Tracking under Uncertainty with Cooperating
Objects using MOMDPs

Jestis Capitan', Luis Merino?, and Anibal Ollero!:®

! University of Seville
Camino de los Descubrimientos s/n
41092, Spain
jescap,aollero@cartuja.us.es
2 Pablo de Olavide University
Seville, Spain
lmercab@upo.es
3 Center for Advanced Aerospace Technology
C. Wilbur y Orville Wright 17-19-21
41309, La Rinconada (Spain)

Abstract. This paper presents how Partially Observable Markov Deci-
sion Processes (POMDPs) can be used for Cooperating Objects control
under uncertainty. POMDPs provide a sound mathematical framework
to deal with planning actions when tasks outcomes and perception are
uncertain, although their computational complexity have precluded their
use for complex problems. However, considering mized observability can
lead to simpler representations of the problem. The basic idea is to as-
sume that some of the components in the state are fully observable,
which is reasonable in many applications. In this paper, target track-
ing by means of a team of mobile Cooperating Objects (for instance,
robots) is addressed. Instead of solving an usual POMDP, the problem
is solved under the assumption of mixed observability, which will reduce
the complexity of the original model. Moreover, a decentralized solution
in which the COs have no knowledge about others’ actions is proposed.
In this sense, a implicit coordination will be derived from the sharing
information among the COs. Finally, some simulations are presented to
show the advantages of the methods proposed and how the mentioned
coordination arises by using heterogeneous COs with different behaviors.

1 Introduction

Most (if not all) applications of Cooperating Objects (COs) require to deal with
uncertainty. Regarding sensing, this requires to be able to maintain an estimation
of the quantities of interest and their uncertainties, by means of what is usually
called a belief. Moreover, when planning and control of COs are considered, the
objective is to determine the set of actions that are optimal in some sense, taking
into account all the sources of uncertainty.

In the literature, techniques for decision-theoretic planning under uncertainty
are becoming more popular in the field of cooperative robotics. For instance, in

[1,2] different probabilistic approaches for mapping and tracking with robotic
networks are presented. [3, 4] also propose decentralized Bayesian approaches for
multiple-target optimal search. Usually, these approaches are greedy, in the sense
that only the next action is considered, and no planning is involved. Addition-
ally, [5,6] make a distinction between cooperative and coordinated information-
theoretic solutions, and propose the latter to control fleets of robots. In a co-
ordinated approach, the members of the team have no knowledge about the
others’ models or control actions, but they exchange some information that may
influence implicitly other members’ subsequent decisions. Hence, sharing fused
perception information or the impact of others’ control actions over a certain
objective function, and acting locally, a coordinated behavior can be obtained.

Within the Bayesian approaches, Partially Observable Markov Decision Pro-
cesses (POMDPs) techniques provide an elegant way to model the interaction
of a network of COs with their environment. Based on prior knowledge of the
sensors and actuators models and the environment dynamics, policies which in-
dicate the objects how to act can be computed. Actually, these policies can be
extracted by optimizing iteratively a certain value function over the belief space.
The main problem with POMDPs as tools for planning under uncertainty is
their computational complexity.

Therefore, approximate methods to obtain POMDP policies have been stud-
ied. In this sense, point-based algorithms [7-11] represent the value function by
a set of vectors over the belief space (a-vectors) and restrict the optimization
procedure to a bounded set of feasible beliefs. Particularly, [8] propose a point-
based solver, called Perseus, where no computation is needed for all the belief
points at every iteration, hence improving performance. In [12], an extension of
Perseus is presented. It is called Symbolic Perseus and uses Algebraic Decision
Diagrams (ADDs) [13] in order to optimize the operations in the original Perseus
for factored POMDPs. Besides, [14] propose SARSOP, which maintains a tree-
shaped set of reachable beliefs that is expanded at every iteration using the best
policy so far.

