
Bioinspired Vision-only UAV Attitude Rate Estimation using Machine
Learning*

M. Mérida-Floriano1, F. Caballero2, D. Garcı́a-Morales 3, F. Casares 3 and L. Merino1

Abstract— This paper presents a bioinspired system for
attitude rate estimation using visual sensors for aerial vehicles.
The sensorial system consists of three small low-resolution
cameras (10x8 pixels), and is based on insect ocelli, a set of
three simple eyes related to flight stabilization. Most previous
approaches inspired by the ocellar system use model-based
techniques and consider different assumptions, like known light
source direction. Here, a learning approach is employed, using
Artificial Neural Networks, in which the system is trained to
recover the angular rates in different illumination scenarios
with unknown light source direction. We present a study using
real data in an indoor setting, in which we evaluate different
network architectures and inputs.

I. INTRODUCTION

In the last decade impressive demonstrations [1], [2] have
shown the potential of Micro-Aerial Vehicles (MAVs, aerial
vehicles between 0.1 and 0.5 meters and 0.1-0.5 kg. in mass).
They may open up a new plethora of applications for aerial
robotics, both in indoor and outdoors scenarios.

The main basic functionalities that are required for the
application of aerial autonomous platforms are low-level
stabilization and waypoint navigation, including obstacle
avoidance (sense and avoid). Most of the current outdoor
solutions rely on GPS receivers and inertial measurement
units (IMUs) for navigation and control. Sense-and-avoid can
be implemented using vision sensors, radar or LIDAR-based
rangefinders, although there are still not mature solutions for
obstacle avoidance. However, many of the current solutions
can only be applied to large unmanned aerial systems. Most
current systems for MAVs rely on external sensing and
computing, using a VICON or similar motion capture system
and carrying out most of the processing externally. The
very limited payload of the small/micro vehicles imposes
constraints on the kind of sensors and processing power that
can be carried on board, and thus, limits the autonomous
capabilities of these vehicles [1].

Regarding sensing, vision systems offer a promising al-
ternative, as cameras are low-power passive sensors and
can be made small. Vision-based procedures have been
proposed for odometry [3], [4], [5], localization [6], [7], [8],

*This work was supported by MINECO (Spain) grant OCELLIMAV
(TEC-61708-EXP)

1M. Mérida-Floriano and L. Merino are with School of Engineering,
Universidad Pablo de Olavide, Seville, Spain {mmerflo,lmercab}
at upo.es

2F. Caballero is with the Department of Systems Engineering and
Automation, University of Seville, Spain fcaballero at us.es

3D. Garcı́a-Morales and F. Casares are with Department of Gene Regula-
tion and Morphogenesis, CABD, CSIC and Universidad Pablo de Olavide,
Seville, Spain {dgarmor,fcasfer} at upo.es

Fig. 1. Left: Head of the Cortunotum helvum. The two compound eyes
are at the sides of the picture, while the three ocellar sensors can be seen
at the bottom, center. Right: close-up view of the three ocelli.

mapping [9] and navigation [10]. All these vision systems
are computationally demanding and require large onboard
processing power, though.

On the other hand, it is very impressive the maneuver-
ability that flying insects like flies can achieve with their
very small payloads. Gaze fixation and flight stabilization
are functions contributed by two types of visual organs (see
Fig.1): the compound eyes and the ocelli (and in the case
of dipterans flies- also by small gyroscopes, the halteres).
Compound eyes are large, formed by clustered arrays of
unit eyes and inform the insect mostly about motion, size
and color and light polarization vector. Their processing
neuropiles are large and, in terms of neuronal diversity,
comparable to those in the mammalian retina. Conversely,
the three ocelli found on the forehead of most insects are
small, structurally simple camera type eyes. Their large
lens makes them extremely sensitive light sensors while, by
focusing beyond the retina, blur the image. Compared to
the compound eyes, ocelli, with their large convergence and
direct connection with motor centers, are capable of very
quick visual processing to trigger swift stabilization reflexes
[11], [12].

