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Abstract— Target tracking with bearing-only sensors is a
challenging problem when the target moves dynamically in
complex scenarios. Besides the partial observability of such sen-
sors, they have limited field of views, occlusions can occur, etc.
In those cases, cooperative approaches with multiple tracking
robots are interesting, but the different sources of uncertain
information need to be considered appropriately in order to
achieve better estimates. Even though there exist probabilistic
filters that can estimate the position of a target dealing with un-
certainties, bearing-only measurements bring usually additional
problems with initialization and data association. In this paper,
we propose a multi-robot triangulation method with a dynamic
baseline that can triangulate bearing-only measurements in a
probabilistic manner to produce 3D observations. This method
is combined with a decentralized stochastic filter and used
to tackle those initialization and data association issues. The
approach is validated with simulations and field experiments
where a team of aerial and ground robots with cameras needs
to track a dynamic target.

I. INTRODUCTION

Over the last years, there has been an increasing research
effort on multi-robot cooperative perception, to ensure ro-
bust and reliable autonomous perception in real scenarios
involving dynamic environments and varying perception con-
ditions. Tracking mobile targets with bearing-only sensors is
a clear example where combining information from different
robots can be essential if the targets move very dynamically
in complex scenarios. In addition, cooperative 3D target
estimation is useful in many applications combining static
and dynamic cameras, such as search and rescue [1] and
border surveillance [2].

There are stochastic filters that model uncertainties proba-
bilistically and fuse data from sensors to estimate the position
of one or several targets. Depending on the probability
distribution, different representations can be used, such as
Bayes Filters [3], Particle Filters [4] or Kalman/Information
Filters [5]. Still, there are some issues that make the prob-
lem challenging [6], [7]: (i) sensors have different levels
of accuracy that should be weighted accordingly; (ii) out-
liers or measurements coming from spurious data should
be discarded; and (iii) data association and initialization
of the estimation must be performed. This last issue is
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particularly relevant with bearing-only sensors, which lack
depth information and absolute scale [8]. Some techniques,
such as monocular vision system Structure-from-Motion or
Visual Simultaneous Localization and Mapping, managed to
combine bearing-only observations to estimate depth with a
high accuracy, both in indoor and outdoor map-building ap-
plications [9], [10]. However, this level of accuracy presents
some constraints, such as high computational requirements,
and cameras with low dynamics and large fields of view.

Additionally, other works proposed solutions to cope with
initialization and data association within the estimation fil-
ters [7]. Instead, we propose a solution at the level of the
perception sensors, i.e., when generating the measurements
that the filter will integrate. In particular, we apply this idea
for cooperative 3D target tracking with multiple cameras
on board mobile robots. We use a method that estimates
a 3D observation of a target from the monocular vision
measurements of several robots. We first introduced this
method, named Uncertainty-based Multi-Robot Cooperative
Triangulation (UCoT), as a standalone component [11].
However, in this work, we propose to use it as a novel multi-
robot sensor integrated within a decentralized stochastic filter
for data fusion [12].

UCoT is a triangulation method with a dynamic stereo
baseline that weights different monocular observations ac-
cording to their uncertainties in a probabilistic manner, and
produces a single 3D measurement. Thus, instead of inte-
grating directly into the filter the bearing-only measurements
from the monocular cameras, the idea is to use UCoT to
pre-process them and generate 3D measurements that will
be used locally by each robot filter. Moreover, we use a
Decentralized Delayed-State Information Filter (DDSIF) [12]
that allows the robots to share their local information with
other team-mates. Our main contributions are the following:
• Contrary to other triangulation methods with mobile

targets and cameras [10], UCoT does not require fea-
tures available between frames for batch recursive 3D
estimation.

• UCoT allows our DDSIF to be initialized without addi-
tional assumptions. Other filters based on bearing-only
observations need to make assumptions on the initial
height or size of the target.

• UCoT improves the data association phase of the
DDSIF, discarding outliers, by means of a probabilistic
validation. Pairs of bearing-only observations whose
triangulation are not good enough are considered in-
appropriate or very noisy.

• The approach is scalable and flexible, based on a de-



centralized filter and local communication. Estimations
are computed locally at each robot by exchanging
information with others.