Apart from the point-based approximations, some authors try to cope with
the high dimensionality of the belief space by exploiting the idea that many
systems often have mixed observability, i.e. although the COs state is not fully
observable, some components may be. Thus, a factored model can be built to
separate the fully and partially observable components of the state, leading to
a lower-dimensional representation of the belief space. Then, MOMDPs (Mized
Observability Markov Decision Processes) are proposed in [15] for planning with
large belief spaces. In order to overcome the computation problems derived from
such large belief spaces, some components of the state are assumed to be fully
observable (this is reasonable when there are available sensors which are accurate
enough). Then, this new representation is used in conjunction with a point-based
algorithm to compute approximate solutions.

This paper considers the application of decision making techniques consid-
ering uncertainty to teams of COs in tracking applications. In particular, the
paper deals with target tracking by means of bearings-only sensors, like cameras,

carried by mobile robots. In this case, a single sensor does not provide informa-
tion about the distance to the target, what makes tougher a proper tracking.
Moreover, the motion of the target is not predictable. Thus, a team of COs can
act together in order to gather enough information to achieve a more efficient
performance.

A similar application with a single pursuer is addressed in [16] by means of
POMDPs, but a sensor with range and bearing information is assumed. How-
ever, increasing the number of COs in the team or the set of possible locations
would lead to a more complex POMDP. Hence, this paper describes a different
method based on MOMDPs that can overcome this issue for certain applica-
tions. Particularly, the states (their positions) of the COs will be assumed as
fully observable, focusing the problem on the target’s uncertainty. Furthermore,
instead of solving a large MOMDP considering all the COs, a decentralized ap-
proach where each CO acts without any knowledge about the others’ actions
is proposed. Then, an implicit coordination is achieved (according to the idea
in [5]) by sharing a fused belief of the state among the team members. In this
sense, sensors properties and desired objectives can be changed from one robot
to another in order to combine different behavior within the team, and leading
to a more reliable performance.

The paper is structured as follows: Sections 2 and 3 give some theoretical
background about POMDPs and MOMDPs respectively; Section 4 presents MO-
Symbolic Perseus, an extension of Symbolic Perseus [12] for solving MOMDPs;
Section 5 details the coordinated tracking approach for multiple robots; and
Sections 6 and 7 explain the experimental results and conclusions respectively.

2 POMDP Model

Formally, a POMDP is defined by the tuple (S, A, Z, T, O, R, h,~). The meaning
of every component is the following:

— State space: All the information available of the environment is encoded in
the state, which is not fully observable. The system’s state at time step ¢ is
defined by s; € S, where S is the finite set of all the possible states.

— Action space: Every CO in the environment can take an action each time
step. This actions can modify the state in a stochastic manner. A is the finite
set of possible actions, whereas a; € A is the action taken at a certain time
step.

— Observation space: Given a time step ¢, after executing an action, a CO can
make a measurement or observation z; € Z, where Z is the finite set of all the
possible observations. An observation is information about the environment
that can be perceived by the agent.

— Transition function: When an cooperating object executes an action, the
state can vary probabilistically. This probability density function is modeled
by the transition function 7' : S x A x .S — [0, 1], where T'(s’, a,s) = p(s; =
§'la—1 = a,s;—1 = s). It represents the probability of ending in the state s’
if the CO performs the action a in the state s.

— Observation function: The observations gather information from the current
state and are related probabilistically to this state. This probability density
function is modeled by the observation function O : Z x A x S — [0, 1],
where O(z,a,s") = p(z; = z|lai—1 = a,s; = §'). It gives the probability of
observing z if the action a is performed and the resulting state is s’.

— Reward function: A POMDP selects the best actions so that an utility func-
tion is optimized. Thus, the behavior of the system is determined by this
cost function, which is modeled by a reward function. R : S x A — R is the
reward function, where R(s,a) is the reward obtained by executing action
a in state s. Here, the reward is assumed to be bounded. Since it allows to
model quite complex goals, the reward function is a very powerful tool, and
hence, its right design is crucial.

— Horizon and discount factor: Then, the goal of a CO is to maximize the
expected utility earned over some time frame. The horizon h defines this
time frame by specifying the number of time steps the CO must plan for.
Thus, the objective is to maximize the sum:

h
ZVtTt] (1)

where r; is the reward at time ¢, E[| is the mathematical expectation,
and v € [0,1) is a discount factor, which ensures that the sum in eq. 1 is
finite when h — oo. Moreover, this factor indicates how rewards should be
weighted at different time steps.

