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Abstract— Planning under uncertainty faces a scalability
problem when considering multi-robot teams, as the informa-
tion space scales exponentially with the number of robots.
To address this issue, this paper proposes to decentralize
multi-robot Partially Observable Markov Decision Processes
(POMDPs) while maintaining cooperation between robots by
using POMDP policy auctions. Auctions provide a flexible
way of coordinating individual policies modeled by POMDPs
and have low communication requirements. Additionally, we
use a Decentralized Data Fusion method (DDF) in order to
efficiently maintain a joint belief state among the robots. The
paper presents an application in environmental monitoring with
multiple Unmanned Aerial Vehicles (UAVs), which illustrates
the proposed ideas through different simulations.

I. INTRODUCTION

Systems with multiple UAVs are of great interest in
many robotic applications, such as exploration, surveillance,
monitoring or rescue robotics [1], [2], [3], [4]. In those
applications, a single UAV is not usually able to acquire all
the required information and the cooperation among multiple
UAVs is essential. In particular, we are interested in role-
based missions, in which the team objective (e.g., detecting a
target or alarm) can be achieved with UAVs following differ-
ent roles or behaviors (e.g., patrol a certain area, approach the
target, etc.). For instance, in many monitoring applications
[4], where the team needs to maximize its information, it is
positive to have UAVs following non-overlapping behaviors
in order to provide a richer information for the team.
Real scenarios present uncertain and potentially hazardous

environments in which UAVs can experience communication
constraints. In order to cope with decision-making under
these uncertainties and constraints, POMDPs provide a sound
mathematical framework [5]. Although POMDP solvers can
currently handle large state spaces, they ultimately face a
scalability problem when considering multi-robot teams [6].
Popular models like Dec-POMDPs [7] or ND-POMDPs [8]
remain limited to toy problems, and other models require
flawless instantaneous communication [9], [10].
We propose a scheme for exploiting the power of POMDPs

while mitigating their complexity. First, we exploit the fact
that robotic teams are usually capable of communicating, and
thus, we maintain a joint belief state among the UAVs, which
serves as coordination signal. We use an existing DDF ap-
proach [11], but in conjunction with POMDP policies. Unlike
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most work on POMDPs, the belief update is separated from
the decision-making process during the execution phase. This
decoupling between both processes increases the robustness
and reliability of real-time robotic teams.
Second, we propose to combine individual behaviors or

roles that can be represented by single-robot POMDPs. An
online cooperation is fostered by distributing optimally these
roles among the UAVs by means of a decentralized auction.
Instead of tasks, POMDP policies that describe a behavior
are distributed; UAVs can switch between these behaviors
dynamically at each decision step. The auction determines
continuously which behavior is best for each UAV to coop-
eratively attain the common goal. Since the POMDPs only
involve local information and all the communications are
point-to-point, the approach can scale well with the number
of UAVs.
We apply our approach to environmental monitoring,

where several UAVs have to evaluate the level of contami-
nation on a given terrain with less uncertainty as possible.
Simulation results prove how the cooperation among several
UAVs can improve the overall mission.
The paper is organized as follows: Section II summa-

rizes POMDP models and describes the decentralized data
fusion algorithms; Section III describes the algorithms for
auctioning POMDPs in a decentralized manner and the
overall overview of the complete system; Section IV presents
the models used for environmental monitoring; Section V
provides experimental results; and Section VI gives the
conclusions and future work.

II. BACKGROUND

A. Decision-theoretic Planning Models

A popular model for single-UAV planning under uncer-
tainty in sensing and acting is the Partially Observable
Markov Decision Process (POMDP).
Formally, a POMDP is defined by the tuple

�S,A, Z, T,O,R, h, γ� [5]: The state space is the finite
set of possible states s ∈ S; the action space, the finite
set of possible actions a ∈ A; and the observation space
consists of the finite set of possible observations z ∈ Z . At
every step, an action is taken, an observation is made and a
reward is given. Thus, after performing an action a, the state
transition is modeled by the conditional probability function
T (s′, a, s) = p(s′|a, s), and the posterior observation by
the conditional probability function O(z, a, s′) = p(z|a, s′).
The reward obtained at each step is R(s, a).
Given that it is not directly observable, the actual state

cannot be known by the system. Instead, a probability density



function b(s) over the state space (belief state) is maintained.
Due to the Markov assumption, it can be updated with a
Bayesian filter for every action-observation pair.