The paper is organised as follows: Section II introduces
the general architecture of the proposed approach and de-
scribes the decentralized estimation filter for target tracking;
Section III describes UCoT, the Uncertainty-based Multi-
Robot Cooperative Triangulation; Section IV discusses the
advantages of using UCoT as a virtual sensor; Section V
provides experimental results to validate the method; and
Section VI concludes the paper and suggests future work.

II. DECENTRALIZED DATA FUSION FOR TARGET
TRACKING

This section describes the general architecture of the
approach presented in this paper for target tracking, which
is based on the decentralized Information Filter depicted in
Fig. 1. The filter used (DDSIF) was previously introduced
by some of the authors and its details can be found in
[12]. Each robot runs a local instance of the DDSIF and
computes a local belief over the state of the target based on
local measurements. Then, this belief is shared with other
robots and the information (beliefs) coming from others is
fused with the local estimate. Thus, the filter can provide
estimates in a decentralized fashion even when the robots
are out of communication range. Once they get closer again,
their beliefs will be fused, avoiding losses of information.
The decentralized estimation converges to the one that would
be obtained by a centralized filter as long as the robots
communicate in a tree-like network [12].

Fig. 1: Architecture of the proposed decentralized data fusion
approach.

DDSIF - Decentralized Delayed-state Information Filter

Similarly to the Kalman Filter, the Information Filter
assumes Gaussian probability distributions, but maintains
a estimation of the information vector ξξξ = ΣΣΣ−1µµµ and
information matrix ΩΩΩ = ΣΣΣ−1, where µµµ and ΣΣΣ are the mean
and covariance matrix of the estimated state respectively.

In this case, the state to estimate consists of the 3D
position and velocity of a moving target. There is a step to
predict the position and velocity of the target, and a step
to update the belief with the local measurements. In the

prediction step, the velocity is assumed to be affected by
an acceleration modelled as zero-mean white noise, while
the position changes according to that velocity and the step
duration.

Each robot is supposed to carry a camera, and two different
kinds of measurements are considered in the system: zzz2D

and zzz3D. The former consists of a position of the target
on the image plane, the latter is the result of the UCoT
sensor proposed in this paper and consists of a 3D position
of the target in the global coordinate system. The usual
pin-hole projection is used to model the 2D measurements
from the target state. This is a non-linear model and a first-
order linearization is applied. However, the model for the 3D
measurements is straightforward. Gaussian additive noise is
considered in both cases.

When there is information available from other robots, a
fusion step needs to be performed. Due to the additive nature
of its update step, the Information Filter allows robots to do
this easily. For example, if robot i receives the belief of robot
j (ξξξj , ΩΩΩj), it updates the local belief with the following rule:

ξξξi = ξξξi + ξξξj − ξξξij
ΩΩΩi = ΩΩΩi + ΩΩΩj −ΩΩΩij ,

(1)

where ξξξij and ΩΩΩij represent the information previously
exchanged between robots i and j. This common information
must be removed first not to get overconfident estimations.
Moreover, it can be computed by a paralell filter as long
as the robots communicate in a tree-like network. When this
cannot be assured, other conservative fusion rules, such as the
Covariance Intersection can be applied, but the decentralized
estimation losses some information regarding the centralized
one [12].

Finally, it is important to mention that the DDSIF main-
tains trajectories over the state instead of just the last state.
This allows robots to integrate local measurements or beliefs
from others that arrived delayed due to communication
issues, and, in the linear case, to recover the same estimation
as a centralized filter (with a certain lag depending on the
communication hops in the network) [12].

III. UCOT - UNCERTAINTY-BASED MULTI-ROBOT
COOPERATIVE TRIANGULATION

In this paper, the DDSIF in Section II is complemented
with a virtual sensor that provides 3D measurements, the
Uncertainty-based Multi-Robot Cooperative Triangulation
(UCoT). This sensor allows the framework to integrate 3D
information based on monocular 2D measurements, using
the relative position and attitude provided by each robot,
and based on geometric constraints derived from triangula-
tion [13] (see Fig. 2). In addition, the uncertainties of the
observation model, position and attitude of each robot, are
modelled using a first-order uncertainty propagation, with the
assumption that all sources of uncertainty can be modelled
as uncorrelated Gaussian noises.



Fig. 2: Relative pose between robots i and j, each of them
equipped with a monocular vision system, estimating the 3D
target position.

