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Abstract. This paper presents an approach for learning robot navi-
gation behaviors from demonstration using Optimal Rapidly-exploring
Random Trees (RRT™) as main planner. A new learning algorithm com-
bining both Inverse Reinforcement Learning (IRL) and RRT™ is devel-
oped in order to learn the RRT™’s cost function from demonstrations.
This cost function can be used later in a regular RRT™ for robot plan-
ning including the learned behaviors in different scenarios. Simulations
show how the method is able to recover the behavior from the demon-
strations.

1 Introduction

Today, more and more mobile robots are coexisting with us in our daily lives. As
a result, the creation of motion plans for robots that share space with humans in
dynamic environments is a subject of intense investigation in robotics. Robots
must respect human social conventions, guarantee the comfort of surrounding
persons, and maintain legibility, so humans can understand the robot’s intentions
[10]. This is called human-aware navigation.

This problem was initially tackled by including costs and constraints related
to human-awareness into motion planners to obtain socially acceptable paths
[18,7]. In these cases, these costs are pre-programmed. However, hard-coded
social behaviors might be inappropriate [3]. In many cases (for instance [8, 15]),
these costs are grounded in Proxemics theory [5]. However, as shown in [13],
Proxemics is focused on people interaction, and it could not be suitable for
navigating among people.

Therefore, learning these social behaviors from data seems a more principled
approach. Also, it is easier to demonstrate socially acceptable behaviors than
mathematically defining them. In particular, we consider in this paper the ap-
plication of telepresence robots [17]. Our goal is to increase the autonomy of
such robots, freeing the users from the low level navigation tasks. In this setup,
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it is very natural to obtain navigation data from the user, considering them as
examples and using them to learn social navigation behaviors.

Thus, we aim to develop an approach to learn navigation behaviors from user
data. The paper makes use of Inverse Reinforcement Learning (IRL) concepts
and sampling-based planners (in particular, RRT* [6]) to identify the RRT cost
function that better fit the example trajectories. Differently to classic IRL ap-
proaches based on Markov Decision Process (MDPs), the presented method is
computationally faster and scales very well with the state size, being able to deal
with continuous state and control spaces, and it is general enough to be applied
in different scenarios.

The paper is structured as follows. After a summary of related work, next
section describes the algorithm for learning from demonstrations using RRT*.
Then, Section 3 describes the particular problem of social navigation considered
in the paper. Later on, Section 4 validates the approximation in simulation.
Finally, Section 5 summarizes the paper contribution and outlooks future work.

1.1 Related work

In the last years, several contributions have been presented regarding the ap-
plication of learning the task of human-aware navigation. Supervised learning
is used in [19] to learn appropriate human motion prediction models that take
into account human-robot interaction when navigating in crowded scenarios. In
[4], the parameters of a model based on social forces are learnt from feedback
provided by users.

An additional approach is learning from demonstrations [2]: an expert indi-
cates the robot how it should navigate among humans. This approach is par-
ticularly relevant for the case of telepresence robots. One way to learn from
demonstrations is through Inverse Reinforcement Learning (IRL) [1]. The obser-
vations of an expert demonstrating the task are used to recover the reward (or
cost) function the demonstrator was attempting to maximize (minimize). Then,
the reward can be used to obtain a corresponding robot policy.

Different aspects to tackle the IRL problem have been proposed. A proba-
bilistic method based on the principle of maximum entropy is presented in [20].
The computational cost problem is managed in [14] by using a Bayesian nonpara-
metric mixture model to divide the observations and obtain a group of simpler
reward functions. From another point of view, the authors in [12] represent the
reward by using Gaussian processes instead of a linear combination of features.

In the above mentioned models, the IRL technique makes use of discrete
Markov Decision Processes (MDPs) as the underlying process. However, it is
complex to encode general problems with MDPs due to its computational com-
plexity. Many authors turn to state discretization which can be tricky in many
cases.

Optimal Rapidly-exploring Random Trees (RRT*) [6] are extensively em-
ployed in robot planning. They are flexible and easily adapted to different sce-
narios and problems. They implicitly reason about collisions with obstacles at
moderate computational cost even in high dimensionality. They can explore the



state space to obtain optimal paths on cost spaces and the kinodynamic exten-
sion allows reasoning about the robot dynamics.

