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Abstract— This paper presents a vision-based localization
system for global pose estimation of a sewer inspection robot
given prior information of the sewer network from local
institutions. The system is based on a Monte-Carlo Localization
system that uses RGBD odometry for the prediction stage. The
update step takes into account the sewer network topology for
discarding wrong hypotheses. Moreover, this step is further
refined whenever a discrete element of the network (i.e. man-
hole) is detected. To this end, another RGBD camera pointing
upwards is used for precise manhole detection. A Convolutional
Neural Network has been successfully trained for classifying
images with and without manholes with 96% accuracy over
the tested dataset. The complete system has been validated
with real data obtained from the sewers of Barcelona yielding
accurate localization results. All the logs and code used in the
context of this paper are publicly available.

I. INTRODUCTION

Sewer inspections require many people to work in risky
and unhealthy conditions. Sewers are classified as confined
spaces which require special health and safety measures,
and pose additional risks like slippery floors, obstacles and
biological hazards from the potential contact with waste-
water. These features make the process of sewer inspection
a risky and expensive process that requires improvements.
Therefore, introducing a robotic solution in this process aims
at reducing the labor risks, improving the precision of sewer
inspections and optimizing sewer cleaning resources of the
city.

In particular, the work described in this paper has been
carried out within the framework of the Challenge ”Utility
infrastructures and condition monitoring for sewer networks.
Robots for the inspection and the clearance of the sewer
network in cities 1 inside the Echord++ EU project. This
challenge proposes the use of autonomous robots for the
inspection of sewers in Barcelona. The sewer network of
Barcelona is 1, 532 km. long, from which approximately 50%
is accessible, which means that the pipe is at least 1.5 m. high
and workers are allowed to go inside. The requirements of the
challenge is to design and demonstrate a semi-autonomous
robot which has to be operated from surface. Also, the robot
should provide precise positioning of structural defects and
other alerts in global coordinates. Therefore the development
of a localization system that allows the operator to keep track
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Fig. 1. The prototype used in the field experiments presented in this paper.

Fig. 2. Two snapshots taken from the frontal camera of the robot at different
localizations.

of the robot position is a key feature in the development of
the project.

Ground robots are the current preferred solution for this
task, given the requirements on robot autonomy, payload and
the environment. There is a wide variety of robotic platforms
for gallery inspection already in the market. A survey can
be found in [1]. However, most of them have been designed
in order to inspect small pipes and sewers. Therefore, they
cannot be used within the project as they cannot cover the
minimum inspection distance requirement of more than 1 km
per labor day. Moreover, they are connected to the base sta-
tion by means of a wire, while the project requires a wireless
solution. To fulfill these requirements, we propose the use of
a new platform named Sewer Inspection Autonomous Robot
(SIAR). It is a six-wheeled ground robot specially designed
for sewer inspection (see Fig. 1). The current prototype has
already been deployed in real sewers in several experiments.

We use RGBD cameras as the main sensor modality. They
offer some advantages in this particular environment, as they
provide directly range information even in dark conditions,
do not need mechanical moving parts and are cheap sensors.
The robot carries a sensor head consisting of 5 RGBD
cameras. Two images captured by the frontal camera are
shown in Fig. 2.

In this paper, we present a system that combines visual



odometry (VO) with the recognition of manholes in depth
images for global sewer localization. This recognition is
based on machine learning. The use of the manhole as main
features for localization is done for three main reasons. First,
there exists a regulation of the maximum distance between
two consecutive manholes for safety reasons. Second, their
diameter (70 cm) enables their detection with an acceptable
success rate. Third, their positions are labeled in the Global
Information System (GIS) provided by the local agencies.

The paper is organized as follows. Next section sum-
marizes related work on sewer localization. Section III
overviews the main components of the system. Section IV
describes the machine learning method for manhole detec-
tion, and Section V describes the localization method. The
paper concludes with experimental results and conclusions.