The remarkable maneuverability of flying insects is the
reason why several authors have looked for bio-inspired
solutions for the development of new sensors and/or actuators
for micro aerial vehicles and even pico-aerial vehicles, like
[13], [14], [15]. However, most of these works have been
devoted to the development of artificial compound-like eyes.

The insect ocelli system offers an interesting alternative.
And several approaches inspired on the ocellar system have
been also proposed in the literature. In [16], the authors
present a device based on the ocellar system using 8 pho-
todiode pairs tuned for the ultraviolet and green parts of
the light spectrum. The device is used for flight stabilization



with respect to the horizon. The outputs of the photodiodes
are used to obtain a reference signal for the stabilization. In
[17], the ocellar sensors are modeled as sensors providing
an estimation of time derivatives of scalar luminance values.
Then, system identification techniques are used to derive a
linear relation between the ocelli inputs and robot states.
They conclude that there is a relation between the ocellar
input and roll and pitch angular rates, as well as heave
rate. This is then used to develop an analog angular rate
sensor based on photodiodes. A similar sensing approach is
followed in [18], where an ocelli-inspired flight stabilization
system has been implemented on a bee-sized flying robot.
The addition of a torque controller based on a proportional
feedback to the estimated angular velocity has sufficed to
stabilize the upright orientation of the system.

The previous ocelli-inspired approaches disregard the spa-
tial information of the ocelli simple eyes, and in some cases
[18] some assumptions are needed with respect to the light
source direction. On the contrary, in [19], linear receptive
fields are optimized from data to obtain the relation between
the sensorial input of simulated insect-like eyes and attitude
angles. Here we follow a similar approach, but estimating
angular rates instead, and learning neural network maps from
the emulated ocellar inputs using data. In particular, we lever-
age the capabilities of Deep Neural Networks (DNNs), which
have been shown to be very successful for visual information
processing and has been even used for applications of robot
estimation control [20], [21].

The paper is organized as follows. Next section briefly
summarizes the ocelli morphology in Drosophila and de-
scribes a hardware setup based on cameras inspired by
this. Next, we describe the artificial network architectures
considered in Section III. Section IV evaluates the different
architectures using datasets obtained in indoor environments.
The paper ends with a discussion and lines for future work.

II. HARDWARE SETUP

A hardware setup has been conceived to emulate the
Drosphila’s Ocelli as a computer vision sensor. It is shown
in Fig.2. As commented above, the three ocelli found on the
forehead of most insects (see Fig.1) are small, structurally
simple camera type eyes. Their large lens makes them
extremely sensitive light sensors while, by focusing beyond
the retina, blur the image. There are two lateral ocelli and one
median ocellus, oriented around 30-40 over the horizontal.
In Drosophila, our insect model, each ocellus comprises 40
photoreceptors (PRs).

The setup consists of three small cameras spatially dis-
tributed according to the geometry of Drosphila’s Ocelli. To
emulate the biological system, the images are downsampled
so that 80-pixel images are gathered per camera. The optics
were also chosen to have a wide field of view in each camera
as in the biological sensor.

An inertial measurement unit (IMU) has been attached to
the camera setup in order to have a ground-truth of angle
rate. The sensor integrates a three-axis gyroscope, a three-
axis accelerometer and a tree-axis magnetometer to obtain a

Fig. 2. Hardware setup. Three cameras are disposed at angles. An IMU is
used to gather attitude ground truth data. Also, visual markers for a motion
capture system can be seen. These are used for positioning ground truth
data, not used in this paper.

smooth and bias-free angle rate. These rates will be used in
Section IV to train the different neural network approaches
proposed and also as ground-truth for validation.

The camera setup has been also equipped with a set of
passive infrared markers. These markers are used by a motion
tracking system to estimate the 6DoF position of the camera
system to double check the IMU orientation. The camera
position information will be also used in future work as
ground-truth for linear velocity estimation of the cameras,
but it is not used in this research work.