In the paper, we present an algorithm for learning robot navigation behaviors
from demonstrations using RRT* as main planner. We aim at creating a new
learning algorithm combining both IRL and RRT* techniques in order to extract
the proper weights of the cost function from demonstration trajectories. This cost
function can be used later in a regular RRT* to allow the robot reproducing the
desired behavior at different scenarios.

2 Learning a RRT* cost function

RRT* [6] is a technique for optimal motion planning. It considers that a cost
function is associated to each point x in the configuration space. The RRT* seeks
to obtain the trajectory ¢* that minimizes the total cost along the path ¢(¢). It
does so by randomly sampling the configuration space and creating a tree towards
the goal. The paths are then represented by a set of discrete configuration points
¢={z1,72,- ,ZN}.

Without loss of generality, we can assume that the cost function for each
point can be expressed as a linear combination of a set of sub-cost functions,
that will be called features c(z) = >, w;f;(x) = wT f(z). The cost of a path is
then the sum of the cost for all points in the path. Particularly, in the RRT*, the
cost is the sum of the sub-costs of moving between pairs of points in the path:
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Thus, for given weights w, the algorithm will return trajectories that try to
minimize this cost.

Given a set of demonstration trajectories D = {(1, (2, - ,(p}, the problem
of learning from demonstrations, in this setup, means to determine the weights
w that lead our planner to behave similarly to these demonstrations. According
to [1,11], this similarity is achieved when the expected value of the features for
the trajectories generated by the planner is the same as the expected value of
the features for the given demonstrated trajectories:
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One approach to solve this problem is to model the underlying trajectory
distribution of the expert and consider the demonstrations as samples from this
distribution. As noted in [9], applying the Maximum Entropy Principle [20] to



the IRL problem leads to the following form for the probability density for the
trajectories returned by the demonstrator:
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where Z(w) is a normalization function that does not depend on ¢. One way to
determine w is maximizing the (log-)likelihood of the demonstrated trajectories

under the previous model:
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The gradient of the previous log-likelihood with respect to w is given by:
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Setting this gradient to zero one arrives to (3). As mentioned in [11], this
gradient can be intuitively explained. If the value of one of the features for the
trajectories returned by the planner are higher from the value in the demon-
strated trajectories, the corresponding weight should be increased to increase
the cost of those trajectories.

The main problem with the computation of the previous gradient is that it
requires to compute the expected value of the features E(f(()) for the generative
distribution (4). In [9], a probabilistic generative model for trajectories is derived
from data, and the expectation is computed by Monte Carlo Chain sampling
methods, which is very computationally demanding.

In our case, we will approximate the expert by the RRT* planner on board
the robot. Being an asymptotically optimal planner, for some given weights, the
RRT* will provide the trajectory that minimizes this cost given infinite time.
As the planning time is limited, the RRT* will provide trajectories with some
variability on the features, and thus the expected feature count is computed
by running several times the planner between the start and goal configurations.
This is then used to compute the gradient and adapt the weights used in the
RRT* planner.

As mentioned, this is an approximation to the expert model. A similar idea
is used in [11]. The experimental results will show that the method is able to
recover the taught behaviors by the expert.

The method proposed is described in detail in Algorithm 1.1. The example
trajectories from which we want to learn are used as input. The output of the
method are the weights for the cost function of the RRT* algorithm in (1).

First, in Line 1 we obtain the average feature count fp, = 4 Zizl F(<&)
from the example trajectories in D scenarios. The feature counts are obtained
as the addition of the feature values of pairs of nodes of the trajectory evaluated
similarly to Equation (1).