II. RELATED WORK

The localization of a robot in a sewer system has a number
of issues to be considered. Most systems rely at first stage
in odometry information acquired from wheel encoders and
inertial units. However, humidity, water and waste signifi-
cantly decrease the wheel grip, distorting the computed linear
and angular velocities based on wheel encoders. Besides, the
robot has often to negotiate steps in order to cross channels,
which can further distort the measures obtained from the
wheel encoders. Even though some devices can improve the
odometry reliability [2], the errors cannot be ignored in the
long term.

One of the first localization systems, for the KURT in-
spection robot, presented in [3], already recognizes the main
problems, like wheel slippage for odometry. Topological
localization is done by recognizing junctions from data and
matching them to a map. Wheel odometry is considered in
[4], where also junctions are classified using readings from
wheels and used to compensate the errors. Only simulations
are considered.

Alternative methods to wheel odometry have been pro-
posed. In [5], the fading period of RF signals in tunnels
(assimilated as waveguides) are used to obtain an odometry-
like measurement for localization. LIDAR-based systems are
also considered for motion estimation [6]. An additional
problem in this case is the lack of features and the symmetry
of the environment, which makes more difficult to estimate
certain degrees of freedom. Tethered robots can use also the
tether to estimate the motion of the robot [7]. The same
paper considers also VO for robot motion estimation. The
visual odometer is in this case based on the known geometry
of a cylindrical sewer. Here we consider a model-free VO
approach, as the sections of the sewer are not uniform.

Besides odometry estimation, many inspection applica-
tions in sewers require global localization into the sewer.
Some systems are based on the communication of extra-
low frequency signal with an external mobile system [8] to
estimate the position of the robot. However, this requires
additional infrastructure, and cannot be applied to all types
of sewers.

Fig. 3. Proposed layout of the cameras on top of the platform. Note that
the frontal camera is inside the cover

A localization system is also presented in [7], based on
matching the same visual features used for VO stored in
a map. However, results are obtained in a small sewer
testbed. Many times there are previously available maps from
Geographical Information Systems, containing the positions
of elements of the sewer network, like manholes, inlets
and other elements. Here we consider an hybrid metric-
topological Monte-Carlo localization method in which VO
errors are compensated by recognizing those elements.

III. PROPOSED SYSTEM

In this section we briefly summarize the robotic platform
employed. Then we present the sensors used for localization,
as well as a general overview of the approach.

A. Robotic platform

Figure 1 presents the current robotic platform used in
real experimental scenarios. The robotic frame is made with
IP67 enclosings in order to accommodate for the hardest
environmental conditions during sewer inspection. A six-
wheeled ground robot with independent traction has been
designed and implemented by the company IdMind2 as part
of this work. It is able to navigate over a wide range of floors
and small obstacles, including steps of over 20 cm. The axis
of the two central wheels is positioned below the other ones,
and the center of gravity of the robot is located over that
axis, so that for turning the robot can behave closely to a
differential-drive robot. This configuration is very flexible
and adapts very well to the different scenarios the robot can
find during routine inspections. It carries LiFePo batteries
for batteries and electronics, with an autonomy of 5 hours.
For more details on the platform, please refer to [9].

B. Sensor system

The platform is equipped with 5 RGBD cameras (see
Fig. 3). Two long-range RGBD cameras (with a maximum
range of 8 m) are located in the front and rear sides of the
robot. These cameras are used for localization, navigation,

2http://www.idmind.pt
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obstacle avoidance and 3D reconstruction of the ground and
the walls. The remaining three sensors have been placed in
order to enhance the detection of possible structural defects
at the ceiling and in the upper parts of the walls and for the
detection of manholes. The system is equipped with front
and rear lights that are vital for providing the operator with
a clear view of the sewers and for using VO.

C. Localization System

The proposed localization system is based on the in-
tegration of VO, detection of manholes and Monte-Carlo
localization. A brief description of the main functional blocks
of the proposed approach is introduced below.

• RGBD Odometry. While the robot provides wheel
odometry, due to the typical slippage mentioned above,
the values are not reliable. Thus, the main odometry
source is a VO method [10] developed for stereo-
vision and adapted to RGBD. This block takes as input
the RGB and depth flows of the frontal camera of
the robot, matches robust features from consecutive or
closely spaced frames and then obtains the relative pose
between cameras that minimizes the re-projection error.

