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Abstract— Radio signal-based localization and mapping is
becoming more interesting as applications involving the col-
laboration between robots and static wireless devices are more
common. Under certain assumptions, the problem is basically
equivalent to the range-only localization and mapping problem.
The paper presents a method for mapping with a mobile robot
the position of a set of nodes using radio signal measurements.
It uses Gaussian Mixtures for undelayed initialization of the
position of the wireless nodes. The paper shows how the
approach can be integrated within a Kalman Filter. This way,
information can be used in the filter since the first measurement.
The paper describes simulations to verify the feasibility of the
approach, and presents results obtained with experimental data
involving one mobile robot and a wireless sensor network.

I. INTRODUCTION

The explosion of the wireless communication systems
and networks in the last decade has boost the research
in range-only mapping techniques. The main objective of
these applications is to estimate the position of wireless
communications devices by means of the power of the
signal from these devices, computed by the communication
circuitry of the receiver. The main assumption is that this
power is directly related to the distance between emitter
and receiver. Fig. 1 shows a simple range-only localization
example.

Early research work is presented in [1], in the field
of simultaneous localization and mapping (SLAM), where
radio-frequency (RF) transponders are used to build a range-
only approach. An estimation of the time of flight is used
to compute the distance between transmitter and receiver.
Extended Kalman filtering is used to formulate the approach
with good localization and mapping results. The partial
directivity of the transponders simplifies the problem and
allows undelayed gaussian initialization of the position. The
integration of pure range-only measurements provided by
radio beacons into a SLAM approach is considered in [2],
where the position of the beacons is initialized by means of
a robust outliers rejection method and a delayed trilateration
method.
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Fig. 1. An example of range-only localization. The robot (red triangle)
receives range data from the beacon (green square) at three different posi-
tions. The yellow area becomes the most likely after the range information
is integrated

Several approaches have been also proposed for range-
only localization in the field of wireless sensor networks
(WSN). Thus, [3] proposes a grid-based approach that makes
use of the received signal strength information (RSSI) in
the nodes of a sensor network to localize them, while
[4] considers Particle Filtering to solve the same problem.
In [5], time of arrival and direction of arrival are used
to successfully localize a wireless sensor network, but a
number of requirements such as sensor node processor clock
synchronization, special signal source devices and direction
of arrival are needed. The models used for signal propa-
gation in these papers are usually empirical and consider
the antenna geometry simple enough to be approximately
isotropic; and the effects of the the environment are usually
incorporated through an increase in variance with distance,
deemed too complex to be explicitly modeled. Recently, [6]
presented a Extended Kalman Filtering approach for signal-
based SLAM. Distance is estimated from the signal strength,
and a pre-filtering procedure is used to cope with the noise in
indoor environments due to multi-path propagation and in-
terferences. Again, delayed initialization through trilateration
is used.

A technique for WSN localization using mobile aerial
robots has been also presented recently in [7]. The authors
detail a technique based on potential fields that exploits the
position information of a team of Unmanned Aerial Vehicles
(UAVs) to localize the nodes. The main drawback of this
approach is that an accurate range sensor is required for
computing the distance from the UAVs to the nodes.

The authors proposed in [4] a solution for range-only
mapping based on particle filtering over the received signal
strength. The paper shows good results in the localization of



a small wireless sensor network but the approach has two
main disadvantages: first, estimating when the filter has con-
verged to a single hypothesis is computationally demanding
and, second, it is not possible to integrate the estimation of
the filter into more complex localization architectures such
a SLAM until the particle filter has converged to a single
solution, i.e., a delayed feature initialization.

The problems related with multiple hypotheses in the early
steps of the estimation in range-only localization approaches
have been recently addressed in [8]. The paper describes an
algorithm that allows delayed initialization of the node posi-
tion by means of tracking the most probable two hypotheses.
Sequential range-only measures provide enough information
to discard the wrong hypothesis and then including the
correct one into the SLAM filter.

This paper proposes generalizing the approach presented
in [8] improving the following two aspects: undelayed node
position initialization and extension to n-hypotheses. Thus,
it will be possible to integrate range-only measurements into
the estimations from the very first time and it will not be
necessary to wait for position triangulation to incorporate
the measurement. For this purpose, the paper proposes using
a weighted Gaussian Mixture to represent the non-Gaussian
prior distribution of the node position in a way similar to the
approach presented in [9]. This mixture is integrated into a
Kalman Filter to sequentially estimating the prior distribution
by means of the range-only measurements.