All the previous information have been captured and
recorded using Robot Operating System (ROS) [22]. Thus,
for every image triplet (left, right and front cameras in Fig.2)
we have its associated position, orientation and rotation rate.

Finally, it is worth to mention that the camera frame rate is
fixed at 30Hz. While this is not a major problem for smooth
rotations, this frame rate limits the maximum rotation rate the
cameras can sense because the proposed models are based on
the temporal analysis of the images. However, this limitation
does not invalidate the approach itself because faster low
resolution cameras can be easily found in the market.

III. LEARNING TO ESTIMATE ANGULAR RATES USING
ARTIFICIAL NEURAL NETWORKS

In this section we describe the method to estimate the
angular rates from the images captured by the system de-
scribed above. We focus on angular rates as they can be
used for flight stabilization. Also, previous works like [17],
[18] point to the relation between ocellar inputs and angular
rates.

Differently from those works, we follow here a model-
free approach. We apply a learning approach, in which we
estimate a mapping between the image inputs and the angular
rate outputs. In particular, we employ artificial neural net-
works (ANNs). We examine two different kinds of artificial
neural networks: a multi-layer perceptron network (hence-
forth MLP) and a deep neural network (DNN), including
convolutional neural network layers (CNNs) with some fully-
connected layers.



Fig. 3. Proposed multi-layer perceptron. The input is a vector with the
derivatives of the pixels values for the three images (240 values). The first
and second hidden layers have ReLU as activation function, g(1) and g(2).
The output layer has 3 units that computes the three angular velocities with
a g(3) = linear activation function.

A. Inputs and targets

The system of Section II provides gray-scale images with
a resolution of 320x240 pixels, one image per camera; that
is, we have three images at time t. As commented, the images
are downscaled and blurred through bilinear downsampling
to approximate the vision of Drosophila through the Ocelli.
We downsample the images through bilinear filtering 5
scales, obtaining thus 3 images of 10x8 pixels dimensions
(80 PRs).

These images are the inputs to the network. We will
analyze different input structures, depending on how these
inputs are organized and processed. These inputs structures
are classified as:

• Networks in which the inputs are directly the pixel
values of the downsampled images (we denote this
structure as pixels), or the derivative of the values of
the pixels (we denote this structure as derivatives)

• Networks in which the three images are processed by
different layers and then combined at a later stage
(denoted 3 inputs networks) and networks in which
the three images are processed jointly by the network
(1 input networks)

The time derivative of the pixels is approximated by the
difference between the value of the pixel at time t and time
t-1.

The objective of our neural networks is to recover the
angular velocities on the three axes, ωx, ωy, ωz , only with
the information of the three cameras. Thus, at time t we have
three inputs images which correspond to a vector with three
angular velocities, our targets. These velocities have been
obtained with the inertial measurement unit (IMU) located
on the base of our device (see Fig. 2).

B. Neurals Networks

1) Multi-layer perceptron:
The Multi-layer perceptron is a feedforward neural network
with several layers (one input layer, at least one hidden layer
and one output layer), each one fully-connected to the next

Fig. 4. Convolutional Neural Network with one input and raw pixel values.
The first three channels correspond to the left camera, right camera and
frontal camera images at time t respectively; the last three channels are the
three images at time t-1.

one. Each direct connection between units is represented by
a weight (Wji) that propagates the output or activation of
unit j to unit i in the next layer. The units of a layer share
the same activation function which, applied to a weighted
sum of the inputs of the layer, calculates the corresponding
output or activation of that layer.

The proposed network follows the structure presented in
Fig.3. The information of the three cameras is assembled
into a single input vector; thus, in each sample the network
takes one structure of 240 values (80 elements x 3 images).