• Manhole detector. This module will check whether the
robot is under a manhole or not based on the depth
images gathered by a camera pointed upwards (see
Fig. 3). A machine learning approach is employed to
perform this classification robustly and computationally
efficient. It is described in Section IV.

• Localization module. This module integrates the odom-
etry measurements thought time, performing proper
corrections according to an a priori topological map
and the manhole detector. In this paper, a Monte-Carlo
localization system [11] has been used (see Section V).

IV. MACHINE LEARNING FOR AUTOMATIC MANHOLE
DETECTION

The high symmetry of the sewer gallery makes localization
a very complex problem. Commonly used tools for local-
ization as visual place recognition algorithms usually suffer
from low accuracy when targeting repetitive visual structures
[12]. This problem is accentuated by the poor illumination
conditions and high symmetry of the environment. On the
other hand, detailed 3D/2D maps [13][14] of the sewer
network are frequently unavailable due to its vast size.

Manholes offer a good opportunity for localization. They
use to be well localized in the sewage system, and also in
the city drawings. This information can be used to reset the
localization errors if the robot is able to identify the manhole
on top of it. In addition, manholes also have a particular
shape, they break with the uniformity of the gallery ceiling,
which might simplify its detection (see Fig. 4).

Thus, our objective is to automatically detect if the robot
is lying under a manhole. We use the depth images provided
by a camera placed on top of the robot, pointing toward
the ceiling. Our approach makes use of machine learning
approaches to train a classifier able to split the depth camera
view between regular ceiling and manhole.

Fig. 4. View of the sewer gallery from the depth camera pointing towards
the ceiling. (Left) Regular gallery ceiling. (Right) Manhole

Considering the significance of these detections for the
localization system, we impose the following two hard
constrains: the accuracy must be very high to avoid false
positive or false negative detections that might impact in the
localization results, and second, the manhole detection must
be light-weight from the computational point of view to not
compromise the rest of the navigation task.

With all the previous constraints in mind, Convolutional
Neural Networks (CNNs) emerge as a convenient technique
as they have been extensively used for image classification
purposes in last years with great success. Their ability to
extract hight level features from the images and to easily
reduce the dimensionality of the problem are key factors for
their success. In addition, this dimensionality reduction helps
to decrease the computational requirements of the classifier.

Next paragraphs summarize the designed CNN architec-
ture, the training process and the validation.

A. Convolutional neural network architecture

The CNN architecture developed in this paper is similar to
the AlexNet architecture [15]. In these networks we combine
convolution layers with pooling layers and a fully-connected
network. One of the advantages of CNNs over Multi-Layer
Perceptrons (MLP) is that convolution layers are able to
extract constant features from inputs. A convolutional layer
is a compound of kernels or filters with a certain dimension
(mostly depending on the input resolution). These filters
convolve with different receptive fields on the input, going
all over the image. Thus, each convolution layer unit receives
the information of a small region of the previous layer with
the kernel size. The result of a convolution operation is a
feature map that can detect a particular spatial aspect (edges,
corners, etc.). By combining several convolution layers the
network is able to extract higher-order features.

The CNN architecture designed for manhole detection is
shown in Fig. 5. The first step consist in down-sampling
the depth image to a smaller scale, 80 × 60 particularly.
We perform this down-sampling because we assume most
of the details of the manhole are retained in the reduced
version, while it decreases the computation. The network is
composed by four convolutional layers followed by ReLU
activations and MaxPooling, except for the last one. We can
see how we reduce the size of the inputs until having a
tractable amount of information. The output of the fourth
convolution layer is fed into a fully-connected layer of 100
neurons and ReLU activations. Finally, the output layer is
composed by a single fully-connected neuron with sigmoid



Fig. 5. Convolutional Neural Network for automatic manhole detection based on depth images

activation functions. The result is a binary value that is true
whenever a manhole is detected and false otherwise.