The paper is structured as follows. First, Section II intro-
duces the concept and benefits of Gaussian Mixture Models.
Then, Section III describes the multiple hypotheses localiza-
tion approach. Later, Sections IV and V show experimental
results in simulation and with real data respectively, followed
by the conclusions and future work in Section VI.

II. GAUSSIAN MIXTURE MODELS IN A NUTSHELL

A probability mixture model is a probability distribu-
tion that is a convex combination of other distributions.
Mixture models are a semi-parametric alternative to non-
parametric probability distribution (as Particle Filters) and
provide greater flexibility and precision in modelling the
underlying statistics of sample data.

Gaussian Mixture Models are a type of density model
which comprises a number of Gaussian functions. These
component functions are combined to provide a multimodal
density. Thus, if we assume that the discrete random variable
X is a mixture of k component discrete Gaussian variables
N (µi, σi), then, the probability mass function of X , fX(x),
is a weighted sum of its component distributions:

fX(x) =

k∑
i=1

wiN (µi, σi) (1)

where 0 ≤ wi ≤ 1 and
∑k
i=1 wi = 1. All in all, the more

complex is the probability mass function fX(x), the larger
will be the number of components k of the mixture.

The ability of representing arbitrary Non-Gaussian dis-
tributions as linear combination of Gaussian distributions

allows simplifying the integration of such distributions into
Gaussian filters like the Kalman Filter and, hence, into the
classic approaches for SLAM. Particularly, this characteristic
is very valuable in range-only localization approaches where
no bearing information is provided by the sensor. This
process is depicted in Fig. 1: when the robot receives the
first range information from the beacon to be localized, the
initial position of the beacon is uniformly distributed around
the robot position at the given distance. This distribution
will evolve into a multi-modal distribution depending on the
robot triangulation, and it can eventually converge to a single
Gaussian solution if the triangulation is good enough.

Nevertheless, it is easy to see in the example of Fig. 1
that the convergence of the beacon localization to a single
solution depends on the triangulation made by the robot.
This limitation usually leads to having a bimodal distribution
of the beacon position for a long period of time (even for
ever). If a delayed approach has been selected to initialize
the beacon position into the SLAM filter (like in [10],
[8] or [2]), the integration of the measurements provided
by such beacon will be also delayed until the probability
distribution converges to a single solution. If including the
beacon position into the SLAM filter from the very first
measurement was possible, significant information could be
saved and used to better localize the robot.

The approach presented in this paper will make use of
a Gaussian Mixture Model to represent the position of a
range-only beacon. The paper will show how this model can
be included into the SLAM filter with the first measurement
and how this model can be easily updated with new mea-
surements from the beacon.

III. RANGE-ONLY MAPPING APPROACH

A. The state vector

The state vector of the filter will be composed by the
estimated position and orientation of the robot, and the
estimated position of all the beacons. These positions will be
considered as static. Thus, the state vector can be described
as follows:

x = [xr, yr, θr,b
t
1,b

t
2, . . . ,b

t
n]
t (2)

where (xr, yr, θr) represent the Euclidean position and ori-
entation of the robot and bi represents the position of all the
n beacons considered in the filter.

The beacon position bi will be expressed in polar coor-
dinates with respect to the position from which the robot
received the very first range information (xi, yi). Thus, if
the beacon position was completely known, it would be
expressed as bi = [xi, yi, ρi, θi]

t, where ρi is the distance
between the robot and the beacon position and θi is the angle.

However, this paper assumes non prior information about
the angle of arrival of the beacon information, so the value of
θi is unknown. We propose quantizing the space of possible
values of θi into k possible hypotheses. Thus, each beacon
will be expressed as follows:

bi = [xi, yi, ρi, θi0, θi1, . . . , θi(k−1)]
t (3)



(a) (b)

Fig. 2. An example of a Gaussian Mixture Model used to approximate
the probability mass function of the position a beacon based on range-only
measurements. On (a) is presented the original probability function and on
(b) the Gaussian Mixture approximation can be seen. (Red triangle): robot
position, (Green square): actual beacon position

All the hypotheses θij , together with their weights wij , will
compose a Gaussian Mixture Model such as the probability
mass functions of θi, fθi(x), will be uniformly distributed
from 0 to 2π, that is:

fθi(x) = U(0, 2π) '
k∑
j=1

wijN (θij , σij) (4)

Then, it can be seen how the state vector presented in
(2) will consist of the robot position/orientation estimation
and the hypotheses of every beacon considered into the filter.
Of course, the number of hypotheses will evolve, reducing
its number as range information is integrated from different
robot positions.

The questions that follow are how to optimally initialize
the beacons into the filter if the number of hypotheses k is
given, how to integrate new measurements into the filter and
how to prune low probable hypotheses from the filter. Next
sections will deal with these issues.