E

Given that it is not directly observable, the actual state cannot be known
by the CO. Instead, the information about the environment must be encoded in
a belief distribution, which indicates a probably density function over the state
space.

In order to calculate the current belief state b;(s) from a initial belief state
bo(s), a complete trace of all the observations made and actions executed until
t would be necessary. This trace is called the history of the system and grows
as time goes by. However, due to the Markov assumption, the belief can be
updated recursively using only the previous belief b;_1 (s), the most recent action
a and the most recent observation z. This belief update can be performed with
a Bayesian filter and the update equation is defined by:

bi(s") =n0(2,a,5) Y T(s',a,s)bs_1(s) (2)

ses

where 7 acts as a normalizing constant such that b; remains a probability dis-
tribution.

Once the CO has computed the belief state at a certain time, the next step
is to choose which is the best action for that given belief. This action is deter-
mined by a strategy or policy m(b), which defines the action to execute for all
possible beliefs that may be encountered. The optimal policy is an attempt to
map beliefs to actions so that the amount of reward earned over the time horizon

is maximized. Thus, the main objective of a POMDP algorithm is to find this
policy in the form:

w(b) — a (3)

where b is a belief distribution and a is the action chosen by the policy 7.
The policy 7(b) is a function over the continuous set of belief states, and
can be characterized by a value function V™ (b), which is defined as the expected

future discounted reward that the CO can gather by following 7 starting from
belief b:

h
V() =E | > y'r(b,m(be))|bo = b (4)
t=0
where r(by, (b)) = >, cq R(s,7(b:))be(s). Therefore, the optimal policy 7* is
the one that maximizes that value function V7™:

7 (b) = argmax V7 (b) (5)
™

Note that computing an optimal policy for a POMDP may be challenging
mainly for two reasons. The first one is the dimensionality of the belief space.
Even for a finite set of |S| states, m is defined over a (|S| — 1)-dimensional
continuous belief space, which can be quite complex depending on the problem.
The second source of complexity is the length of the history. A POMDP can
be solved by searching through the space of possible histories, but the number
of distinct possible action-observation histories grows exponentially with the
planning horizon. An algorithm to solve POMDPs should take into account

both sources of complexity in order to be efficient.

3 MOMDP Model

As mentioned before, high-dimensional belief spaces are a remarkable source of
complexity when solving POMDPs. Mixed Observability Markov Decision Pro-
cesses (MOMDPs) can be used in order to alleviate such a dimensionality. Many
systems present mized observability: although the state is not fully observable,
some components may be. The idea is to model these kinds of systems with a
factored POMDP where the fully and not fully observable parts of the state
are separated. This model is called a MOMDP and can be combined with a
point-based solver to solve traditional POMDPs [15].

Intuition says that extracting the fully observable part, the resulting POMDP
that has to be solved has lower dimensionality. Therefore, the key in MOMDPs
is to gain computational efficiency by solving a number of lower dimensional
POMDPs instead of the original one. Thus, all operations in the point-based
solver have to work on lower dimensional belief spaces, which can lead to a
relevant improvement in the performance.

The mathematical model for a MOMDP is quite similar to the original
POMDP and it is introduced in [15]. The MOMDP is represented as a factored
POMDP where the state vector is composed of two different parts. Component
x is the fully observable part of the original state s and y is another vector rep-
resenting the partially observable part. Thus, the state is specified by s = (z,y),
and the state space is S = X x Y, where X is the set with all possible values
for x and Y all possible values for y.

Formally, the MOMDP is defined by the tuple (X,Y, A, Z,T,,T,,0, R, h, 7).
The components are the same as in the POMDP case, but the transition function
T is now decomposed into T, and Ty,. T, (2, a, x,y) = p(xs = &' |ay—1 = a,x4—1 =
x,Y—1 = y) gives the probability that fully observable state component has
value 2’ if the CO takes action a in state (z,y). T,(v', 2’ a,2z,y) = p(y: =
Ylxy =" ai-1 = a,x4—1 = x,y—1 = y) gives the probability that the partially
observable state component has value ¢’ if the CO takes action a in state (x,y)
and the fully observable state component has value z’.