b′(s′) = ηO(z, a, s′)
�

s∈S

T (s′, a, s)b(s) (1)

where η acts as a normalizing constant such that b′ remains
a probability distribution.
The objective of a POMDP is to find a policy that maps

beliefs into actions π(b) → a, so that the value function is
maximized, i.e. the sum of expected rewards earned during
h time steps. To ensure that this sum is finite when h → ∞,
rewards are weighted by a discount factor γ ∈ [0, 1).
The model can be extended for the case of multiple UAVs

(MPOMDP). In a team of n UAVs, each UAV i can execute
an action ai from a finite set Ai and receives an observation
zi from a finite set Zi. The transition function T (s′, aJ , s)
is defined over the set of joint actions aJ ∈ A1 × · · · ×An,
and the observation function O(zJ , aJ , s

′) over joint actions
and joint observations zJ ∈ Z1 × · · · × Zn. The common
reward signal is defined over the joint set of states and actions
R : S ×A1 × · · · ×An → R.
The goal in the multi-UAV case case is to compute an

optimal joint policy π∗ = {π1, · · · , πn} that maximizes the
expected discounted reward (as in the POMDP case). In the
MPOMDP case, as UAVs at each time step have access to the
joint observation and as a result can deduce the joint action,
they can maintain a joint belief using (1) (substituting the
single-UAV models with the joint ones).

B. Decentralized Data Fusion

A joint belief for the team can be estimated in a decen-
tralized way. Each UAV i can employ its local data zi to
compute a belief state over the full trajectory (from time 0
up to time t):

bi(s0:t) = η

τ=t�

τ=1

O(zi,τ , ai,τ , sτ )T (sτ , aJ,τ , sτ−1)b(s0) (2)

with η a normalization constant. Then, the local beliefs can
be shared among neighbors at certain time instants. If UAV i
receives information from other UAV j, this is locally fused
in order to improve its local perception of the world:

bi(s0:t) ← η
bi(s0:t)bj(s0:t)

bij(s0:t)
(3)

where bij(s0:t) represents the common information between
the UAVs (i.e., the common prior, and information previously
exchanged between the UAVs). This information can be
maintained by a separate filter called channel filter [12].
It is important to remark that, with this approach, the

centralized belief can be exactly recovered in a decentralized
fashion [11]. However, maintaining a belief for the state
trajectory is very costly. In [11], it is presented an algorithm
for DDF that scales only linearly with the length of the
trajectory, under the assumption of Gaussian beliefs. For
other belief functions, the same equation (3) can be applied
to the belief on the last state b(st). However, some error will

be committed with respect to the centralized belief if the
fusion equation is not applied every time instant in which a
measurement is obtained in the team.

III. DECENTRALIZED AUCTION WITH POMDPS

The proposed approach builds on two mechanisms: the
DDF filter described in Section II-B and a POMDP auction
(Section III-A). The former allows the UAVs to share infor-
mation and build a joint belief, the latter is used to assign
the different behaviors to the UAVs in a cooperative manner.

A. Auctioning POMDP Policies

Certain multi-UAV applications can be attained by the
cooperation between UAVs that play different roles. Here, a
single-UAV POMDP is defined for each given role/behavior
k ∈ {1, . . . ,m} and UAV i ∈ {1, . . . , n}. With each
POMDP, the reward function of the corresponding behavior
Rk

i is associated, which is defined over the sets of local vari-
ables �Si, Ai, Zi�. In an offline planning phase, individual
policies are computed for all these POMDPs, each of them
with a value function V k

i (bi). Then, in an online execution
phase, these policies are assigned optimally to the different
UAVs in order to achieve a cooperative behavior.
Although the actual multi-UAV objective cannot be mod-

eled as a set of single-UAV reward functions, if these policies
could be assigned optimally to one or more UAVs, all
together should lead to a cooperative behavior pursuing the
global objective.
The role assignment is modeled as a task allocation

problem [13], in which m tasks have to be assigned to a
team of n UAVs minimizing a global cost. In this case,
each UAV always has to be assigned a sole task, which
is the POMDP policy to follow. Given that xik = 1 when
policy k is assigned to robot i and 0 otherwise, and φik is the
cost associated with that assignment, the problem consists of
minimizing the total cost min

