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Abstract— Most localization approaches do not take into
account the possibility of controlling the robot to improve the
perception, instead, the robot is just commanded with a prede-
fined path. Active sensing strategies may lead to more efficient
exploration and mapping approaches. The robot can adapt
its trajectory, avoiding for instance non-observable motions or
following those paths which are most informative. In the case
of Range-only Simultaneous Localization and Mapping (RO-
SLAM), this means selecting the path which is likely to produce
the highest reduction in the uncertainty on the landmarks’
positions. This paper proposes an active sensing approach able
to command the UAV to more informative areas from the RO-
SLAM point of view, allowing a faster filter convergence and
better mapping accuracy.

I. INTRODUCTION

Range-only SLAM (or RO-SLAM) is a metric SLAM that
aims to create a landmark-based map while at the same
time it localizes the mobile robot with respect that map
using range-only observations. In this case, landmarks are
the position of a set of fixed range-only sensors similar
to the visual landmarks used in Visual-SLAM but with
less informative observations (only distance between mobile
robot and landmark). This rank-deficiency of the observation
model associated to range-only observations might lead to a
flip ambiguity in RO-SLAM approaches. Thus, in that sense,
active perception techniques are able to reduce the amount
of uncertainty in the system to select the best hypothesis of
the landmark’s position.

Active sensing approaches are especially well suited for
ill-posed estimators such as RO-SLAM in the early steps
of the estimation where perception significantly depends
on the robot actions. In this case, there are many possible
localization hypotheses that can only be discarded based on
the robot trilateration at different positions. This paper solves
the problem by using the undelayed RO-SLAM approach
described in [1]. This implementation stores in a single
Extended Kalman Filter all possible landmark hypotheses
and updates their estimation as soon the robot moves to
a different position. As the approach is undelayed, the
measurements can be integrated into the filter since the
very first range data. However, the time required for the
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Fig. 1: Two examples of range-only localization. The aerial
robot receives range data from the beacon at different posi-
tions. Ellipses denote estimations over landmark position. (a)
Example of vertical flip ambiguity with constant altitude
trajectory. (b) Solved ambiguity when using a sinusoidal
vertical trajectory.

filter, no matter the approach, will always depend on the
robot trilateration. Actually there is a chance the estimation
will never converge to the correct position if the robot
trilaterates very poorly or that the filter converges to the
wrong hypotheses due to noisy observations.

Figure 1 illustrates the benefit of considering active sens-
ing strategies for RO-SLAM. In this figure, the robot trajec-
tory of Figure 1a converges in two hypotheses with very
similar uncertainty (bimodal distribution of the landmark
position). On the other hand, Figure 1b shows how adapting
the robot trajectory benefits the localization of the landmark.

Active perception techniques requires a metric about the
amount of uncertainty reduced when selecting a certain task
or action. One of the most common metrics is the gain
of information, for Bayesian approaches this gain might
be computed as the (expected) variation on the entropy
of the beliefs on landmarks’ position. An example of this
active sensing approach is used in [2], [3] or [4], [5] for
exploration and SLAM. In [6], active sensing strategies
are applied to the problem of tracking using only range
measurements, where the target is represented by a single
Gaussian. In [7] it is presented an active perception approach
which computes the amount of uncertainty that would result
after applying different available robot actions. This amount
of uncertainty is measured by analyzing the eigen values of
the new estimated covariance matrix at each the expected
robot location after each candidate action.

In this paper an active sensing approach is presented in
order to maximize the gain of information while the aerial
robot moves between waypoints. The paper extends previous
work [8] with a full 3D RO-SLAM for aerial robots. The
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Fig. 2: Combination of behaviors path tracking against explo-
ration behavior using a loose coupling system. The actions
of the path planner are weighted with a higher relevance
(see thickness of the arrows) with respect active perception
actions, making the system follow the initial planned path but
with small variations introduced by the exploration behavior
used to reduce RO-SLAM uncertainty.

approach is based on the selection of robot actions that
allows maximizing the gain of information while the robot
is moving. In order to integrate the active perception with
a local planner a loose coupling has been selected. The
approach has been implemented in C++ under ROS and
validated in simulations using a 3D environment simulator.