Triangulation based on Uncertainty

Considering the formulation by Trucco [13] relative to
the mid-point triangulation using a stereo rigid baseline, the
following equation is proposed to use a dynamic baseline:

WPPP = πi
WPPPi + πj

WPPPj (2)

where WPPPi =W CCCi + λi
Wdddi is the point on the line

with origin WCCCi (the position of camera i) and unitary
direction vector Wdddi (given by the position of the target in
pixel coordinates) corresponding to a particular value of λi
(equivalently for WPPPj).

This equation represents a dynamic baseline approach that
computes a 3D position of a target in the global frame1

WPPP by weighting the bearing-only measurements from a
pair of monocular cameras defined as i, j. If Wddd are the
unitary direction vectors of the cameras’ rays pointing to
the target, according to the traditional stereo geometry with
rigid baseline, the resulting 3D point will be located in a
line perpendicular to both rays, represented by a direction
vector Wddd⊥ =W dddi ∧W dddj. If the baseline is dynamic, the
cameras also need to share their global positions WCCC and
attitudes WRRR, as well as their direction vectors. Applying
the stereo geometry with all these data, a linear system can
be solved [11] to obtain the parameters λi, λj , and hence,
the 3D points corresponding to each camera, WPPPi, WPPPj .
The geometric representation of the process is depicted in
Fig. 2.

Once we have the line defined by Wddd⊥, instead of
selecting the mid-point between WPPPi and WPPPj , as done
in [13], we propose the weights πi and πj , which will be
derived in Eq. (6) to consider appropriately the uncertainties
of each monocular system.

The covariance matrix of the 3D target position ΣΣΣ3D is
estimated considering all the sources of uncertainty. For each

1Throughout the paper, the super-index W indicates that the variable is
expressed in the global coordinate system.

camera, it is assumed that there is uncertainty in the target
location in pixel coordinates σσσzzz2D = diag[σx, σy]; as well
as in the global camera position provided by a GPS σσσςςς =
diag[σλ, σϕ, σh], where ςςς = (λ, ϕ, h) are the latitude, longi-
tude and altitude, respectively; and in the attitude provided
by an IMU σσσuuu = diag[σφ, σθ, σψ], where uuu = (φ, θ, ψ)
are the roll, pitch and yaw angles, respectively. All of them
are modelled as uncorrelated zero-mean Gaussian random
variables.

A vector with all the uncertain variables in Eq. (2) can be
composed ννν(i,j) = [ςςςi,uuui, zzz2Di

, ςςςj ,uuuj , zzz2Dj
]. Then, using a

first-order uncertainty propagation, it is possible to approxi-
mate the uncertainty on the 3D target position as follows:

ΣΣΣ3D = JPJPJPΛΛΛi,jJPJPJP
T , (3)

where JPJPJP stands for the Jacobian matrix of WPPP in Eq. (2)
with respect to the noisy variables

JPJPJP [3×16] =∇∇∇ννν(i,j)

WPPP(ννν(i,j)), (4)

and ΛΛΛi,j is the input covariance matrix represented by a
diagonal line relative to all sources of uncertainty for both
cameras (ννν(i,j)).

In order to ensure that all sources of uncertainty from each
intersection ray are addressed in a probabilistic manner when
obtaining the weights associated with each ray, once again it
is necessary to estimate the covariances ΣΣΣPPP i and ΣΣΣPPP j using
a first-order propagation:

ΣΣΣPPP i = JPJPJP iΛΛΛi,jJPJPJP
T
i JPJPJP i[3×16] =∇∇∇(ννν(i,j))

WPPPi
ΣΣΣPPP j = JPJPJP jΛΛΛi,jJPJPJP

T
j JPJPJP j [3×16] =∇∇∇(ννν(i,j))

WPPPj
(5)

where JPJPJP i and JPJPJP j are the Jacobian matrices from WPPPi and
WPPPj , respectively. Therefore, with the uncertainties ΣΣΣPPP i and
ΣΣΣPPP j , each camera contribution can be weighted accordingly
in the line described by the perpendicular vector Wddd⊥:

πi =
(Wddd⊥ ΣΣΣPPP j

Wddd⊥
T )2

(Wddd⊥ ΣΣΣPPP i
Wddd⊥

T )2+(Wddd⊥ ΣΣΣPPP j
Wddd⊥

T )2

πj = (Wddd⊥ ΣΣΣPPP i
Wddd⊥

T )2

(Wddd⊥ ΣΣΣPPP i
Wddd⊥

T )2+(Wddd⊥ ΣΣΣPPP j
Wddd⊥

T )2

(6)