Apart from the above, the other major difference between the POMDP and
the MOMDP is the representation of the belief space B. Now, since x can be
known at every moment, there is no need to maintain a belief over x. Therefore,
x can be excluded in order to just maintain a belief b, (y), which is a probability
distribution over y. Any belief b € B on the complete system state s = (z,y)
is then represented as (x,b,), where b, € B,. Furthermore, for each value z of
the fully observable state component, a belief space By(x) = {(z,b,)|b, € By}
is associated. Here, every By(z) is a subspace in B, and B is a union of these
subspaces B = J, ¢ x By(z).

Note that while B has |X||Y| dimensions, each By(z) has only |Y| dimen-
sions. Therefore, the objective of representing a high-dimensional space as a
union of lower-dimensional subspaces is achieved. Moreover, when |Y| is small,
a remarkable computational improvement can be reached, since operations to
solve the MOMDP are performed over the subspaces B (z).

Now, since every belief is represented by (z,b,), in [15] it is proven that the
value function can be described as:

V(z,by) = ozgll%)({z) a- by (6)
where for each z, I'y(x) is a set of a-vectors defined over B, (z). Therefore, the
value function is now a collection of sets of |Y|-dimensional vectors, and two
steps are necessary in order to calculate the optimal action. First, depending
on the value of the observable component x, the corresponding set of a-vectors
I'y(z) is selected. Then, the maximum over I',(z) is calculated. Note that all the
vectors in I'y(z) have only |Y'| dimensions instead of |X||Y| like in the original
POMDP. Hence, policy execution is faster for a MOMDP.

4 Symbolic Perseus with mixed observability

Once MOMDPs have been introduced, the question is how to solve them. Fortu-
nately, with small modifications, the same point-based algorithms for POMDPs

are valid now. Since the value function consists of a set of a-vectors for every
x € X, the idea is to run an independent value iteration for each of them. Thus,
the resulting algorithm is basically the same but dealing with each set of vectors
I'y(x) separately.

In [15], for instance, the point-based solver SARSOP for POMDPs is mod-
ified in order to cope with MOMDPs. Here, Symbolic Perseus [12] has been
modified in order to solve MOMDPs. The resulting algorithm has been named
MO-Symbolic Perseus. Recalling that Symbolic Perseus exploits the factored
representation of POMDPs and the ADD structures in order to optimize the
original Perseus, a combination of both, MOMDP models and Symbolic Perseus,
will lead to a more efficient algorithm able to solve larger problems.

MO-Symbolic Perseus is described in algorithm 1. The structure is quite sim-
ilar to the original algorithm, but some variations are needed. First, a different
set of beliefs By(x) over the component y must be sampled for every value of
x. In case y is probabilistically independent of x, the same set of beliefs over
y could be used for every x. All the value functions I'y(x) are also initialized
separately with the same values as in the original Symbolic Perseus. Note that
RZ(y) = R(z,y,a). Then, the rest of the procedure is similar to the original one
but being repeated for every x € X. Moreover, all the operations are made now
with vectors of |Y| dimensions, which simplifies some steps.

Algorithm 1 MO-Symbolic Perseus

for each x € X do
Sample set of reachable beliefs By (z)
Initialize Iy o(z) = {R%|a € A}
end for
n=0
repeat
n=n+1
for each z € X do
Lyn(z)=10
B= By(z)
while B # () and |I,,(z)| < MAXSIZE do
Sample b, € B
B =B~ {b}
o*(y) = backup(b,)
if Iyn(x) =0 or maxy, ep, () (by - " — Va(z,by)) >0 then
Lyn(z) =Tyn(z)U{a"}
end if
B ={b, € B:Vp(z,b,) < Ve_1(zx,by)}
end while
end for
until convergence
return I, ,(z) Vx

Nonetheless, the two main steps to adapt point-based POMDP solvers to
deal with MOMDPs are the belief update and the backup operation. Now, let
see how these operations vary for MO-Symbolic Perseus.