II. ACTIVE SENSING FOR IMPROVED 3D
RO-SLAM

The benefit of using an aerial robot to estimate the position
of a set of landmarks is the possibility to control its motion in
order to follow the most informative path. On the one hand,
from the set of possible motions of the robot, it should take
those that allows to estimate the position of the landmarks
more accurately. On the other hand, the robot should try to
avoid motions that decrease the observability of the landmark
position.

When using active perception techniques for a partic-
ular aerial robot mission, a common approach is to use
a combination of behaviors as shown in Figure 2. These
systems are based on a combination of tasks, each of them
with an associated cost function and a normalized behavior
weight which allows the system to select the action which
best fit the requirements of all behaviors according to their
priority. In this paper, two major tasks are considered: the
most important task is the tracking of a path given by a
local motion planner, the second task is the exploration
of the environment in order to map the position of a set
of radio beacons or landmarks. For the exploration of the
environment, the system computes the gain of information
when using a particular action. This gain of information is
estimated using the expected variation of entropy of the RO-

SLAM covariance matrix.

A. Brief summary of 3D RO-SLAM estimator

The RO-SLAM estimator used in this paper is based on a
multi-hypotheses fully centralized EKF approach presented
in previous work [1]. This method uses Gaussian Mixture
models to represent unobserved azimuth and elevation vari-
ables of landmarks position.

In order to make feasible the implementation of this
centralized multi-hypotheses filter, a reduced parametrization
of the state xt is proposed for robot xt

r and landmark f ti
states.

xt = [xt
r, f

t
1, f

t
2, . . . , f

t
m]T (1)

where f ti is the state of landmark i represented with reduced
parameterization:

fi = [xi, yi, zi, ρi, θi1, ..., θiN , φi1, ..., φiM ]T (2)

being ρi the initial distance between the robot and landmark i
when the first range observation has been received from robot
position xi, yi and zi. And θij and φij being the N azimuth
and M elevation hypotheses of the landmark respectively.

On the other hand, the RO-SLAM estimator also presents
an improvement with respect the Federated Information
Sharing approach used in [9], extended to 3D RO-SLAM.
The improvement consist on a reduced number of correction
equations of the filter as compared to Federated Information
Sharing approaches implemented in [10], [9]. This improve-
ment is based on the computation of the expected value of
the azimuth and elevation Gaussian Mixtures.

Additionally, to reduce the computational burden of the
multi-hypotheses estimator, some of the hypotheses are
pruned or merged as the filter converges to the final solution.

B. Entropy-based active sensing strategy

The key idea is to select the action that maximize the
reduction in entropy in the centralized EKF covariance
matrix. Thus, the robot should be actively moved to gain as
much information as possible. In order to do this, it is needed
to define a measurement of the information gain obtained
when executing a certain exploration action.

A common metric about the information of a probability
distribution is its associated entropy. The entropy H of a
probability distribution p(x) is defined as the expected value
of the information − log[p(x)]:

H(p(x)) = Ex[− log p(x)] = −
∫
p(x) log p(x)dx (3)

With this entropy definition, the information gain is de-
fined as the variation in the entropy of the distribution after
carrying a certain action ut. After the execution of this
action, the new distribution p(xt+∆t|ut, zt+∆t) is obtained
from the future measurement zt+∆t with an associated new
entropy value denoted by H(p(xt+∆t|zt+∆t,ut)).

Then, as the only parameter which can be controlled is ut,
the expected entropy should be computed for all potential



measurements zt+∆t obtained from this action. Therefore,
the expected information gain associated to action ut is
defined as:

∆(ut) = H(p(xt))− Ezt+∆t
[H(p(xt+∆t|zt+∆t,ut))] (4)

This metric can be used to chose the action that maximizes
the value ∆(ut).

C. Entropy of a Gaussian Mixture

The entropy, as defined in equation (3), can be obtained
analytically for certain distributions, including the Gaussian
distribution. However, there is no analytical solution for
the case of Gaussian Mixtures, defined by the following
equation:

fX(x) =

N∑
j=1

ωjN (x;µj , σj) (5)

One option is to numerically integrate (3), for instance us-
ing Monte Carlo methods. However, this is computationally
demanding, as a high number of samples may be required
(the accuracy depends on the number of samples). The
proposed approach uses upper bounds of the entropy as an
approximation to the actual entropy value. Thus, instead of
analyzing the expected variation using the analytical solution
for a particular action, the expected variation of the entropy
bound will be considered.