�n
i=1 (

�m
k=1 φikxik), subject

to
�n

i=1 xik ≤ 1, ∀k ∈ {1, . . . ,m}; �m
k=1 xik ≤ 1, ∀i ∈

{1, . . . , n}; and xik ∈ {0, 1}, ∀i, j.
The behavior for each UAV is selected online with an

auction algorithm [13] where the cost of assigning a policy
k to a UAV i is φik = −V k

i (bi). Thus, policies with greater
expected reward are more likely to be selected for each UAV,
which helps to maximize the global expected reward for the
whole team. In case n > m, the algorithm will leave UAVs
with no policy assigned. Therefore, the assignment problem
is repeated with these free UAVs until they all get a policy.
In our decentralized auction, the assignment problem is

solved locally at each UAV with the information available.
Each UAV i computes its own costs/bids for the behaviors
from its local belief bi and communicates them to other
neighboring UAVs. Then, with the bids received from other
UAVs, a local solution for the assignment problem above
is obtained. This assignment is solved at each decision step
for the UAVs. The computation can be performed efficiently
in polynomial time using the Hungarian algorithm [14].
Note that each UAV only consider its neighboring peers
(within communication range), which bounds the total cost
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Fig. 1: Functional scheme for decision-making and belief
update at each UAV.

of the Hungarian algorithm. Moreover, the robustness of
the system is high, since information from all the UAVs is
not required to compute each local solution. In case some
communication links failed, each UAV would still get a
suboptimal solution with the available information from their
neighbors (subnetworks arise naturally).
It is important to remark that the UAVs have access to a

joint belief during the execution of the policies. This belief
over the joint state, and containing information from all the
UAVs, is provided by the DDF algorithm running during the
execution phase.

B. System Overview

Figure 1 depicts the system elements per UAV. Each
UAV can execute a certain number of behaviors modeled
as single-UAV POMDP controllers. A DDF module is in
charge of computing the belief and feeding the Auctioneer
module, which then chooses the adequate POMDP controller
and the associated action. Even though most POMDP-based
systems synchronize belief update and decision-making in
the same loop, here the two processes are separated. In this
way some constraints that limit the flexibility and robustness
of the system are avoided. For instance, communication
channels and transmission rates are totally independent for
both modules, which is critical in decentralized systems
under communication constraints.
The approach is completely decentralized, since belief

estimation and decision-making are carried out without the
need for a central entity. Despite the fact that a MPOMDP
for the whole team is not solved (with its computational
benefits), cooperative behavior still arises in two manners.
First, thanks to the information shared by the different DDF
modules in order to achieve a fused belief (which acts as
a coordination signal for policy execution); and second, by
sharing the bid values for the decentralized auction, which
gives an idea about the behaviors others may be performing.

Fig. 2: Marshland in the National Park of Doñana. Shadowed
cells represent non-flying zones. Each critical cell is marked
with a number, and the propagation graph with arrows.

IV. ENVIRONMENTAL MONITORING

We propose an application in which there is a team of
n UAVs that have to fly over a certain terrain in order to
monitor a potential contamination that may appear. It is as-
sumed that this contamination can only appear and propagate
through a network of water flows on the terrain (discretized
into a cell grid). Therefore, instead of surveying the whole
scenario, it is assumed that the overall contamination can be
controlled reliably by surveying a set of m critical points.
These points are inter-connected through water flows and the
contamination can propagate among them. The objective of
the team of UAVs is to visit the critical points optimally to
reduce the joint uncertainty on the contamination level.
Each UAV is equipped with a camera sensor pointing

downwards that provides a binary observation about the
contamination level of the cell in which it is located: yes
or no. At each time step, each UAV can stay in the same
cell or moving to a neighboring cell: north, west, east or
south. Noisy transition functions are considered for these
movement actions. Besides, when a UAV is on top of a
critical point, instead of moving, it can select two additional
actions (classCont and classNotCont) to classify that area as
contaminated or non-contaminated, respectively.
There is a factored state with a set of variables describing