B. Beacon initialization

As previously introduced, after the first range information
of a beacon is considered, the probability mass function of
its position will be uniformly distributed around the robot
location, as shown in Fig. 2.a. This probability function will
be approximated by a Gaussian Mixture Model using (4),
Fig. 2.b shows an example. Each of these Gaussians will be
considered as an independent hypothesis into the localization
filter.

The number k of hypotheses will be manually setup de-
pending on the computational resources, because the length
of the state vector depends on the number of beacons n
and the number of hypotheses per beacon k through the
expression L = 3 + 3n+ nk. Using a very large number of
hypotheses could be overkill, while reducing this number too
much could lead to inconsistencies. In this particular case,
experimental results showed that 8 hypotheses are enough to
provide a good balance between results and efficiency.

Known the number of hypotheses k, the next step is to
estimate the values of wij , θij and σij that better approx-
imate the Gaussian Mixture Model of (4) to an Uniform
Distribution between 0 and 2π, as in Fig. 2.b. It is easy to

see that the value of the hypothesis weights has to be equal
to all of them because of the uniform characteristic of the
distribution of θi, so the weights will be set as wij = 1/k.

Estimating the mean value θij of each hypothesis is also
simple considering that they have to be uniformly distributed
from 0 to 2π. Thus, depending on the number of hypotheses,
the values of the mean will be defined as:

θij = 2πj/k, j = 0, . . . , k − 1 (5)

Finally, given the values of wij and θij for each hypothe-
sis, the value of σij has to be determined. Given the uniform
distribution of θij from 0 to 2π, a good and simple criteria is
to make all the standard deviations σij equal each other. The
value has been empirically calculated by the authors and is
based on the following expression:

σi0 = σi1 = . . . = σi(k−1) = 2π/(1.5k) (6)

To test the above expressions, several simulations have
been made for k = 2 to k = 20. The simulations showed that
the model is a good approximation of the objective uniform
distribution for k > 5.

C. Incorporating measurements

Once the beacon has been initialized into the filter with
the first range information, next measurements will be used
to update the estimation of each hypothesis and also to refine
the weights wij associated to them.

The measurements provided by the system are the dis-
tances of the robot to the set of beacons that are in com-
munication range. Thus, let ri be the measured distance
from the robot to the beacon i and σ2

i the measurement
error variance. Considering (2), the following measurement
equation is applicable for each of the hypotheses j of beacon
i:

ri =
√
(xi + ρicos(θij)− xr)2 + (yi + ρisin(θij)− yr)2

(7)
The question now is how to deal with the variance asso-

ciated with the measurement, σ2
i . A single measurement is

available but it has to be applied to all the existing hypotheses
for beacon i. Notice that the measurement cannot be simply
applied to all the hypothesis separately because then the
same information would be count k times in the filter which
finally would lead to filter divergence. In [9], the solution
to this problem is shown for the case the information comes
from a unique source, as it is our case. It is stated that the
correction of the estimate of a random variable by a set
of measurement pairs (z,Rij) is equivalent to the unique
correction by (z,Ri) if:

R−1
i =

k−1∑
j=0

R−1
ij (8)

This means that the original information can be divided
into k new measurements with the same mean and with co-
variances according to (8). Sharing the information according
to the likelihood lij of each hypothesis is proposed in [9].
Thus, if we are able to compute a weight λij proportional



Algorithm 1 Build Measures and Update Weights
{{ii, σ2

i0}, ..., {ri, σ2
i(k−1)}} ← {{xr, yr,bi}, {ri, σ

2
i }}

1: /*Compute likelihood of each hypothesis */
2: for j = 1 to k do
3: lij = p(ri|xr, yr, xi, yi, ρi, θij)
4: end for

/* Compute measurement variance of each hypothesis */
/* Update weight of each hypothesis */

5: for j = 1 to k do
6: λij = lij/

∑k−1
j=0 lij

7: σ2
ij = σ2

i /λij
8: wij = wij lij
9: end for

10: Normalize weights wij such as
∑k−1
j=0 wij = 1

to the likelihood of each hypothesis of beacon i such
as

∑k−1
j=0 λij = 1, the measurement variance associated to

each hypothesis could be computed as σ2
ij = σ2

i /λij . Then,
once the likelihood lij of each of the hypotheses has been
computed, it is normalized using the following expression to
obtain the values of λij :

λij = lij/

k−1∑
j=0

lij (9)

Following this procedure, all the range measurements are
applied to the corresponding beacon hypotheses.