In a POMDP, the belief update when an agent takes an action a and measures
an observation z was:

b (s') = np(zla,s") Y p(s'|a, s)b(s) (7)
seS

where 7 is a normalizing constant. Besides, for a MOMDP b,(y) = b(s) when
s = (:U, y). Hence, equation 7 can be rewritten as:

b: () =np(zla,2’,y") Y pla o la,z,)by (y) (8)
yey
= ﬂp(z\a@/,y/) Z p(y'|x’,a,x,y)p(x'|a,:n,y)by(y) (9)
yey
= 770(2” a, :C/a y/) Z Ty(y/a LU/, a,x, y)Tw(:E/’ a,T, y)by(y) (1())
yey

Note that in this case, there is no need to sum over all the possible values
of z and z’. Hence, equation 10 is particularized for specific values of these
variables. This is due to the fact that, when updating the belief, the values of
the observable states before (x) and after (z') taking an action are known.

The other major modification in MO-Symbolic Perseus respect to its orig-
inal version is the backup operation. Based on all the considerations made for
MOMDPs, [15] shows how the backup operation included in Perseus can be
rewritten for MOMDPs:

backup(b,) = arg max by - o,, where (11)
acA

Oéa(y) :Rﬁ +FYZ Z Z (TT(I,,G,I,y)

zeZa'eX y' ey (12)

x Ty, 2’ a,2,9)0(z,a,2", ¥)aa - (y'))

Finally, note that:

aa,x’,z(yl) = argmax a(y/) ' bz,y(y/) (13)
a€ly n_1(z’)

In this case, unlike in eq. 10, all the possible ' must be taken into account.
Even though z’ and z are concrete values, they cannot be known beforehand like
x, so all their values must be considered and weighted by their probabilities.

5 MOMDP for Target Tracking by Mobile Cooperating
Objects

An application for tracking a target by means of multiple mobile COs is con-
sidered here. In this problem there is a moving target and a team of N robots
which are the pursuers. Each of these robots carries a sensor (it may be a cam-
era) which determines whether the target is visible or not. Then, the objective
is to find the target in the environment and localize it as well as possible.

The state is composed of the position of the target and the position of the
pursuer robots. Since bearing-only sensors are used, the heading of every robot
is also considered and included in the state. Moreover, the space is discretized
into a cell grid, and a map of the scenario is assumed to be known. Thus, an
occupancy grid can be obtained indicating which cells are attainable and which
are obstacles. Then, the locations of the target and every pursuer are specified by
cells, and just non-occupied cells are possible values. There are also four possible
headings for every robot: north, west, south or east.

Every sensor provides a boolean measurement: detected or non-detected.
These sensors proceed as it follows, if the target is out of its field of view,
the sensor produces a non-detected measurement. However, when the target is
within its field of view, it can be detected with a probability pp.

In addition, each robot can choose at each time step among four possible
actions: stay, turn right, turn left or go forward. stay means doing nothing; when
turning, the robot changes its heading 90° degrees; and when going forward, it
moves to the cell ahead.

Finally, the key point is how to design the reward function so that the target is
localized and tracked by the team of robots. Since some cooperation is desirable
within the heterogeneous team, a different behavior and sensor’s features are
assigned to each robot. Thus, the sensor’s field of view and pp can vary from
one robot to another and the reward function also depends on the specific robot:
{RY(z,y,a), R*(z,y,a), - , RN (x,y,a)}. For all the members of the team, no
cost is assigned to the action stay, whereas a cost of 1 is associated to the other
actions.

This application is a fair example of how MOMDPs can help to reduce the
belief space dimensionality. Here, even though robots and target locations are
considered within the state, the one involving a greater uncertainty is the latter.
Actually, for this application, the locations of the robots may be assumed to
be observable (robot position could be obtained accurately enough by means
of the on-board sensors and the available map), remaining as non-observable
the target’s position. Thus, the non-observable part of the state consists of the
target location, y = t;, whereas the fully observable part consists of all the robots
locations and headings, x = (r}, 74, - ,rN,).