the contamination level of each critical point, which can be:
none, low or high. A graph describing the inter-connections
among the critical points (due to water flows) is also known.
Thus, the evolution of the contamination is modeled so that
it can start at certain points of the graph (entry points), and
these effects can be propagated to the other inter-connected
points downstream. In addition, there is another binary state
factor for each critical point to specify whether it was already
classified or not. Thus, if a UAV that is on top of a critical cell
takes one of the two classification actions, the corresponding
variable for that critical point is set to 1. Otherwise, if
there are not classification actions but the critical point was
previously classified, it can switch back to 0 (not-classified)



with a probability pdes at each time step. This is to allow
the critical areas to be declassified again after some time.
The local state for each UAV also includes its position on
the grid.
The main objective is to reduce the uncertainty over the

contamination level. This is done by monitoring the critical
points and classifying them when their uncertainty is low
enough. The idea is to add classification actions that reward
UAVs for reaching a certain level of uncertainty regarding
the contamination level. When having better information
improves the task performance, the POMDP policy will try
to select these information-gaining actions. Therefore, if a
critical area is classified as contaminated and its state is
low or high, a positive reward is given. However, if its
state is none, the classification is wrong and a negative
reward is obtained. In case the area is classified as non-
contaminated the rewards are given the way around. There
is no reward if the area was already classified. Otherwise, the
UAVs would keep classifying all the time to obtain rewards
and the policy computation would converge very slowly. The
resulting policy will lead to beliefs with a low uncertainty on
the contamination state, in which the UAVs are more likely
to make a right classification.
The approach proposed in this paper can be used consid-

ering m single-robot behaviors, one for each possible point
to monitor. Thus, the reward function for each behavior k
(Rk

i ) rewards UAV i only if it classifies the critical area k.

V. EXPERIMENTS

Some experiments have been performed on a simulated
scenario of a real national park. The National Park of Doñana
is a remarkable marshland located in the south of Spain. Due
to the huge number of species that it hosts, contamination
or any other natural disaster are real threats that need to
be controlled. In order to survey the Park with a team of
UAVs, it was divided into the 7×7 grid shown in Fig. 2,
where the dark shaded cells represent non-flying zones that
the UAVs cannot access for security reasons. The four key
areas and the inter-connection graph shown in Fig. 2 were
used to model the propagation. Moreover, it was assumed
that contamination could only start at Area 1.
Each cell in the grid can be surveyed by a UAV whenever

it is flying on it. On the one hand, if a UAV measures
whether a critical area is contaminated or not, its sensor
will detect contamination with probabilities 0.05, 0.6, 0.9,
depending on whether the actual contamination level was
none, low or high. On the other hand, when a UAV observes
the contamination of a non-critical cell, it will never detect
contamination. Moreover, the probability to declassify areas
previously classified is set to pdes = 0.04; the reward1 for a
correct classification to 10; and the reward for an incorrect
classification to −90.
There were 4 different behaviors, one for each critical area.

A single-UAV policy was computed for each of them. with

1A small cost of 0.1 is assigned for the movement actions, whereas no
cost is assigned for stay.

TABLE I: Complexity of the POMDP models used in
this paper. Number of states, actions and observations are
computed for the general multi-UAV case and for a single-
UAV case.

|S| |A| |Z|
Monitoring

40n × 81× 16 7n 2n(n UAVs, 4 areas)
Monitoring

51, 840 7 2(1 UAV, 4 areas)

a Java version of Symbolic Perseus 2[15]. The solver ran 10
minutes for each policy in a computer with an Intel Core
processor (4 cores @2.67GHz) and 8GB.
It is important to highlight that, in order to alleviate the

complexity of the belief space, Mixed Observability Markov
Decision Processes (MOMDPs) [16] were considered to find
the policies for all the experiments in this paper. The UAVs’
positions were assumed to be observable within the POMDP,
which is reasonable if the sensors for self-positioning are
accurate enough for the given grid resolution.
We tested our approach for teams with 1, 2, 3 and 4 UAVs,

each of them running an estimation filter implementing the
DDF scheme in Section II-B, and an auctioneer controller
that executed the algorithm in Section III-A For each team,
1000 simulations of 100 steps were performed with the UAVs
starting at random positions. Moreover, all the simulations
started without contamination, but there was a probability
of 0.1 that contaminated water appeared at the entry point
(Area 1) at any moment. The average discounted rewards and
belief entropies for all the experiments are shown in Fig. 3a
and 3b, respectively. It can be seen how the addition of more
UAVs improves the performance, increasing the reward of
the team and decreasing the entropy of the belief on the con-
tamination levels for each area (

�
∀level −plevel log(plevel)).