The inputs of the network are the derivatives of the pixel
values of the three cameras (240 values). We discarded the
use of raw pixels because in this case we would need 480
inputs (240 x 2 images), and, hence, a significant number of
parameters.

2) Convolutional neural network:
The CNNs architectures developed in this paper are similar to
the architecture of AlexNet network [23]. In these networks
we combine convolution layers with pooling layers and a
fully-connected network. One of the advantages of CNNs
over MLP networks working with images as inputs is the fact
that convolution layers are able to extract constant features
from inputs. A convolutional layer is compound of kernels
or filters with a certain dimension (mostly depending on
the input resolution). These filters convolve with different
receptive fields on the input, going all over the image. Thus,
each convolution layer unit receives the information of a
small region of the previous layer with the kernel size.
The result of a convolution operation is a feature map that
can detect a particular spatial aspect (edges, corners, etc.).
Combining several convolution layers the network is able to
extract higher-order features.

The ability to extract patterns from images is the reason
for analyzing the response of the network depending on the
nature of the inputs we insert. By introducing the pixels
inputs at time t and time t-1 the network learns temporal and
spatial features of interest.

We will train two main architectures of CNN: 1 input
architecture (see Fig.4) and 3 inputs architecture (see



Fig. 5. Convolutional Neural Network with three inputs and raw pixels.
The first channel of each input corresponds to the respective image at time
t; the second channel is the image at time t-1.

Fig.5). The difference between both architectures mostly
resides in the way the inputs are processed. In the case
of 1-input networks taking pixels as inputs, the input
depth is set to 6; the first three channels are the three camera
images (left, right and front) at time t and the three last
channels are the cameras at time t-1. Taking derivatives
as inputs, the depth input is set to 3, where each channel is
a image time derivative (the first one for the left camera,
the second one for the right camera and the last one for the
frontal camera).
3-input networks has three inputs, one for each camera

(Fig.5). The input depth is 2 when inputs are pixels, where
the first channel image corresponds to time t and the second
channel to time t-1. Taking derivatives inputs, each
input receives an image with only one channel, the image
time derivative of the corresponding camera.

To study the networks’ internal parameters, three CNN
are trained in each case. These three variants are chosen
to examine two characteristics of the network: its depth
(number of layers) and its width (number of units in each
layer):

a) First structure (a1): This net contains several layers
(convolutional and fully-connected) to study the network
depth (Fig.5, case with 3 inputs architecture). For each
input, two convolutional layers with 50 filters and 3x3 kernel
are applied consecutively, separated by a dropout layer. The
output of each processed input are merged using an additive
layer and passed to a single 20 filters convolutional layer
with a 1x1 kernel. The output of this layer are the inputs
of a fully-connected network with 50units-50units-20units-
3units.

b) Second and third structure (a2, a3): With these
two structures we study the network width. Both of them
share the convolutional layers’ parameters: a convolution
layer with 40 filters and 2x2 kernel, a 2x2 pooling and a
20 filters convolution layer with 2x2 kernel. Structure a2
presents a fully-connected part with 100units-50units-3units,

Fig. 6. Some examples of images gathered by the front camera during the
experiment. It can be seen how images were taken at different illumination
conditions. These images are downsampled to 10x8 before input the neural
networks

whereas structure a3 has a less complex MLP network:
30units-15units-3units. In 3 inputs architecture, a merge
layer is applied after pooling layer.

Hence, in this paper we analyze 12 CNNs: these three
structures with 1 input and 3 inputs architectures tak-
ing pixels and derivatives as inputs.

IV. EXPERIMENTS

In this section, we evaluate the capabilities of the previous
network architectures to recover the angular rates from the
input images.

A. Experimental setup and datasets

A set of experiments have been conceived to both train
and validate the different networks proposed in this paper.
To this end, a total of 14 datasets have been recorded, all of
them indoor. During the experiments, all sensor information
detailed in Section II was gathered.

