are linear with the number of neighbor325

nodes. This is key issue for the implementation of the algorithm in sensor nodes.326

Also, measurements induce relative relations, and therefore the state is not fully327

observable. However, the nodes are already observed after the initial estimation328

by using the particle filter. Also, the measurements from the robot, which position329

uncertainty is independent from that of the nodes, allows anchoring the nodes to a330

common reference frame. It is important to remark that the nodes do not maintain331

an estimation of the position of the node on board the mobile robot. Thus, when332

receiving information from the robot, the information about the robot position is333

marginalized out.334

Finally, the received local estimation about node i is fused with the current one.335

As shown in eqs. (12) and (13), for a decentralized EIF, the fusion step is a simple336

addition of the local information. This step can be modified to incorporate more337

information, as described in the next section.338

4.3 Decentralized estimation339

The main idea is to estimate at each node the position of other nodes of the network340

in a decentralized manner. The previous equations involve a decentralized fusion341

of the marginal information ξ ii and Ωii about the position of the emitter. However,342

the emitter could include in the message its local estimation about the position of343

all its surrounding nodes. This way, more information could be used for position344

refinement in the fusion step. Also, each node would finally had knowledge about345

the positions of all the nodes of the network.346

The problem derived from this scheme is that the sparsity is lost (see Fig. 7). There-347

fore, the storage requirements increases (which is the main limitation for this kind348

of nodes), and the size of the message needed to transmit the information as well.349

Besides, the updating equations require maintaining an estimation of the mean µ350

of x for the computation of the updating stage (12) and (13). This would require351

to solve the system ξ = Ωµ . If the sparsity of the system is maintained, efficient352
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Fig. 7. Left and centre: local estimations of nodes 1 and 3 for the situation of Fig. 5. Right:
estimation at node 3 after fusing all information from node 1. It can be seen that exchanging
the full map leads to a higher density in the information matrix.

algorithms can be used.353

The option considered here is to send with each message not only the marginal354

information about the emitter, but also its local estimation about the position of the355

receiver. This way, the fusion equations are changed by:356

Ω1
t =


Ω1

11 Ω1
1i

Ω1
i1 Ω1

ii


+


Ωi

11 Ωi
1i

Ωi
i1 Ωi

ii


 (14)

and:357

ξ 1
t =


ξ 1

1

ξ 1
i


+


ξ i

1

ξ i
i


 (15)

where the sums only affect the part of the state corresponding to nodes 1 and i, and358

thus maintain the structure of the information matrix. In order to do that, each time359

information is sent to a node, the marginal information about emitter and receiver360

is extracted. The marginal of a multivariate Gaussian can be computed in closed361

form [16]. In the particular case of matrices with the structure of Fig. 6, the compu-362

tation requirements only involve inversions of 3×3 matrices and local operations.363

For instance, marginalizing out the information about node 4 in that example only364

affects node 1 (see Fig. 8):365

Ω̄11 = Ω11−Ω14Ω−1
44 Ω41

ξ̄ 1 = ξ 1−Ω14Ω−1
44 ξ 4

(16)
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Fig. 8. Operations involved in the marginalization. Marginalization of the information about
one node only requires small block operations and maintain the structure of the information
matrix. In this example, operations involved to remove node 4 in the example shown in Fig.
6.

4.3.1 Conservative fusion rules366

The above presented filter is employed locally at each node, and thus the full com-367

putation is decentralized. In the fusion operations (14) and (15), special care should368

be take to avoid considering several times the same information. In the most general369

decentralized case, there will be unknown correlations that should be taken into ac-370

count. If they are not, the filter will diverge due to double counting of information371

[6]. This effect is commonly known as rumor propagation.372

For the Information Filter, the Covariance Intersection method [7] gives consistent373

results even in presence of unknown correlations. Thus, the equations (14) and (15)374

are reformulated as follows:375

Ω1
t = αΩ1

t−1 +(1−α)Ωi
t

ξ 1
t = αξ 1

t−1 +(1−α)ξ i
t

(17)

where α ∈ [0,1]. α is usually selected as the one that maximizes the determinant376

of the final information matrix. However, given the limited processing power of the377

nodes, a more heuristic approach is employed, and the local information is always378

more weighted than the received one.379

Although not considered in the current implementation, as a similar approach could380

be used to limit the effect of not accounted cross-information due to the lineariza-381

tion of the measurement equations [8].382
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(a) (b) (c)

Fig. 9. Experiment setup. (a): 25 Mica2 nodes spread in the parking area of the University of
Seville. (b): Romeo, the mobile robot used to interact with the network. (c): Node mounted
on Romeo