Notice in Fig. 5 how the number of filters (feature maps)
for each convolutional layer is just five. This small number
of filters is taken on purpose, in order to keep the number
of parameters under control. Thus, the total number of
parameters of this CNN structure is 8,921, of which 7,600
belongs to the first fully connected layer. A CNN prediction
is performed in less than 1.5 ms in a regular i7 with two
Cores thanks to this small number of parameters.

B. Dataset for training

We need correctly labeled depth images gathered by the
robot to perform the training of the proposed CNN. To this
end, an experimental campaign was developed in real sewers
in the city of Barcelona. The data set was obtained from
two experiments (see Section VI). We used Experiment 1
for training and Experiment 2 for validation.

In both datasets, training and validation, a manual labeling
of the depth images with manholes was done. The positive
set of the training dataset was expanded by introducing hori-
zontal and vertical flips, and small translations and rotations.

As a whole, the dataset is composed by 40, 000 depth im-
age samples with resolution 80×60. Each sample integrates
a label that indicates if the image contains a manhole or not.
From these samples, 21, 000 are used to to validate the CNN
and are not included into training process.

C. Training

We implemented the networks using Python and the
Keras library [16]. The learning algorithm used to train the
networks is the Adaptive Moment Estimation (Adam), an
algorithm for first-order gradient-based optimization. It has
been demonstrated the effectiveness of Adam over other
stochastic first-order methods on MLP and CNN [17].

Each learning process takes 20 epochs with a batch size
of 100 samples. A 20% dropout layer [18] was included
after every convolutional or fully connected layer (except
for the output) to prevent the computed neural networks from
overfitting.

D. Validation

After the training process, we validate the model with a
set of 21, 000 samples not used in the training (test set).

The obtained accuracy results show a 99% of accuracy in
the training dataset whereas roughly a 96% in the validation
one. These results are very satisfactory, taking into account
that different types of galleries visited in both datasets and
that there were opened and closed manholes.

Table I summarizes the true and false positive and negative
rates of the network. Note that false positive rate is approxi-
mately of a 2%. On the other hand, the false negative rate is
bigger, going up to a 10%. This indicates the probability
of missing one manhole by considering just one image.
However, the robot can take tens of images of the manhole
as it traverses sewer. Therefore, the probability of missing a
manhole can be reduced during robot execution by applying
basic temporal filtering of the detection outcome.

TABLE I
MANHOLE DETECTOR CONFUSION MATRIX

Predicted
Positive Negative

Actual Positive 0.90 0.10
Negative 0.02 0.98

V. GRAPH-BASED LOCALIZATION

As previously introduced, the approach is based on Monte-
Carlo Localization [11], which makes use of a particle filter
to represent the robot localization belief.

In the proposed filter, each particle represents a hypothesis
which consists of a 2D position with orientation. The z
coordinate can be obtained from the topological map as in
[19] but this is beyond the scope of the paper. The hypotheses
are validated (weighted) according to the position of each
particle compared with a topological map obtained from GIS
data. Figure 6 shows the GIS data used in the experiments
to build the graph for the localization module. This graph
contains manhole vertices, where a manhole can be detected;
and fork vertices, in which several sewers converge, or a
sewer turns into another direction. These vertices are linked
by edges that indicate traversable paths between them. The
next subsections detail each step of the filter.

A. Initialization
This step is currently done manually at the location of

the manhole where the robot has been deployed. The output



Fig. 6. Topological map used as input for generating the internal graph in
the localization module

of this step is the initial population of particles, which are
located randomly with a multivariate normal distribution
centered at the user defined location.

B. Prediction

The position hypotheses (particles) are predicted based on
the visual odometry from the RGBD cameras. Note that the
odometry measures are modified with independent additive
Gaussian noise and thus each particle will evolve differently.

C. Update

The filter also needs a method to validate that particles are
in the right position. In this paper, we propose a two step
validation process, that will weight the particles differently
whether a manhole is detected or not.