The three cameras were setup to have exactly the same
internal parameters (gain, shutter, etc). These parameters
remained the same in all the dataset experiments to avoid
affecting the learning process.

Each dataset was captured at different positions, including
two different rooms and one corridor. In addition, the lighting
conditions were modified from one test to the other by clos-
ing/opening windows or turning on/off lights in the rooms
(see Fig.6). Special care was taken to record information
with the light sources at different positions and orientations,
so that the system is able to generalize to every position.

The experiments are composed by pure rotations, pure
translations, combined motions (rotation+translation) and
steady periods. All the motions are performed with the
camera system on hand. Although the objective of this
research work focuses on the rotation rate estimation, linear
velocities were also considered into the datasets to improve
the learning process.



As a whole, the dataset is composed by 33229 samples,
captured at approximately 30 Hz. Each sample integrates
the images from the three cameras (inputs) and the rotation
rate from the IMU (targets). In addition, one experiment
composed by 2127 samples was reserved for validation
purposes.

B. Training

We implement the networks using Python and the Keras
library [24]. The learning algorithm used to train the net-
works is the Adaptive Moment Estimation (Adam), an algo-
rithm for first-order gradient-based optimization. It has been
demonstrated the effectiveness of Adam over other stochastic
first-order methods on MLP and CNN [25]. We use the mean
squared error (MSE) between outputs and targets as the loss
function for the training phase.

Each learning process takes 200 epochs with a batch size
of 100 samples. Unless otherwise specified, fully-connected
layers have ReLU as activation function, except the output
layer, which computes the outputs of the network with linear
activation.

Finally, a 20% dropout layer [26] was included after every
convolutional or fully connected layer (except for the output)
to prevent the computed neural networks from overfitting.

C. Evaluation

Here we evaluate the results of each tested architecture.
After the training process, we validate the model with a
set of 2127 samples not used in the training (test set).
This set is performed with the device on a hand doing
different movements, that is the reason we expect some slight
vibrations on the data set targets. Approximately, the first 400
samples the device stays in repose. Then, firstly approximate
pure rotations are performed around the Z axis from 400
samples to 900 samples. After that, from 900 samples to
1200 samples, the rotation is performed around the Y axis.
Rotations around the X axis come from 1200 samples to
1500 samples. The last movement, around 1500 samples to
2050 samples, is a rotation around the three axes.

We use the mean squared error (MSE) between the es-
timated angular rate and the known targets as metric to
compare the fitness of the different trained networks. In order
to quantifying the kindness of the MSE, the standard error of
the mean (SEM) is calculated. Thus, we are able to compare
the learning results contrasting the MSE and SEM of each
network.

D. Learning results

1) MLP network:
The MLP network with derivatives presented in Section
III was implemented and trained using the datasets and
configurations previously introduced. Different architectures
have been trained, as wider hidden layers (up to 500 neurons)
and deeper structures (up to 3 hidden layers).

Table I summarizes the MSE and SEM for the different
MLP architectures. The architectures are represented by
the number of neurons for each layer. It can be seen that

TABLE I
MLP WITH DERIVATIVES TEST ERRORS

MLP Architecture MSE (rad2/s2) SEM (rad2/s2)
35-20-3 0.4682 0.0227

75-50-3 0.4163 0.0202

150-75-3 0.4052 0.0212

300-150-3 0.4047 0.0196

300-300-3 0.3937 0.0197

300-500-3 0.3863 0.0186

300-500-200-3 0.3733 0.0204

the errors for all MLP tested are significant. Adding more
neurons allows reducing the errors, the best MSE obtained
over the validation dataset was 0.37 rad2

s2 .
The MLP architecture with pixels provides even worst

results, this is way it was not considered in this paper as
an option.

In general, the obtained errors led the authors to think
that the proposed MLP architectures are not able to properly
generalize. This drawback invalidates the use of the proposed
MLPs for angular rate estimation.