Combining the probabilistic weights πi, πj from Eq. (6)
and the dynamic baseline triangulation in Eq. (2), it is
possible to obtain the 3D target estimation (zzz3D) provided
by UCoT:

WPPP =
(Wddd⊥ ΣΣΣPPP j

Wddd⊥
T )2

(Wddd⊥ ΣΣΣPPP i Wddd⊥
T )2 + (Wddd⊥ ΣΣΣPPP j Wddd⊥

T )2
(WCCCi + λWi dddi)

+
(Wddd⊥ ΣΣΣPPP i

Wddd⊥
T )2

(Wddd⊥ ΣΣΣPPP i Wddd⊥
T )2 + (Wddd⊥ ΣΣΣPPP j Wddd⊥

T )2
(WCCCj + λWj dddj)

(7)

Multi-robot Features Data Association

The above formulation is used to combine a pair of
bearing-only measurements from two cameras. However,
not all pairs are considered valid. First, the normalized
squared innovation for the 3D intersection between the two
monocular observations is computed:

(WPPPi −W PPPj)TΣΣΣ−1
3D(WPPPi −W PPPj) < ε3D, (8)



where ε3D follows a chi-square distribution. Only pairs with
an innovation good enough, i.e., those fulfilling Eq. (8), are
considered valid. The gate’s bounding values to ensure a
valid pair can be obtained from a cumulative χ2 table with 3
degrees of freedom. This method allows the UCoT sensor to
detect spurious observations (pairs not matching) and discard
them as outliers. Moreover, the method can be used for data
association in case of multiple targets in the scenario. If there
are observations at the same instant from more than two
cameras, UCoT selects the pair with a better innovation and
provides 3D point corresponding to that pair.

IV. DISCUSSION

The DDSIF presented in Section II allows a team of robots
with on-board cameras to estimate the position of a target in
a decentralized fashion. The filter can integrate 2D bearing-
only measurements from the cameras as usual, but it also
includes the novel possibility of using the 3D measurements
computed by the UCoT method explained in Section III.

As it was shown in Fig 1, both the DDSIF and the UCoT
allow the robots to share information. Robots share their
local estimates on the target 3D position and fuse beliefs
from others thanks to the DDSIF. Besides, they share their
camera position and attitude, as well as their direction vectors
pointing to the target. This information is used by UCoT
to generate 3D measurements of the target position and for
data association. This flexibility allows the system to update
information just locally when needed, or to fuse information
from others when is available.

Additionally, the generation of 3D measurements by UCoT
can help the DDSIF by initializing the height estimate. In
a simpler filter only integrating bearing-only measurements,
the initial position of the target could be computed by
projecting the first measurement into the ground. However,
we need to assume that the target will stay on the ground, or
more generally, that its initial height is known. For example,
this assumption is very restrictive in the case of aerial
targets [14].

Another improvement derived by the inclusion of the
UCoT sensor into the filter is the phase of data association.
Thanks to the methods explained in Section III, a robot
running UCoT locally can evaluate the appropriateness of
bearing-only measurements received from other cameras. If
those measurements do not fit probabilistically with the local
target estimate, UCoT can consider them as outliers and
discard them. This method allow us to eliminate spurious
measurements, and helps the filter to converge and reduce
the noise in the final estimate.

V. EXPERIMENTS

This section describes the experimental results to assess
the impact of integrating UCoT as a virtual sensor with
a DDSIF. Two outdoor experimental cases are proposed: a
simulated scenario where two Micro Aerial Vehicles (MAV)
are tracking a moving target; and a real scenario where an
MAV and an Unmanned Ground Vehicle (UGV) are the
trackers. In both cases, the terrain is not totally flat, but

presents an altitude variation of around 2 meters in the
simulation and 7 meters in the field experiments. The ground
truth of the target position is available thanks to a high
accuracy RTK-GPS sensor with an error lower than 10cm.
In both cases, an image processing component is run on each
robot to detect the target on the image plane. The target has a
distinctive color and the algorithm is based on blob detection.

A. Simulations

The simulated environment was created [17] with the
realistic robotic simulator MORSE 2 and is depicted in Fig. 3.
The target is simulated with another ground or aerial vehicle,
depending on the experiment. Moreover, it follows the same
fixed path during the experiments, which is unknown for the
trackers.