1) Edge weighting: measuring lateral errors: When no
manhole has been detected in the current image, the particles
are ranked according to their distance to the closest edge of
the topological map. Particularly, we use the criteria:

wedge =
1

σe
√
2π
e
− d2e
σ2e (1)

where de is the distance from the particle to the closest edge
and σe is related to the width of the sewer.

It is worth to mention that the map could not be as accurate
as desired and thus it could be a good idea to overestimate the
edge deviation. This is more evident in the surroundings of
forks and turns. Therefore, in this paper two different values
of the standard deviation have been used depending on the
proximity of a non-straight section.

2) Manhole weighting: measuring longitudinal uncer-
tainty: Navigating through the sewer environment will al-
ways increase the longitudinal uncertainty in the position of
the robot. In this paper, manholes are detected to reduce this
uncertainty and precisely localize the robot. Eq. 2 is used to
rank the particles of the filter whenever a manhole is detected
by the detection module.

wmanhole =
1

σm
√
2π
e
− d2m
σ2m + wmin

manhole (2)

where dm is the distance from the particle to the closest
manhole in the graph and σm is the considered standard
deviation surrounding the manhole, and is related to the size
of the area were they can be detected. The additional term
wmin

manhole term has been added to the weight in order to
mitigate the effects of a false detection in places far away
of manholes. In such cases, the following in-equation holds
for all particles:

wmin
manhole >>

1

σm
√
2π
e
− d2m
σ2m (3)

Therefore, all particles are uniformly weighted in this case.
On the other hand, in the surroundings of the manhole the
most important term should be due to the normal distribution:

wmin
manhole <<

1

σm
√
2π
e
− d2m
σ2e (4)

This equation must hold if dm < ddetect, where ddetect is
the maximum detection distance of a manhole.

D. Resampling

Whenever the dispersion of the particle set exceeds a
threshold, or the number of maximum number of updates
is reached, the set of particles is restructured through im-
portance resampling. The new set of particles is obtained by
randomly sampling the old set with a sampling distribution
proportional to the weights of the particles. We make use of
the low variance sampler described in [20]. By periodically
resampling the particles according to the weights proposed
in the previous sections, we ensure that most of the particles
are located according to the prior GIS information.

However, false positives in the surroundings of a manhole
can make the particles of the filter to be resampled into an
area distant from the real position of the robot. To mitigate
such effects, we only perform manhole updates when more
than Mthres manhole measures are received between two
consecutive update intervals.

VI. FIELD EXPERIMENTS

This section discusses the results of the proposed system
when applied to field data. Firstly, the experimental scenario
is described. Readers are encouraged to reproduce the results,
as the code and data of the localization system can be
openly accessed on 3. There, instructions for running the
two experiments and to obtain the dataset used in this paper
can be found. All the code is developed under the Indigo
distribution of the Robotic Operating System (ROS) 4.

A. Scenario

The sewers considered for the experiment are located in
the surroundings of the Mercat del Born, Barcelona (see Fig.
7). During the experiments, the robot was teleoperated from
a short distance in Experiment 1 and Experiment 2.

3https://github.com/robotics-upo/siar packages
4www.ros.org
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Fig. 7. Scenario where the experiments have been carried out. The depicted
lines represent an example of localization results in Experiments 1 (blue)
& 2 (red). Manholes are labeled in a white circle and forks in purple.

B. Localization results

The complete localization system has been successfully
tested with the data gathered in the sewers. As the algorithm
is randomized, the results presented here are calculated
taking into account the output from 30 different executions,
all of them using the same input data from both Experiment
1 and 2. The traveled distance in these experiments was of
about 400 m.

Figure 7 shows an example of the trajectories of the robot
in Experiments 1 & 2 as estimated in an execution of the
proposed localization algorithm. Please note that the obtained
trajectories are smooth and strictly follow the guidelines
imposed by the topological map that is loaded as input.

One of the main difficulties when analyzing the behavior
of a localization system is the (in)existence of ground truth
data for making comparisons with the obtained results. In this
paper, no ground truth is available for the robot trajectory.
Thus, basic statistics of the particle set (namely mean posi-
tion and standard deviation in the three coordinates) when
the robot is just under a manhole are saved. These instants
have been manually labeled according to the images of the
camera pointing upwards. Then, the results of the mean
position are compared to the GPS position of the manhole.
The localization is considered accurate when the distance
between the mean and the ground truth position is below the
distance for manhole detection (50 cm. approx.).