2) Convolutional Network:
Learning results of the twelve convolutional networks trained
are presented in Table II. In general, networks with pixels
inputs provide lower loss over the test set than networks
trained with derivatives inputs. That means that better
results are obtained letting the convolution layers extract also
temporal patterns. As for the internal structure, it is shown
that a3 networks behave worse in all cases. This points that
certain complexity in the network is required to obtain a good
result, so that it is needed a wider fully connected network
(more number of units per layer). Using derivatives
inputs, structure a1 stands out, whereas introducing pixels
inputs structure a2 gives better results. Depending on the
network structure and its inputs, 3 inputs networks and
1 input networks obtain different results, so we can obtain
no conclusion with respect to the structure of the inputs.

The worst trained network presents a 3-input architec-
ture with a3 internal structure and derivatives as inputs,
providing a MSE of (0.291±0.013) rad

2

s2 over the validation
data set.

In contrast, the best fitting convolutional network trained
is the one taking pixels inputs, with an architecture of 3
inputs and an internal structure a3 (i.e 100units-50units-
3units in its fully-connected part) which provides a train
loss of (0.0403 ± 0.0005) rad

2

s2 and a loss over the test set
of (0.15201 ± 0.006) rad

2

s2 . Henceforth we refer to this best
fitting CNN as the network.

A subset of the estimated and real angular rate obtained
with the network over the training set in the three axes is
shown in Fig.7, where the network has learnt a wide range
of movements.

E. Validation

In order to examine the generalization of the network the
validation data set processed by the best trained network and



TABLE II
CNN LEARNING RESULTS

Architecture 1 Input 3 Inputs

Inputs Pixels Derivatives Pixels Derivatives

Structure a1 a2 a3 a1 a2 a3 a1 a2 a3 a1 a2 a3

Train loss:
MSE (SEM)
(rad2/s2)

0.0547
(0.0006)

0.0743
(0.0010)

0.0968
(0.0011)

0.0678
(0.0010)

0.1042
(0.0015)

0.1514
(0.0020)

0.0449
(0.0006)

0.0403
(0.0005)

0.0868
(0.0011)

0.0690
(0.0010)

0.1038
(0.0015)

0.1424
(0.0020)

Test loss:
MSE (SEM)
(rad2/s2)

0.199
(0.008)

0.178
(0.008)

0.208
(0.009)

0.260
(0.014)

0.280
(0.013)

0.282
(0.013)

0.176
(0.008)

0.152
(0.006)

0.177
(0.007)

0.190
(0.009)

0.290
(0.014)

0.291
(0.013)

Fig. 7. Targets and outputs temporal evolution in X-Y-Z axes for a subset
of the training data. 3 inputs CNN with pixels values

the estimated response is studied in each axis. The qualitative
comparison between the outputs of the network and the
known targets for the validation set is shown in Fig.8.

The mean squared error between estimated and real angu-
lar rate for each axis and their respective standard errors are
presented in Table III. With a MSE of (0.082± 0.004) rad

2

s2

the Y axis (corresponding to roll in our setup) is the best
estimated axis, followed by X axis (corresponding to pitch)
with a MSE of (0.144±0.006) rad

2

s2 , and (0.230±0.009) rad
2

s2

on Z axis (yaw), the worst estimated angular rate. The poorer

Fig. 8. Targets and outputs temporal evolution in X-Y-Z axes for the
validation set. 3 inputs CNN with pixels values.

estimation in the yaw rate is in accordance to other results
from the literature [17], [18].

V. CONCLUSIONS

This paper has presented a vision-based system for attitude
rate estimation for its application in aerial vehicles. The
system, inspired by insect ocelli, is based in three small low-
resolution cameras. Using a learning approach, the system is
able to recover the angular rates from vision-only inputs.