Fig. 3: Left: Simulated environment in MORSE. Right: One
of the MAV trackers with a camera pointing downwards.

In order to analyse different circumstances during the sim-
ulations, all the configurations shown in Fig. 4 were tested.
In configurations (a), (b), and (c), the target was simulated
by a UGV that was moving on the ground, so its variation
in terms of altitude was small. Moreover, the trackers were
following the target in different geometric formations to test
their effect on the final estimate. In configuration (d), the
target was simulated by another MAV that was also varying
its altitude, which can show how the system performs with
changes in that component.

Fig. 4: Different spatial configurations for two MAVs track-
ing a moving target.

Table I shows average results for each configuration
comparing several approaches. In the first three approaches
the DDSIF is run on each robot with the fusion rule as
depicted in Fig. 1, while in the last one a conservative fusion
rule is used (Covariance Intersection). In the method 2D-
2D, both trackers are integrating only 2D measurements;
in 2D-3D trackers integrate 3D measurements from UCoT
or 2D measurements when there is no 3D available (no
2D measurements from the two cameras at that instant); in

2http://www.openrobots.org/wiki/morse



Configuration 2D - 2D 2D - 3D 3D (UCoT) 3D (UCoT-CI)
X Y Z εNEES X Y Z εNEES X Y Z εNEES X Y Z εNEES

a) 0.090 0.441 2.627 46.698 0.068 0.642 0.321 0.977 0.084 0.149 0.334 0.776 0.087 0.166 0.350 0.808
b) 0.482 1.482 11.520 34.818 0.066 0.201 1.262 1.206 0.054 0.154 0.861 1.404 0.165 0.179 0.173 0.915
c) 1.210 2.942 14.482 42.318 0.195 0.153 0.223 1.006 0.112 0.086 0.162 1.025 0.081 0.296 1.332 1.238
d) 0.057 0.928 3.334 51.597 0.039 0.768 0.340 2.861 0.018 0.035 0.251 1.090 0.027 0.045 0.332 0.831

TABLE I: RMS error on the 3D target estimate (meters) and εNEES for each spatial configuration. The DDSIF is run in
two MAV trackers with different fusion approaches. For simplicity, only the results in one of the trackers are shown.

3D (UCoT) and 3D (UCoT-CI) only measurements from
UCoT are integrated, but Covariance Intersection is used to
fuse beliefs in the latter. Moreover, during the experiments,
spurious and noisy observations from the cameras were
simulated to see the system performance.

The Root Mean Square (RMS) error of the estimates
with respect to the ground truth are shown, as well as the
Normalized Estimation Error Square (εNEES). The second
metric is useful to evaluate the consistency of the filter
estimate with respect to the actual value [15], [16]. The
εNEES can be compared with a χ2 distribution with three
degrees of freedom in order to assess whether the filter
tends to be pessimistic or overestimate its capabilities. It
can be seen that the introduction of the 3D observations
provided by UCoT improves the estimate error, mainly in
the Z component. Also, the consistency is improved, since
εNEES values are lower. With the method 3D (UCoT), the
spurious measurements were discarded by UCoT. However,
with the method 2D-3D, some 2D measurements, which may
be noisy, were still included. This is why the results of 2D-
3D are slightly worse. Note that results between 3D (UCoT)
and 3D (UCoT-CI) are pretty similar. Even though some
information is lost with the Covariance Intersection, the filter
still achieves a good performance.

Due to space limitations, plots in Fig. 5 and Fig. 6 show
the full trajectories for the simulations only for configurations
a) and d) respectively, which are more relevant. In the case
of the method 2D-2D, in order to converge, the filter was
initialized assuming the target height as known. In the other
cases, the filter was initialized with the 3D measurements
from UCoT. Nonetheless, the 2D-2D method presents a peak
in εNEES at the beginning due to the worse initialization. In
Fig. 5, the impact of the outliers can be seen at instants 260s
and 320s, where the estimate starts to diverge for the 2D-
2D case. A peak in εNEES can also be observed at the same
instants. The impact of the outliers with the method 2D-3D is
only observed at instant 260s, where the filter was without
UCoT measurements, and hence, without data association.
However, this effect is not present at instant 320s, which
means that 3D measurements from UCoT were available.
With the method 3D (UCoT), the outliers were rejected
thanks to the data association in Eq. (8). Similar results are
depicted in Fig. 6, at the instant 60s. The 3D (UCoT-CI)
gives similar results and is not presented here due to space
limitations.