5 EXPERIMENTAL RESULTS383

This section details the results of an experimental setup conceived to test the above384

algorithms. A wireless sensor network composed of 25 Mica2 nodes was deployed385

in a parking area, see Fig. 9(a). The position of all the nodes were computed using386

a DGPS device in order to validate the algorithm estimations.387

A ground robot (Romeo) is used to localize the nodes, see Fig. 9(b). Romeo is388

equipped with DGPS, gyroscope, compass and other navigation devices. Three389

computers onboard Romeo (one Pentium IV and two Pentium Mobile) allow com-390

plex data processing. In addition, one WSN node was mounted and connected to391

Romeo through a serial link cable, Fig. 9(c). The node runs a software that relays392

all received messages to Romeo.393

The Particle Filter based localization has been implemented in C++ and runs on-394

board Romeo. The onboard software received all the messages from the WSN and395

the positioning information from the DGPS device. A filter with 4000 particles and396

non-prior information was implemented per node.397

Figure 10 shows the evolution of the error in the estimated position for X, Y and398

Z axes for one node of the network. The error is computed as the distance between399

the estimation using the Particle Filter approach and the actual DGPS position of400

the node. The figure shows the estimated standard deviation per axis as well. It can401

be seen that the std. dev. is consistent with the error committed.402

It is not possible to show the evolution of the error for all the nodes due to space403

restrictions. Instead, it is presented in Fig. 11 the mean error committed in the404

estimated position of the 25 nodes by using the Particle Filter approach. The figure405

shows the mean error of all the network after receiving x messages.406

The Information Filter approach for position refinement is still not implemented407

inside the nodes, so that all the required data for testing the algorithm (RSSI, emitter408

and receiver) were extracted from the network through a gateway and stored in a409

file. It means that the experiments were carried out off-line but with actual data410
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Fig. 10. Estimation error in meters computed as the distance between the DGPS position
and the Particle Filter based estimation (red-solid). Standard deviation in meters obtained
from the particles (green-dashed). The estimated distribution is consistent with the errors.
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Fig. 11. The figures shown the mean error in meters committed after receiving x messages.
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Fig. 12. Evolution of the error between the estimated position and actual position of several
nodes employing the decentralized IF scheme.

from the network.411

Figure 12 shows the correction on the error of the estimated position for several412

nodes. Figure 13 shows the estimated position for the two nodes compared to the413

actual ones.414

6 CONCLUSIONS AND FUTURE WORK415

The paper has shown a technique for estimating the position of the nodes of a WSN416

by using the received signal strength in a mobile robot and a distributed method417
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Fig. 13. Evolution of the estimated position for two different nodes by using the IF ap-
proach. Solid, estimated position. Dash-dot, position measured by DGPS. Depending on
the distribution of the neighbor nodes, some coordinates are better resolved than others.

for position refinement using the normal data flow of the network. Both techniques418

have been tested in real conditions and the results showed their good feasibility.419

The Particle Filter based localization has been tested online in a real robot. The420

needed computation to run the filters is low and the errors committed to the esti-421

mation are reasonable. The authors explored the implementation of this algorithm422

inside the nodes but the memory requirements for the particle storage, around 4k423

bytes, make it difficult given the usual memory restrictions in the nodes.424

The decentralized scheme allows that improvements in part of the network propa-425

gates to others. Although this decentralized position refinement using the Informa-426

tion Filter has been tested offline, the results are promising. The low computation427

requirements needed to update the filter joint to a fixed state vector with three or428

four neighbors make possible the implementation inside the nodes. Next steps will429

consider this issue.430

Certainly, some robot motions are much more convenient for the localization of431

the nodes than others. The inclusion of the network localization in the NRS path432

planning will be researched. Equation (12) allows to obtain an estimation of the in-433

formation gain (for instance as the expected difference of entropy of the probability434

distributions) for a given position of the robot and an expected value of the RSSI.435

Figure 14 shows the estimated information gain for different positions of a robot436

and a network of three nodes. This information gain can be used within greedy ex-437

ploration strategies to generate robot actions that will reduce the uncertainty in the438

estimated position of the nodes of the WSN.439

Finally, in this paper the likelihood function that relates RSSI and distance was es-440

timated off-line and then maintained fixed. Improvements to re-estimate online the441

functions by using methods like Expectation-Maximization [10] will be researched.442

19



Fig. 14. Expected information gain for a network of three nodes at positions (0,0), (5,12)
and (−3,−10) and a mobile robot. The information gain is computed as the expected vari-
ation of the entropy of the distribution on the node position.
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