Different ANN architectures have been evaluated. As



TABLE III
3 INPUTS CNN WITH PIXELS ERRORS

Axis MSE (SEM) (rad2/s2)
X 0.144 (0.006)

Y 0.082 (0.004)

Z 0.230 (0.009)

expected, the behavior of CNNs clearly surpasses that of
MLPs. Furthermore, using directly the pixels as inputs leads
to better results, as the system also learns relevant temporal
features. The system is more accurate recovering roll and
pitch rates than yaw rates, which is in accordance to the
literature considering similar systems [17], [18].

The presented sensor setup and learning-based architecture
is a first step. As future work, we plan to evaluate the capabil-
ities of the system in estimating translational velocities, and
the ability to close control loops. While small cameras have
been used, the same architecture can be employed for faster
cameras or systems based on matrices of photodetectors.
Also, the ocellar system is related in insects to fast avoidance
responses. The system opens the possibility of end-to-end
learning of navigation behaviors.

Future work will also consider extending the current
database for learning with outdoor experiments. This ex-
tended database will be released and open to the public
to help the research community to develop new machine
learning approaches for UAV attitude estimation.

REFERENCES

[1] V. Kumar and N. Michael, “Opportunities and challenges with
autonomous micro aerial vehicles,” The International Journal of
Robotics Research, vol. 31, no. 11, pp. 1279–1291, 2012. [Online].
Available: http://dx.doi.org/10.1177/0278364912455954

[2] D. Floreano and R. J. Wood, “Science, technology and the future of
small autonomous drones,” Nature, vol. 521, no. 7553, pp. 460–466,
2015.

[3] F. Caballero, L. Merino, J. Ferruz, and A. Ollero, “Vision-based
odometry and slam for medium and high altitude flying uavs,” Journal
of Intelligent and robotics systems, vol. 54, pp. 137–161, 2009.

[4] S. Weiss, M. W. Achtelik, S. Lynen, M. Chli, and R. Siegwart,
“Real-time onboard visual-inertial state estimation and self-calibration
of mavs in unknown environments,” in 2012 IEEE International
Conference on Robotics and Automation, May 2012, pp. 957–964.

[5] M. Li and A. I. Mourikis, “High-precision, consistent ekf-based
visual-inertial odometry,” The International Journal of Robotics
Research, vol. 32, no. 6, pp. 690–711, 2013. [Online]. Available:
http://dx.doi.org/10.1177/0278364913481251

[6] L. Merino, J. Wiklund, F. Caballero, A. Moe, J. R. M. De Dios, P.-E.
Forssen, K. Nordberg, and A. Ollero, “Vision-based multi-uav position
estimation,” IEEE Robotics & Automation Magazine, vol. 13, no. 3,
pp. 53–62, 2006.

[7] S. Weiss, D. Scaramuzza, and R. Siegwart, “Monocular-slam–based
navigation for autonomous micro helicopters in gps-denied environ-
ments,” Journal of Field Robotics, vol. 28, no. 6, pp. 854–874, 2011.

[8] A. Amor-Martinez, A. Ruiz, F. Moreno-Noguer, and A. Sanfeliu,
“On-board real-time pose estimation for uavs using deformable visual
contour registration,” in Robotics and Automation (ICRA), 2014 IEEE
International Conference on. IEEE, 2014, pp. 2595–2601.

[9] M. Pizzoli, C. Forster, and D. Scaramuzza, “Remode: Probabilistic,
monocular dense reconstruction in real time,” in 2014 IEEE Interna-
tional Conference on Robotics and Automation (ICRA), May 2014, pp.
2609–2616.

[10] S. Hrabar, G. S. Sukhatme, P. Corke, K. Usher, and J. Roberts,
“Combined optic-flow and stereo-based navigation of urban canyons
for a uav,” in 2005 IEEE/RSJ International Conference on Intelligent
Robots and Systems, Aug 2005, pp. 3309–3316.