The first option is to solve the above MOMDP for the whole team, but that
would not be a very scalable approach regarding the number of robots. Hence, a
different scheme is proposed where each robot i solves its own MOMDP without
considering the other robots. That MOMDP has states z* = (r{,r}) and y* = ¢,
and reward R‘(z,y,a), being possible to specify a different strategy for each

robot. Then, once the policies have been calculated, the coordination is achieved
during the execution phase by sharing a fused belief state bee, (y) that considers
information from all the robots. If a” = (a',---,a") is the joint action and
27 = (21, ,2) the joint measurement, b..,(y) is updated in a centralized

manner according to eq. 10:

bren () = (27 |a” &' y/) > p(a o/ o 2, y)been (y) (14)
yey

This requires that the robots send their observations and actions to a central
node that computes the fused belief. With this approach based on MOMDPs,
coordination arises implicitly due to the fused belief, and there is no need to solve
the original POMDP, which was far more complex. For instance, if the grid had
10x10 cells, there would be 400 possible locations for each pursuer and 100 for
the target, which means a POMDP with N x 40,000 -dimensional belief space.
However, assuming the proposed MOMDP approach, the belief space for each of
the NV models becomes a union of 400 disjoint 100-dimensional subspaces. The
drawback is that the policy is sub-optimal, as the robots do not reason about the
other robot actions, but through proper design of the rewards and the shared
information between robots it can be obtained a coordinated behavior which can
be helpful for many applications.

6 Experiments

N

Fig. 1: Simulated environment and fields of view for each robot. If the target is
in one of the cells with crosses, a high reward is obtained.

In order to test the proposed methods for target tracking, several simula-
tions are presented here. The simulation environment has been created from the

original testbed of the Cooperating Objects Network of Excellence (CONET)?.
This testbed considers several robots and a wireless sensor network, and allows
testing with networks of static and mobile heterogeneous Cooperating Objects.
As a first step, the algorithms in this paper has been tested in a simulated ver-
sion of this testbed. Nonetheless, the final goal of this work is to achieve an
actual implementation with the real testbed. Thus, the map of the real testbed
in CONET was discretized into 2x2-meter cells and resulted in the occupancy
grid of 12x10 dimensions shown in Fig. 1, where cells representing obstacles are
in yellow.

For the simulations, a team with two heterogeneous robots is considered.
Both carry bearing-only sensors, although their capabilities vary. The first robot
(red robot) carries a more accurate sensor (pp = 0.9) but its field of view is
smaller, whereas the second (green robot) has a wider field of view but is less
precise (pp = 0.8). The fields of view for both robots are represented by white
cells in Fig. 1. That is reasonable, because many vision-based detectors work
more precisely when the field of view of the scene is more restricted.

(e) () (8) (h)

Fig. 2: Screenshots of the experiment using totally independent robots. The color
scale for the cells represents the red robot’s belief: the lighter, the higher the
probability of being the target in the cell. The actual position of the target is
represented by the blue diamond.

Therefore, the role of the robot with the wider field of view would be to survey
a big area from a distant position whereas the robot with the more accurate
sensor would try to get closer to confirm the target detection. This behavior can
be designed through different reward functions for each robot. Hence, the red
robot gets a high reward (+100) when the target is in one of the closest cells of

4 http://www.cooperating-objects.org

its field of view, but the green robot gets a high reward (+100) when the target
is in one of the central cells of its field of view. The cells getting these rewards
are marked with a cross in Fig. 1, otherwise the reward is zero.

In these experiments, no uncertainty is considered for the robots’ control.
Thus, every time a robot takes an action, it is supposed to be executed perfectly.
Nevertheless, there is some uncertainty associated to the observations and the
target model. Actually, the target is assumed to move randomly. Therefore, the
transition function for its position ¢; indicates that, from one time step to the
next, the target can move to any of its 8-connected cells with the same probability
(only non-obstacle cells are considered in order to calculate that probability).