In [11], an analytical solution is derived to the Gaussian
Mixtures entropy along to an upper and lower bound ap-
proximation. For active sensing approaches it is of particular
interest the upper bound of the entropy, which might be
computed for a Gaussian Mixture in a very cheap way as:

H(f(x)) ≤
∑
i

ωi(− logωi +
1

2
log((2πe)N |Σi|)) (6)

for x of dimension N .
Moreover, this bound is exact when only one hypothesis

remains, or when the hypotheses are separated. Therefore, a
possible strategy is to compare actions taking into account
how they affect not the entropy itself, but the upper bound.
While in theory a decreasing in the bound could not reflect on
a decreasing of the actual entropy, in the experiment section
it will be seen that the procedure is effective reducing the
actual entropy of the distributions.

D. Active sensing architecture

The robot considered here is an aerial vehicle. The vari-
ables controlled by the local planner are the linear velocity
v of the robot, the azimuth θ and the elevation φ angle. As
previously introduced, the robot makes use of a loose cou-
pling system able to merge two or more motion behaviors.
Each motion behavior send the motion votes that satisfy its
objectives to a centralized arbiter (as in [12]) that merges
them and take the action that better satisfy all the behaviors
in the system. This combination associates a set of weights
for all the potential contributions of the different behaviors.

Algorithm 1: Active perception algorithm
Data: p(xt), ∆t
Result: (∆(θi),∆(φj))

1: Θ = {θ1, · · · , θi, · · · } A set of M orientations
2: Φ = {φ1, · · · , φj , · · · } A set of N orientations
3: Ht ←entropy (p(xt))
4: for all θi ∈ Θ do
5: for all φj ∈ Φ do
6: rt+∆t ← predict robot (rt, θi, φj ,∆t)
7: for all (µk,Σk) in f(xt) do
8: zt+∆t ← simulate measurement(rt+∆t, µk,Σk)
9: p(xt+∆t|zt+∆t)← update (p(xt), zt+∆t)

10: Hi,j,k ← entropy (p(xt+∆t|zt+∆t))
11: end for
12: ∆H ← Ht −

∑
k Hi,j,k

K
13: ∆(θi)← ∆(θi) + ∆H
14: ∆(φj)← ∆(φj) + ∆H
15: end for
16: end for
17: Normalize ∆(θi)
18: Normalize ∆(φj)

Algorithm 1 shows the strategy to compute the votes
associated to the active sensing behavior. Only the azimuth
θ and the elevation φ angles will be considered, which are
discretized into a set of M azimuth values {θ1, · · · , θL}
and N elevation values {φ1, · · · , φN}. For each potential
angle (θi, φj) it is possible to predict the future position
of the robot for a certain time horizon ∆t. At that future
position, the potential range measurements to the known
landmarks are considered. The basis of the algorithm is
given by lines 8, 9 and 10. Within the for loop, each
hypothesis within the Gaussian mixtures about the position of
the known landmarks is considered correct, and an artificial
measurement zt+∆t is simulated for that hypothesis at line
8. Then, the filter described in [1] is applied by the function
update to estimate the future belief, and the upper bound
of the entropy (6) is computed.

The final expected information gain is computed as the
mean of these entropies. That is, taking the expectation with
respect to all the potential measurements, which corresponds
to the second term of the right hand side of (4).

Although not depicted in Algorithm 1, the final algorithm
applies the same operation for all the currently known
beacons that are within communication range. Therefore, the
final vote ∆(θi) and ∆(φj) for a particular action is the sum
of the variations of the entropy for each of these beacons.

The final votes for all elevation and azimuth angles are
normalized. These votes are then combined with the votes
indicated by other behaviors. Figure 3 shows an example of
particular interest. It shows how the strategy not only can
lead to reductions on the uncertainty, but also to avoid non-
observable motions, like straight lines. In this example, it
can be seen how there are two symmetric entropy variation
maxima.



III. RESULTS

The approach presented in this paper is tested in simu-
lation, where it can be assured that sensor data and UAV
actions can be under control. The whole active sensing archi-
tecture has been implemented in C++ using ROS. Actually,
the same sensors used in other experiments for [13], [1],
[14] are used, but with the difference that sensor data are
artificially created based on the known position of the UAV
and the range sensors. On the other hand, UAV dynamics
are emulated based on ROS-GAZEBO 3D models. Range-
only sensor data are modeled taking into account outliers,
Gaussian noise, bias, etc.