Algorithm 1.1: RRT*-IRL

Require: Trajectory examples D = {Cll, e (jg} in S scenarios
Ensure: Function features weights w = [wy,...,wy]

1: fp + calculeAvgFeatureCounts(D)

2: w < randomInit()

3: repeat

4: for each s € S do

5: for rrt_repetitions do

6: ¢ + getRRT star Path(s,w)

7 f(G) < calculeFeatureCounts(¢;)

8: end for »

9: Frare OIS () frrt__repetitions
10: end for )

11: frRT« < (Zf:1 ijRT*)/S

12: VL < (frrrs = D)

13: w < UpdateW eights(V L)

14: until convergence
15: return w

Then we initialize the weights with an unsigned integer random value (Line
2). Tt is noteworthy that the weights are not being normalized during the learning
iterations, so that changes in the value of one weight do not provoke the variation
of the values of the rest of weights. They are normalized after the learning has
finished. On the other hand, the features values for each node are normalized
but this is not a requirement of the algorithm.

The key point is the gradient given by (6), which requires a comparison of the
features counts obtained from the example trajectories and the expected value
from the RRT* planner. The latter is obtained by running 7t _repetitions times
the planner for the current weight values for each scenario considered (Line 6)
and obtaining and normalizing the features counts (Line 7). In Lines 9 and 11
the averaged values are obtained.

Based on this comparison the weights of the cost function are updated using
exponentiated gradient descent (line 13), as in [20]:

Wi — w; % eA/)FVE (7)

where ¢ is the number of the current iteration of the algorithm, A is an adjusting
factor of the equation and V.L; = % is the i-th component of the gradient.
Finally, the learning process finishes when the variations of the weight values

keep under a certain convergence value e.

3 Cost function for social navigation

The social navigation task considered here involves the robot navigation in dif-
ferent house environments like rooms and corridors where some persons stand
in different positions so that the robot has to avoid them to reach the goal.



(a) Features (b) Gaussian function

Fig.1: (a) Features employed in the social cost function learned. d1, distance to
the goal. d, distance from the people to the robot. «, angle between the person
front and the robot location. ds, distance to the closest obstacle. (b) Gaussian
mixture function deployed over each person. The lateral bar shows the costs
based on the color displayed.

A small set of well-known features have been considered here. They are the
distance to the goal, the distance from the robot to the people in the scene, the
angle of the robot position with respect to the people «, and the distance to the
closest obstacle, as depicted in Figure la. Notice that this paper focuses on the
use of the features for social robot navigation, but we will not get into details
about the nature and importance of the features themselves.

Thus, three feature functions are combined to obtain the cost function em-
ployed in the RRT* planner. The function are computed for each sample x; of
the configuration space. The first one is just the Euclidean distance from the
robot position to the goal:

filar) = [lzn; 2goar| (8)

The second feature function represents a proxemics cost with respect to the
persons in the environment, and follows the model used by Kirby et al. [8]. This
cost function is defined by a mixture of Gaussian functions, and its shape can be
seen in Fig. 1. This cost function p depends on the distance (d;;) and relative
angle (o) of the robot position xj with respect to each person j in the scenario.
The cost due to all persons in the scenario is integrated according to the next
expression, where P is the total number of persons:

fa(ar) = H (p(djk, aji) +1) =1 (9)

Figure 1b shows this cost function for one person, which is implemented as a
mixture of two Gaussian functions: the first function is asymmetric and placed
in the front of the person with o, = 1.20m the variance in the direction the
person is facing, and a smaller variance in the sides o; = 04 /1.5. The second
Gaussian is placed in the back of the person with o, = o, = 0.8.



The third feature function uses the distance to the closest obstacle for each
node zy, djobs(rx) with the aim of motivating the robot to keep some distance
from the obstacles. This cost is based on the costmap used by the navigation
system of ROS [16], in which each obstacle has a defined inflation area around.
This way, the cost is zero if the robot is far enough from any obstacle (§ = 2
meters in our case):

0, if dobs(xk) > (5,
= 10
falan) {(254 — 1)e(=Aldovs(zr)=m)) = otherwise (10)

where 7 is the inscribed radius of the robot and 8 = 3 in our implementation.
The values of the n (3 in this case) feature functions are normalised and
the cost function for each node xj is built adding its weighted values c(zy) =
i wifi(xy) where w; € [0,1] and >, w; = 1.
Finally, the total cost along the @ nodes of the path ( is obtained based on
the motion-cost function employed by the RRT* algorithm to calculate the cost
of moving from one node to the next one according to Equation (1).