[11] M. Mizunami, “Functional diversity of neural organization
in insect ocellar systems,” Vision Research, vol. 35,
no. 4, pp. 443 – 452, 1995. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/004269899400192O

[12] H. G. Krapp, “Ocelli,” Current Biology, vol. 19, pp. 435–437, 2009.
[13] F. L. Roubieu, J. R. Serres, F. Colonnier, N. Franceschini, S. Viollet,

and F. Ruffier, “A biomimetic vision-based hovercraft accounts for
bees complex behaviour in various corridors,” Bioinspiration &
Biomimetics, vol. 9, no. 3, p. 036003, 2014. [Online]. Available:
http://stacks.iop.org/1748-3190/9/i=3/a=036003

[14] D. Floreano, R. Pericet-Camara, S. Viollet, F. Ruffier, A. Brckner,
R. Leitel, W. Buss, M. Menouni, F. Expert, R. Juston, M. K.
Dobrzynski, G. LEplattenier, F. Recktenwald, H. A. Mallot,
and N. Franceschini, “Miniature curved artificial compound
eyes,” Proceedings of the National Academy of Sciences,
vol. 110, no. 23, pp. 9267–9272, 2013. [Online]. Available:
http://www.pnas.org/content/110/23/9267.abstract

[15] J. C. Zufferey and D. Floreano, “Fly-inspired visual steering of an
ultralight indoor aircraft,” IEEE Transactions on Robotics, vol. 22,
no. 1, pp. 137–146, Feb 2006.

[16] J. Chahl and A. Mizutani, “Biomimetic attitude and orientation sen-
sors,” IEEE Sensors Journal, vol. 12, no. 2, pp. 289–297, Feb 2012.

[17] G. Gremillion, J. S. Humbert, and H. G. Krapp, “Bio-inspired
modeling and implementation of the ocelli visual system of flying
insects,” Biological Cybernetics, vol. 108, no. 6, pp. 735–746, 2014.
[Online]. Available: http://dx.doi.org/10.1007/s00422-014-0610-x

[18] S. B. Fuller, M. Karpelson, A. Censi, K. Y. Ma, and R. J.
Wood, “Controlling free flight of a robotic fly using an onboard
vision sensor inspired by insect ocelli,” Journal of The Royal
Society Interface, vol. 11, no. 97, 2014. [Online]. Available:
http://rsif.royalsocietypublishing.org/content/11/97/20140281

[19] T. R. Neumann and H. H. Bülthoff, “Behavior-oriented vision for
biomimetic flight control,” in Proceedings of the EPSRC/BBSRC
international workshop on biologically inspired robotics, 2002, pp.
196–203.

[20] P. Sermanet, R. H. M. Scoffier, M. Grimes, J. Ben, A. Erkan,
C. Crudele, U. Muller, and Y. Lecun, “A multi-range architecture for
collision-free off-road robot navigation,” Journal of Field Robotics,
2009.

[21] A. Giusti, J. Guzzi, D. C. Cirean, F. L. He, J. P. Rodrguez, F. Fontana,
M. Faessler, C. Forster, J. Schmidhuber, G. D. Caro, D. Scaramuzza,
and L. M. Gambardella, “A machine learning approach to visual
perception of forest trails for mobile robots,” IEEE Robotics and
Automation Letters, vol. 1, no. 2, pp. 661–667, July 2016.

[22] M. Quigley, K. Conley, B. P. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “Ros: an open-source robot operating
system,” in ICRA Workshop on Open Source Software, 2009.

[23] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in Neural
Information Processing Systems, p. 2012.

[24] F. Chollet, “Keras,” https://github.com/fchollet/keras, 2015.
[25] D. P. Kingma and J. Ba, “Adam: A method for stochastic

optimization,” CoRR, vol. abs/1412.6980, 2014. [Online]. Available:
http://arxiv.org/abs/1412.6980

[26] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhut-
dinov, “Dropout: A simple way to prevent neural networks from
overfitting,” J. Mach. Learn. Res., vol. 15, no. 1, pp. 1929–1958, Jan.
2014.