1) Experiment 1: Figure 8 represents the distribution of
the distances of the weighted mean of the set of particles
to the ground truth position of the manhole above the robot
in each execution of the algorithm. In this experiment, the
robot follows a track with a loop and passes through 11
manholes, revisiting only one of them (the first and tenth
ones). The main result is that the localization algorithm
succeeded to accurately localize the robot in all of the
executions. Moreover, results show that the mean distances
of the obtained particle sets to the actual position of the
manhole rarely exceed 1 m. whenever the robot was under
a manhole. In the cases where this deviation is high, it
is probable that further manhole detections were produced
afterwards, reducing the distance to the actual position of
the robot.

In addition, it is important to analyze the evolution of

Fig. 8. Distribution of the distance from the mean of the particle set to
the ground truth position of the manhole in Experiment 1.

Fig. 9. Mean dispersion of the particles in the instants where the robot
passes just under a manhole in Experiment 1.

the dispersion of the particle clouds as a the experiment
goes on. Figure 9 represents the mean standard deviation
of the particles when the robot is below a given manhole.
As expected, the dispersion is closely related to the mean
distance to the manhole, as larger localization errors are
usually due to cumulative odometry errors that are reflected
in the dispersion of the particles. It is also noticeable that
taking into account the dispersion of the cloud and the mean
distance to the manholes, a manhole resampling procedure
performed would always find particles under the correct
manhole and thus the proposed localization system would
successfully reduce the uncertainties in the pose the robot.

2) Experiment 2: This experiment is slightly shorter than
the Experiment 1. However we have found it to be more
challenging due to the following reasons:

1) Only two 90 degrees turn carried out at the same
places, while Experiment 1 included up to five turns of
this kind. This helped to re-localize the robot, as the
longitudinal uncertainty is reduced due to the eventual
elimination of particles turning in wrong places.

2) A manual 180 degrees turn is carried out to make the
robot go back through the sewer. This is a challenge
for the VO system.

3) Navigation experiments were conducted after visiting
manhole 3. The robot was to be recovered manually
in some of them.

4) The speed of the robot was increased, making manhole



Fig. 10. Distribution of the distance from the mean of the particle set to
the ground truth position of the manhole in Experiment 2.

Fig. 11. Mean dispersion of the particles in the instants where the robot
passes just under a manhole in Experiment 2.

detection more difficult.
Figure 10 represents the distribution of the distances of

the weighted center of the set of particles to the ground truth
position in Experiment 2. Due to the aforementioned causes,
the distribution of the distances is worse than in Experiment
1. We expect that the introduction of further measurable
elements can improve the results in this case.

The dispersion results presented in Fig. 11 are generally
higher than the results of Experiment 1. This indicates that
the localization obtained in this case is less accurate than in
the previous experiment. This may also be produced because
the experiment was also used for navigation tests in difficult
areas, where the robot fell and had to be manually recovered.

VII. CONCLUSIONS AND FUTURE WORK

A vision-based method for the localization of a ground
robot navigating through real sewers has been designed,
implemented and validated with real data. RGBD data is
used for VO. Odometric drift is corrected using a map-based
Monte Carlo localization system, using the known locations
of manholes and sewer galleries as landmarks. A deep neural
network has been trained and used to detect manholes using
depth data from the RGBD cameras.

The paper describes results using data from real sewers
in two different navigation experiments of 400 m. each. The
experimental results indicate that the localization has been
achieved in all executions even in the presence of sudden

changes in the direction of the robot. Moreover, the median
distance to the retrieved ground truth data is below 4 m. at
the end of the experiments for all the executions.

As future work, the detection system can be easily trained
to detect further elements of the sewer network, like inlets
and others, which can be used to further refine the localiza-
tion of the robot, and/or for inspection purposes.
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