Note that the entropy of Area 1 is always higher, since there
is the uncertainty of new contamination appearing. In Fig.
3c, the percentage of time that each area is visited by any
UAV is also shown. The more UAVs there are, the better
they can cooperate to cover all the areas.
Since only single-UAV policies are computed in our

approach, the complexities of the models do not increase
with the number of UAVs (see Table I), which makes the
solution scalable. However, in this scenario, experiments
with more than four UAVs are not presented because they
do not improve the performance significantly (four UAVs
can already cover all the critical areas). Also, note that due
to the interconnections between critical points, the current
propagation model does not scale well with the number of
areas, precluding us from testing more complex scenarios.
In larger scenarios, however, sparser representations of this
interdependence structure are likely, leading to more compact
representations.
We also tested our approach against a joint policy for a

multi-UAV POMDP. The multi-UAV POMDP is far from

2The parameters for Symbolic Perseus were 5000 belief points, 1500
α-vectors maximum, 30 iterations per round and 5 rounds.
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Fig. 3: Simulations with 4 critical areas. The average results are shown varying the number of UAVs involved. (a) Discounted
rewards. (b) Entropies of the beliefs on the contamination levels. (a) Percentages of occupancy for each critical area.
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Fig. 4: Average results for simulations on environmental
monitoring with two UAVs and three critical areas. Auc-
tioned polices are compared to a joint policy. (a) Entropies
of the beliefs on the contamination levels. (b) Percentages of
occupancy for each critical area.

scalable (see Table I), so we were only able to solve it for
a simple case with 2 UAVs and 3 areas (Areas 1, 2 and
3)3. Actually, any variation of this small scenario considering
more UAVs or areas, caused the same computer mentioned
above to run out of memory.
We used Symbolic Perseus 4 again to compute a single-

UAV policy for each behavior (5 minutes each) and a joint
policy for the 2-UAV MPOMDP (14 hours). Then, we ran

3The MPOMDP was designed to reward only one UAV at a time in case
of several classifying the same area. This fostered the distribution along the
different critical points.
4The parameters for Symbolic Perseus were 5000 belief points, 700 α-

vectors maximum, 10 iterations per round and 5 rounds.

1000 simulations of 100 steps (with random starting positions
and no initial contamination) for our approach, and the
same with the joint policy. The average values for the belief
entropies and the percentage of occupancy (times visited) of
each area are shown in Fig. 4. Despite the huge difference
in computational time for both approaches, the results are
still remarkably similar. Of course, the joint policy should
be better for more complex examples, but its computation
becomes intractable.

VI. CONCLUSIONS

POMDPs face a scalability problem when considering
teams of UAVs, becoming intractable quite easily. For certain
roled-based applications, independent POMDP-based con-
trollers can be auctioned in a cooperative fashion. We also
relax the communication guarantees by introducing a DDF
approach for belief propagation, which allows for imper-
fect communication channels and makes the system more
reliable. Although our approach is suboptimal, the results
obtained in terms of cooperative behavior are still good.
Moreover, since the computational complexity is reduced
dramatically, it is much more scalable than other multi-robot
POMDP approaches, offering a trade-off between optimality
and applicability.
We present results on an environmental monitoring ap-

plication that cannot be solved with the current state of
the art in multi-robot POMDP solvers. Besides, there are
many other multi-robot applications that can be modeled
with cooperative roles and solved with our framework. In the
future, more research is still necessary to evaluate the exact
degradation that we suffer against optimal solutions. Also,
some methods to analyze the initial problem and identify
potential sets of roles would be of interest. So far, those
roles are set in an ad-hoc fashion.
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