Two experiments are presented here. In the first one, each robot calculates
its policy independently and run it without considering the other. In the second
experiment, the approach proposed in this paper is tested. Even though the
policies are calculated separately, the robots share a belief during the execution.
In both experiments, the red robot starts at the top left corner and the green
at the bottom right corner. Then, the target follows the fixed path depicted
in Fig. 1. It starts in point 1 and follows the sequence 1-2-3-4-5-4-2 staying
then within the loop 2-3-4. Moreover, in order to include some uncertainty in
its behavior, at every time step, the target could (with equal probability) either
stay in the same cell or follow the path. Note that all the policies were calculated
with the algorithm MO-Symbolic Perseus in Section 4 by setting the M AXSIZFE
parameter to 200 and using the same 150 sample set B, for each xz € X.

Results of the first experiment are shown in Fig. 2. Since each robot looks
for the target on its own, they encounter some difficulties due to the lack of
range measurements. Of course, when one of them detects the target, there is no
coordination and the other keeps searching around (See for example screenshots
2¢c, 2f and 2h). In fact, according to the belief in 2¢, even though the green robot
is detecting the target, the red one still thinks that it is in another area. In
general, it should be noticed that the robots avoid narrow areas where their field
of view could be reduced. For instance, in screenshot 2b the red robot prefers to
wait for the target outside the corridor instead of going in. That is because it
knows that there is no other way out.

The results of the second experiment are summarized in Fig. 3. In this case,
the behavior of the individuals is similar to the first case. However, the local-
ization of the target is now improved, since more measurements are taken and
more area covered. Moreover, a certain coordination arises between the robots.
For instance, in screenshot 3b the red robot detects the target and then, the
green robot starts moving to the same area despite not having detected any-
thing. Something similar happens in screenshots 3¢ and 3d, where the red robot
loses the target but turns to the area where the other robot is detecting it.
Besides, in screenshots 3f and 3g, they both lose the target and adopt a cross
configuration in order to cover a wider area until they recover it. Then, in screen-
shot 3i the red robot recovers the target and both turn to that position. From
screenshot 3i to 31, it can be seen how the red robot tries to get close to the
target whereas the green robot stays far covering a wider area.

(i) §)) (k) 1)

Fig. 3: Screenshots of the experiment using coordinated robots. The color scale
for the cells represents the fused belief from the information of the two robots.

The same comparison, considering communication between the robots (a
shared belief) and no communication, has been performed in 500 simulations
considering 150 time steps (with random motion of the person and random errors
in the measurements). The averaged expected reward for all the simulations has
been computed. The results are shown in Table 1. It can be seen how the implicit
coordination achieved through communication leads to higher rewards. The same
scenario has been evaluated using SARSOP with mixed observability (presented
in [15]), showing how, also in this case, the coordination leads to higher rewards.

Experiment Reward

MO-Symbolic Perseus, belief sharing 246.13 4+ 74.55
MO-Symbolic Perseus, no belief sharing 209.38 + 70.99
SARSOP [15], belief sharing 279.64 + 104.46
SARSOP [15], no belief sharing 197.76 + 69.34

Table 1: Experiment with 2 robots. Average reward obtained considering com-
munication (belief sharing), and without communication.

7 Conclusions

The paper has presented how POMDPs can be used for Cooperating Objects
planning under uncertainty. However, the intractability of some models is still a
drawback for large belief spaces. This work has highlighted the important role
that MOMDPs can play in order to cope with problems in real applications.
Thus, an example of how mixed observability can alleviate the complexity of the
POMDPs has been applied to target tracking.

Moreover, another interesting idea shown in the paper is how solving the
MOMDPs in a decentralized manner and sharing information can lead to im-
plicit coordination of a team of COs, without having to solve the full POMDP
model. In this sense, results with non-coordinated and coordinated robots were
compared and a better performance was achieved with the latter, even though
intentional cooperation was not considered. Furthermore, the combination of
different policies for the heterogeneous robots was also exploited. Since each CO
does not reason about the others’ actions, this approach is rather scalable.