For this particular implementation the prediction interval
∆t has been set to 2s. Small values of ∆t are discarded
because landmark trilateration is almost not affected (for
medium UAV velocities) when UAV traverses short dis-
tances. On the other hand, much longer periods result in
inaccuracies due to EKF linearizations. Thus, ∆t = 2s is a
compromise between efficiency and accuracy.

The UAV was commanded to follow a given trajectory
based on waypoints. As previously presented, the active
approach will modify the desired elevation and azimuth
angles in order to maximize the gain of information. The
trajectory commanded to the UAV and the active actions
resulted from the approach are presented in Figure 3. It can
be seen how the active perception systems tends to move
the UAV around the predefined path in order to gather more
information of the range landmarks. From a theoretical point
of view, the active perception system should force the UAV to
move to positions that increase the trilateration with respect
the sensor landmarks.

The improved trajectory resulted in a better trilateration
of the sensor landmarks and, hence, better estimation of
the map. Figure 4 shows the estimated landmark position
error with respect the ground-truth when active perception
is considered and compared without it. It can be seen in
the figure how the average error in the landmark position
is clearly reduced, although the individual errors of some
landmark position are larger without active perception. This
effect is mainly produced by the approach itself that tries
to improve the information gain globally, which might end
with worst errors for individual landmarks in favor of a better
global map error.

The active perception approach has also impact in the
convergence time needed by the SLAM approach to reach
single hypothesis representation for each beacon in the map.
This is consistent with the theory because a better trilatera-
tion helps to remove inconsistent hypotheses and, hence, it
should provide faster convergence time. The evolution on the
number of beacons hypotheses in the SLAM filter is shown
in Figure 5 with and without active perception. It can be
seen how the number of hypotheses converges to single faster
with active perception, the average convergence time without
active perception is 40s (since the landmark is discovered)
while with active strategies it is reduced to 26s.
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Fig. 3: UAV trajectory with (red) and without (blue) active
perception. (Top) XY trajectory. (Bottom) Z trajectory

IV. CONCLUSIONS

Most of localization approaches do not take into account
the possibility of controlling the robot to improve the percep-
tion, instead, the robot is just commanded with a predefined
path. This paper has presented an active perception approach
based on a loose coupling system used to fuse different robot
behaviors. In this case the system is based on path tracking
and exploration behaviors.

The active perception technique proposed in this paper
is aimed to reduce the uncertainty of the map belief. The
method is based on an action selection technique that uses the
entropy of the SLAM belief to compute the estimated gain
of information which turns out from each possible action.
The set of actions considered in this approach are based on
a fixed speed and a set of azimuth and elevation velocity
angles between which the system must take a decision to
reduce the map uncertainty.

In order to compute the gain of information, the system
needs to compute the entropy of landmarks belief. However,
this entropy is computationally inefficient for Gaussian Mix-
ture distributions. For this reason, this paper proposes to use
a upper bound of the entropy which is sufficient to select the
action with a higher gain of information.



0 50 100 150 200 250 300 350 400 450 500
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Time(sec)

Er
ro

r (
m

et
er

s)

Absolute error (Euclidean distance)

 

 
B2− H13: Horz.Error: 0.13926, Vert.Error: 1.2092, Abs.Error: 1.2172
B4− H13: Horz.Error: 0.021874, Vert.Error: 0.00456, Abs.Error: 0.022344
B22− H2: Horz.Error: 0.079067, Vert.Error: 0.18142, Abs.Error: 0.1979

0 50 100 150 200 250 300 350 400 450 500
0

1

2

3

4

5

6

Time(sec)

Er
ro

r (
m

et
er

s)

Absolute error (Euclidean distance)

 

 
B2− H18: Horz.Error: 0.2189, Vert.Error: 0.113, Abs.Error: 0.24634
B4− H17: Horz.Error: 0.077555, Vert.Error: 0.66523, Abs.Error: 0.66974
B22− H1: Horz.Error: 0.31274, Vert.Error: 0.29489, Abs.Error: 0.42984

Fig. 4: Evolution of the absolute localization error of every
sensor landmark in the experiment. (Top) Estimation without
active perception (Bottom) Estimation with active perception.

The paper ends showing simulation results of the method.
These results proves how the system improves the conver-
gence of hypotheses while at the same time allows to get a
better accuracy in the mapping results.
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