Finally, it is necessary to properly update the weight
associated to each hypothesis, wij . The key idea is to
make evolve the weights according to the closeness of the
hypotheses with the real beacon position. For doing this,
the likelihood is used again according with the following
equation:

wij = wij lij (10)

Later, the new weights are normalized.
The whole procedure is summarized in Algorithm 1 for

the beacon i. Once the weights have been updated, all the
measurement pairs {ri, σ2

ij} are arranged into the measure-
ment vector and its covariance matrix (which is diagonal),
and used to update the hypotheses into the Extended Kalman
Filter (EKF) using the standard EKF updating equations. The
conditional probability p(ri|xr, yr, xi, yi, ρi, θij) is modeled
as a Gaussian distribution, with mean obtained evaluating
eq. (7) at the current hypothesis j, and propagating the
corresponding state covariances through the Jacobian of the
cited equation.

D. Pruning hypotheses

A rule to remove useless hypotheses from the filter have
to be defined. Basically, a hypothesis has to be removed if
it satisfies at least one of the following constraints:

• The associated weight wij is below a certain threshold.
A general value for this threshold is introduced in [9]:

wij ≤ 0.00001/k (11)

where k is the current number of hypotheses for the
beacon i. The simulations and experimental results
shown in this paper show that this threshold works well
for the localization problem.

• The Euclidean distance among hypotheses is smaller
than a certain threshold. This constraint allows remov-
ing hypotheses very similar each other, saving compu-
tation time. The value of the threshold depends on the
kind of application. In this case, experiments show that
one meter is a good value for this threshold.
If a set of hypotheses are below this value, the one
with the higher weigh stays in the filter and the rest are
removed.

IV. SIMULATION RESULTS

A set of simulations has been carried out in order to test
the approach for mapping using range-only information. The
setup consists of a car-like mobile robot equipped with a
wireless sensor node moving in an area in which a wireless
sensor network composed by other fifteen static nodes has
been deployed.

The robot estimates its own position based on local
odometry (using the speed and the direction of the wheels).
Each time a message arrives at the sensor node onboard the
robot, the distance to the emitter is calculated based on the
Received Signal Strength Information (RSSI), as in [10], and
this information is used to update the node position into
the filter. In the simulation, the signal propagation model
described in [10] has been used to generate random samples
of the distance between the robot and the sensor node. The
maximum transmission range and the rate of messages sent
by each node of the network (about one per second) have
been also considered into the simulation to be as realistic as
possible.

Figure 3 shows some screenshots of the urban simulation
environment for the localization of node 5. The different
stages of the mapping approach can be easily seen in the
figure. At the beginning, all the hypotheses are placed
around the vehicle according to the range information, which
is very noisy at such distances. Later, the localization of
the hypotheses in front the vehicle is improved because
the range-RSSI relation is more accurate as smaller is the
distance. In the next steps, the hypotheses behind the robot
are removed from the filter because their weights are too
low. Next, only the hypotheses on the sides of the vehicle
remain. This is because the robot is moving in a straight line
with respect to the node, so both hypotheses are possible if
range-only measurements are considered. Finally, after the
robot moved to a different position, the wrong hypothesis is
removed and the filter converged to the correct node position.

The evolution of the weights associated to each of the
hypotheses related to node 5 (analyzed in Fig. 3) is shown
in Fig. 4. Three main stages can be seen in the evolution of
the hypotheses’ weights: First, most of the hypotheses are
removed quickly after the integration of the new measure-
ments around sample 6 (it corresponds with the transition
from image (b) to (c) in Fig. 3). Second, another hypothesis



(a) (b) (c) (d) (e)

Fig. 3. Evolution of the multiple hypotheses for the localization of one sensor node. The blue circle denotes the beacon position, the red square represents
the robot position and the yellow ellipses are the multiple hypotheses for the localization.

Fig. 4. Values of the weights associated to the hypotheses of node 5. The
weight value range from 0 to 1. Notice how hypotheses 3, 4, 5 and 6 are
removed from the filter around time step 6. Hypothesis 0 is removed at
time 13. Hypothesis 1 is removed at time step 43, becoming hypothesis 7
dominant

is removed at sample 13 and only two possible solutions
remain in the filter (transition from (c) to (d) in Fig. 3).
Third, after triangulating from different positions, the wrong
hypothesis is removed from the filter around sample 43 and
the localization converges to a single solution.

For the case of node 5, Fig. 5 shows the estimated mean
and standard deviation of θ for the hypothesis 7 (which
finally becomes the proper solution of the localization for
node 5) and ρ. It can be seen how the estimated θ slowly
converges to the correct solution together with the estimated
range ρ. It can also be seen how the ground truth is
always into the estimated 3σ interval. Due to paper space
restrictions, the values of x and y associated to the beacon
5 are not shown because their estimation mainly depends on
the robot localization1.