Even though the MOMDPs are solved in a decentralized way, during the
execution phase the belief is fused centrally. Therefore, a future development
would be to decentralize also the fusion of the beliefs so that the whole system
is totally scalable. Then, the future idea of this work is to implement a totally
decentralized scheme that can be tested in a real platform.

Furthermore, although one particular application has been presented, due to
their generality and adaptability the same techniques can be applied to other
scenarios. Currently, we are working on the activation problem (that is, policies

to decide optimally which sensors should be activated in a sensor network for
tracking applications, taking into account energy limitations) and on the cooper-
ation between static and mobile COs for cooperative navigation when the mobile
COs lack of accurate sensors for localization.

8

Acknowledgments

This work is partially supported by CONET, the Cooperating Objects Network
of Excellence, funded by the European Commission under FP7 with contract
number FP7-2007-2-224053.

References

10.

11.

12.

13.

. Stroupe, A., Balch, T.: Value-based action selection for observation with robot

teams using probabilistic techniques. Robotics and Autonomous Systems 50
(February 2005) 85-97

Zhao, F., Shin, J., Reich, J.: Information-driven dynamic sensor collaboration.
Signal Processing Magazine, IEEE 19(2) (March 2002) 61-72

Wong, E.M., Bourgault, F., Furukawa, T.: Multi-vehicle bayesian search for mul-
tiple lost targets. In: Proceedings of the International Conference on Robotics and
Automation. (2005) 3169-3174

Bourgault, F., Furukawa, T., Durrant-Whyte, H.: Decentralized bayesian nego-
tiation for cooperative search. In: Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems. (2004) 2681-2686

Grocholsky, B., Makarenko, A., Kaupp, T., Durrant-Whyte, H.F.: Scalable Control
of Decentralised Sensor Platforms. In: Lecture notes in Computer Science. Volume
2634. Springer (2003)

Mathews, G., Durrant-Whyte, H., Prokopenko, M.: Decentralized Decision Mak-
ing for Multiagent Systems. In: Advances in Applied Self-Organizing Systems.
Springer-Verlag (2008)

Pineau, J., Gordon, G., Thrun, S.: Point-based value iteration: An anytime algo-
rithm for POMDPs. In: Proceedings of the Eighteenth International Joint Confer-
ence on Artificial Intelligence. (2003) 1025-1032

Spaan, M.T.J., Vlassis, N.: Perseus: Randomized point-based value iteration for
POMDPs. Journal of Artificial Intelligence Research 24 (2005) 195-220

Smith, T., Simmons, R.: Heuristic search value iteration for POMDPs. In: Pro-
ceedings of the 20th Conference on Uncertainty in Artificial Intelligence. (2004)
520-527

Smith, T., Simmons, R.: Point-based POMDP algorithms: improved analysis and
implementation. In: Proceedings of the 21th Conference on Uncertainty in Artificial
Intelligence. (2005) 542-547

Hauskrecht, M.: Value function approximations for partially observable Markov
decision processes. Journal of Artificial Intelligence Research 13 (2000) 33-95
Poupart, P.: Exploiting Structure to Efficiently Solve Large Scale Partially Ob-
servable Markov Decision Processes. PhD thesis, University of Toronto (2005)
Hoey, J., St-Aubin, R., Hu, A., Boutilier, C.: SPUDD: Stochastic planning using
decision diagrams. In: Proceedings of the Fifteenth Conference on Uncertainty in
Artificial Intelligence. (1999)

14.

15.

16.

Kurniawati, H., Hsu, D., Lee, W.: SARSOP: Efficient point-based POMDP plan-
ning by approximating optimally reachable belief spaces. In: Proc. Robotics: Sci-
ence and Systems. (2008)

Ong, S.C., Png, S'W., Hsu, D., Lee, W.S.: POMDPs for Robotic Tasks with Mixed
Observability. In: Robotics: Science and Systems Conference. (2009)

Hsu, D., Lee, W., Rong, N.: A point-based POMDP planner for target tracking. In:
Proceedings of the ITEEE International Conference on Robotics and Automation.
(2008) 2644-2650