4 Experimental results

A set of experiments have been performed to evaluate whether the algorithm is
able to recover the characteristics of the taught trajectories. All the presented
experiments were performed by using a library of RRT algorithms developed by
the authors for research purposes. The library is available in the Github of the
Service Robotics Lab?® under BSD license. The hardware employed was an i7
processor 3770 with 12 GB DDR3 memory, where the planner was allowed to
plan a path for 2 seconds.

In these experiments, we use the RRT* with a set of known weights in the
cost function to generate the example trajectories in a set of scenarios as ground
truth. Then, we use these trajectories to learn the cost function with the proposed
algorithm in the same configurations. Particularly, we employed 25 different
configurations (different initial robot position, goal position and different number
of persons and positions) in different parts or rooms in a house map. Moreover,
for each configuration, 25 RRT* example trajectories were recorded. To validate
the approximation, the trajectories from 15 of these configurations were used to
learn the weights of the cost function, and the 10 remaining configurations were
employed to compare the resulting paths. Figure 2 shows 3 of the configurations
used in the validation.

Figure 3 shows the evolution of the normalised weights values, feature counts
and gradients along the iterations of the learning algorithm. As can be seen,
the weights converge to values close to the ground-truth ones in few iterations
committing a final error around the 16%. The difference in the feature counts
expectations, which is the optimization objective in (3), quickly approaches zero,
and so the gradients and the weights are stabilized. The relative error committed

3 https://github.com/robotics-upo
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Fig. 2: Some of the scenarios employed in the cross-validation process. A coloured
costmap based on the RRT* function cost is also shown.
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Fig.3: (a) Evolution of the weights during the learning iterations. (b) Evolution
of feature counts. (c) Gradients.

Fig. 4: Visual comparison of the demonstration paths (red lines) and the RRT
paths obtained by using the weights learnt (blue lines). Trajectories 1, 5, 7 and
10 are presented from left to right.

in the weights learnt respect to the ground-truth weights is calculated as RE,, =
lop — @rrr=||/||op|| = 0.1620.

Once the learning has finished, we can compare the demonstration paths
and the RRT* paths using the weights learnt in the remaining configurations for
cross-validation. A qualitative comparison of the paths can be seen in the Figure
4 for four of these trajectories (the rest are omitted for the sake of brevity). It
can be seen that the behavior is very well reproduced in all the cases.

We can also compare the costs of the demonstration paths and the learnt
RRT* paths. Figure 5 shows the averaged relative errors in the costs and in the
feature counts. The error in feature counts is under the 8% in all the cases. On
the other hand, the error in the costs is even lower being all the cases under the
4%. Moreover, it can be also seen in Fig. 4 that some of the trajectories with
larger cost error (1 and 10) reproduce very well the demonstrations.
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Fig.5: (a) Relative errors in the costs of the demonstration paths and the RRT
paths using the learnt weights. (b) Relative errors in the feature counts.

5 Conclusions and future work

This paper presented an approach for teaching a robot behaviors based on
demonstrations. To this end, a method based on IRL basis has been implemented
and linked with a regular RRT* in order to learn the weights of its cost function,
so the planner behaves similarly to the demonstrated behaviors. The method is
simple to implement and allows to overcome the classic problems associated to
IRLs based on MDPs. The proposed method is significantly less computational
demanding than MDPs and simplify the generalization of the behavior thanks
to the intrinsic benefits of RRTs.

The approach has been tested in simulation where the resulted learned cost
function was able to properly imitate the desired behavior in the most of the
cases. The feature counts always converged to values very close to the demon-
strated values in the experiments, and the computed weights also allowed to
reproduce the desired behavior reliably.

Future work will consider including the kinodynamic of the robot in the
RRT* planner and the use of a richer set of features also employing the veloci-
ties of the robot and persons. Furthermore, a further mathematical analysis of
the distributions of path costs followed by the RRT* planner as well as other
optimization techniques to solve the problem will be considered.
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