V. EXPERIMENTAL RESULTS

The approach has been also tested in real experiments
involving a mobile robot equipped with a sensor node and
a wireless sensor network of three nodes. This setup is very
similar to the simulation setup but this time with actual
equipment.

The distance between wireless sensor nodes is computed
based on the RSSI measured by the node on board the robot.

1A video with the complete result of this simulation for all the
sensor nodes has been created and placed in the following URL:
http://grvc.us.es/staff/caba/share/range only sym.mpg.

(a) (b)

Fig. 5. (a) Estimated value of θ for hypothesis 7 (red solid line) and its
3σ confidence interval (green dashed line) for node 5. The black solid line
shows the actual value of θ. Blue dashed lines show the time stamps in
which different hypotheses are removed from the filter. (b) Estimated value
of ρ (red solid line) and its 3σ confidence interval (green dashed line) for
node 5. The black solid line shows the actual value of ρ

The signal propagation model described in [10] is used to
estimate such distance based on the RSSI, and its standard
deviation. The nodes of the network are Mica2 nodes, with
the following characteristics:

• Atmega128L microcontroller at 7.3728 Mhz
• Chipcon CC1000 FSK radio transceiver, 900 Mhz band.

Up to 4 dBm transmission power. Up to 78.4 kbps 100
meter outdoor range.

• 512 KB non-volatile memory for programs and retrieved
data.

The final mapping result corresponding to this experiments
can be seen in Fig. 6. The figure shows the localization of
each sensor node and the trajectory of the mobile robot. It
can be seen how the localization follows the real position
with small errors.

As an example, the localization of node 2 will be analyzed
in this paper. Thus, Fig. 7 shows the evolution of the weights
associated to the different hypotheses. It can be seen how
most of the hypotheses are quickly removed with the first
range measurements and finally hypothesis 0 becomes the
dominant one.

Figure 8 shows the estimated mean and standard deviation,
together with the ground truth, for θ and ρ for node 2. In
this case only the value of θ for hypothesis 0 is shown.
It can be seen how the estimation converges to the proper
solution in both range and angle. It is worth to mention that
the algorithm converges even in the presence of a significant
error in the range initialization (about fifteen meters) due to



Fig. 6. Experimental results on localizing three sensor nodes (blue dots)
using a mobile robot equipped with a sensor node (red square). The
yellow ellipses stand for the uncertainty in the localization of the nodes.
For simplicity, the uncertainties are a X-Y linear approximation of the
uncertainties in polar coordinates. The dotted pink line represents the actual
trajectory followed by the robot.

Fig. 7. Values of the weights associated to the hypotheses of node 2.
The weight value range from 0 to 1. Most of the hypotheses are removed
between samples 11 and 20. Hypothesis 1 is removed at sample 45 and
then hypothesis 0 becomes dominant

outliers in the RSSI/distance computation.

VI. CONCLUSIONS AND FUTURE WORK

This paper presented a Gaussian Mixture approach to
solve the mapping problem in presence of radio signal-based
range-only measurements. The paper described how the Mix-
ture Model can be integrated into a Kalman Filter, leading
to a multiple hypotheses filter able to deal with the range-
only mapping problem. This approach allows to consider
information about the nodes since the first measurement. The
initialization and updating steps of such multiple hypotheses
approach have been also detailed into the paper.

The paper has presented simulations that show that the ap-
proach is feasible for localizing wireless sensor nodes based
on the strength of the received signal on a node installed on a
mobile robot. Furthermore, experimental results with actual
equipment also shows good mapping results.

Future research will consider active sensing strategies to
determine the robot commands that optimize the information
gain when using the range-only measurements. Thus, the
expected variation of the entropy of the Gaussian Mixture can
be used to determine the actions that have to be carried out
by the robot in order to better acquire the range information.
Recent results on bounds on the entropy on a Gaussian
Mixture, like [11], can be used for that. At the same time,

(a) (b)

Fig. 8. (a) Estimated value of θ for hypothesis 0 (red solid line) and its
3σ confidence interval (green dashed line) for node 2. The black solid line
shows the actual value of θ. Blue dashed lines show the time stamps in
which different hypotheses are removed from the filter. (b) Estimated value
of ρ (red solid line) and its 3σ confidence interval (green dashed line) for
node 2. The black solid line shows the actual value of ρ

active sensing strategies can be used to avoid non-observable
motions that can arise this problem.
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