B. Field Experiments

Field experiments were also performed to prove the fea-
sibility of the system in a non-urban area with several land-

scape elements including vegetation and rocks, as depicted
in Fig. 73.

Fig. 7: Experimental scenario with the UGV and the MAV
tracking a person. Images from the UGV and MAV cameras.

The tracker robots used were a UGV [18] and the As-
ctec Pelican MAV. The UGV carries two cameras with a
resolution of 1278 × 958 in a stereo rigid baseline (∼ 0.76
meters), a Novatel GPS receiver and an IMU Microstrain.
The Pelican MAV is a commercial platform to which a
downward monocular camera with a resolution of 1280 ×
1024 was added. The target consisted of a person moving
along the environment at the velocity of ∼ 0.8m/s. The
person was wearing distinctive color clothes in order to help
the image processing algorithms on the cameras.

Both robots were tracking the target, the MAV hovered
over it (∼ 20 meters), and the UGV performed an approxima-
tion manoeuvre with a safe distance of ∼ 2 meters. However,
most of the time the UGV is at a distance between 5 to
10 meters, and the MAV relative height is between 5 to 20
meters, due to the ground gradient of the scenario where the
target is moving.

The UGV is equipped with a fixed stereo rigid baseline
able to estimate the 3D position of the target, although
the accuracy depends on the distance to the target(initially
∼ 35m) and the available stereo baseline. As we proved
in [11], the accuracy of the this stereo estimation is low for
these distances, and therefore we propose to evaluate the
DDSIF by combining the MAV 2D measurements, and the
3D measurements obtained by UCoT with the monocular
information the MAV camera and one of the UGV cameras.
The results are detailed in Table II and depicted in Fig. 8.

The overall performance is similar to the one obtained
using the simulated environment. In the case of the method
2D-2D, the filter was initialized with the known height of
the person and therefore the εNEES peak is low, meaning
that the value was coherent with the real height. The lower
accuracy shown in all methods is due to the fact of being
in an outdoor environment affected by light variations, and
also from the robots’ GPS high uncertainty (∼ 3m).

3A video of the experiments is available at
https://www.youtube.com/watch?v=OkoNYua5A9Y.
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Fig. 5: Results corresponding to the simulation with the spatial configuration a). Left: 3D target estimate (blue) of one of
the trackers for several DDSIF methods. The ground truth (red) and the confidence intervals (green) are also plotted. Right:
εNEES of one of the trackers for several DDSIF methods.
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Fig. 6: Results corresponding to the simulation with the spatial configuration d). Left: 3D target estimate (blue) of one of
the trackers for several DDSIF methods. The ground truth (red) and the confidence intervals (green) are also plotted. Right:
εNEES of one of the trackers for several DDSIF methods.

Method 2D-2D 2D - 3D 3D (UCoT)
X 1.714 0.685 1.146
Y 3.945 1.737 1.249
Z 0.116 0.660 0.555

εNEES 77.667 49.166 17.142

TABLE II: Field experiment. RMS error on the 3D target
estimate (meters) and εNEES for one of the trackers for
several DDSIF configurations.

VI. CONCLUSIONS

This paper proposes a multi-robot triangulation method as
a novel sensor to be combined with a decentralized stochastic
filter. The method was evaluated with simulations and field

experiments where a team of aerial and ground robots with
cameras performs a task of tracking a dynamic target.

The results from the simulations and the field experiments
show how the multi-robot triangulation allows to ensure a
correct filter initialization; furthermore, the method improves
the data association phase, discarding outliers, by means of a
probabilistic geometric validation. This leads to an improved
consistency of the filter. Finally, it is shown how this can be
integrated into a decentralized filter for cooperative tracking.

As future work, we intend to perform more extensively
field experiments with an improvement in the robot position
accuracy, by means of a Real-Time Kinematic GPS related
to a ground station. Another line of work will be focused
on active perception. The UCoT method is able to provide
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Fig. 8: Results corresponding to the field experiments. Left: 3D target estimate (blue) of one of the trackers for several
DDSIF methods. The ground truth (red) and the confidence intervals (green) are also plotted. Right: εNEES of one of the
trackers for several DDSIF methods.

the 3D estimated covariance between triangulated cameras,
and therefore, by changing the geometry between them, we
could reduce the uncertainty on the estimation and improve
the global perception of the fleet.
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