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Abstract. Robot navigation in human environments is an active re-
search area that poses serious challenges in both robot perception and
actuation. Among them, social navigation and human-awareness have
gained lot of attention in the last years due to its important role in
human safety and robot acceptance. Several approaches have been pro-
posed; learning by demonstrations stands as one of the most used ap-
proaches for estimating the insights of human social interactions. How-
ever, typically the features used to model the person-robot interaction
are assumed to be given. It is very usual to consider general features like
robot velocity, acceleration or distance to the persons, but there are not
studies on the criteria used for such features selection.
In this paper, we employ a supervised learning approach to analyze the
most important features that might take part into the human-robot in-
teraction during a robot social navigation task. To this end, different
subsets of features are employed with an AdaBoost classifier and its
classification accuracy is compared with that of humans in a social nav-
igation experimental setup. The analysis shows how it is very important
not only to consider the robot-person relative poses and velocities, but
also to recognize the particular social situation.
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1 Introduction

Telepresence systems allow a human controller (the visitor) to interact remotely
with people. Called by some ”Skype on a stick”, in such systems the visitor pilots
a remotely located robot that results in a more physically presence than with
standard teleconferencing. One of potential problems of telepresence systems is
the cognitive overload that arises by having to take low (navigation commands)
and high level decisions (interaction) at the same time. This may lead to mistakes
at low level and to give less attention to the high level tasks [13]. To allow
the visitor focusing in the interaction with other people, we aim to enhance
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Fig. 1: The picture depicts a telepresence robot with partial autonomy in terms of
navigation and body pose control, considering social feedback, in elderly centres.
A typical situation is presented here.

the autonomy of the telepresence robot to perform low-level decisions for the
controller regarding navigation and body pose in social settings (see Figure 1).

Actually, partial autonomy in terms of navigation is a feature requested by
telepresence users [4]. Enhancing the autonomy of the telepresence robot in terms
of navigation involves not only ensuring a safe and efficient navigation but also
social interaction and social awareness when performing the robot tasks. For
instance, approaching a person should be performed in a socially appropriate
manner. In addition, when accompanying a person, some social rules must be
maintained.

To this end, novel approaches are based on learning socially acceptable be-
haviors from real data collected under various social situations, avoiding manual
explicit formulation of the behaviors. This is particularly interesting in the setup
of telepresence robots, as there is a controller from which we can obtain informa-
tion. In the last years, several contributions have been presented in this direction:
supervised learning is used in [12] to learn appropriate human motion predic-
tion models that take into account human-robot interaction when navigating in
crowded scenarios. Unsupervised learning is used by Luber et al., [9] to determine
socially-normative motion prototypes, which are then employed to infer social
costs when planning paths. In [5], a model based on social forces is employed.
The parameters for the social forces are learnt from feedback provided by users.

An additional approach is learning from demonstrations [2]: an expert indi-
cates the robot how it should navigate among humans. One way to implement
it is through Inverse Reinforcement Learning (IRL) [1], in which a reward (or
cost) function is recovered from the expert behavior, and then used to obtain
a corresponding robot policy. In [7], a path planner based on inverse reinforce-
ment learning is presented. As the planner is learned from exemplary trajec-
tories involving interaction, it is also aware of typical social behaviors. Inverse
reinforcement learning for social navigation is also considered in [10]. However,
while in [7] the costs are used to path plans, in [10] the authors employ these
techniques to learn local execution policies, thus providing direct control of the
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robot. This can be combined with other planning techniques at higher levels,
while alleviating the complexity associated to learning.

Most of those works assume that the learned cost function depends on a set of
predefined and hand-coded features of the state, like person distance and others.
This paper presents a procedure to discriminate between features in order to
choose those ones that could better describe the task of navigating among other
people. Closest to this work, in [14] the authors present a software framework to
select the features in the design choice in IRL by means of investigating the effect
of selecting several feature sets in the evaluation of two different IRL approaches.
However, while they compare different IRL methods for different set of features,
in this work we leverage feedback provided by the telepresence users to employ
a supervised learning method to determine the importance of the features.

The paper presents an analysis of the feature importance, as well as the data
used for learning. A dataset of the robot navigating through other persons in
different social configurations is employed here to learn how to classify different
state/action pairs as socially normative behavior or not, using AdaBoost. This
approach has been used by [11] to determine the features to take into account
when the robot selects and follows a human leader to take advantage of their
motion. Here we analyze a different task, and a different set of features. A similar
approach has been used by [3] in order to determine the most important features
on which a person 2D range-based classifier could rely on.

The structure of the paper is as follows: next section describes the experi-
mental set up followed to retrieve both the human demonstrations of the robot
navigating and the feedback signal from an user observeing that. The features
considered are explained in Section 3 and the results of the evaluations are
showed at Section 4. Finally, the conclusions and future developments are de-
tailed in Section 5.

2 Experimental Setup

As a robot social behavior is very difficult to describe mathematically, we aim to
learn adequate behaviors in social situations by observing real demonstrations
of the task to be accomplished. In particular, in this paper we analyze a social
navigation task consisting on approaching a person, called interaction target,
with a telepresence robot. Thus, we perform a set of social navigation episodes
in which we can create and control specific social situations for navigation. This
data will be used to associate the robot and its environment context, such as the
position of people in the room, to various types of direct and indirect feedback.

The experiments carried out involve the use of two rooms (see Figure 2):
the interaction room and the visitor room. The interaction room is where all
the pre-defined social interactions between the robot and the persons present
at the scene take place. Due to control and repeatability issues, we propose to
use confederates3 that can conduct the social situation on an established plan.

3 A confederate in this context is any person who takes part in the experiment but is
not a subject. Even if the subjects themselves are aware of this fact.
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Fig. 2: Overview of the visitor and interaction rooms.

Fig. 3: Different social scenarios regarding to the pose adopted by the confeder-
ates.

Among the confederates, we have an interaction target, which is the subject that
the visitor intends to interact with using the telepresence robot. Finally, we also
have the telepresence robot itself.

In the visitor room we have a subject (the visitor) that is observing, through
the telepresence robot, what is going on in the interaction room. The visitor was
instructed to provide an instantaneous feedback signal based on the behavior
played by the robot in terms of what could be a normative socially behavior or
not. This feedback signal will be detailed in the next sections.

Also present in the visitor room is a Wizard of Oz (WoZ) [8]. The WoZ is
responsible of the behavior and low level control of the robot, but the visitor
is misinformed that the robot is autonomous. In fact, the WoZ is physically
separated from the visitor by a room divider and all the time conducts the
experiment, not only driving the robot, but also informing the visitors about
the current attempt of the robot and carrying the execution timing.

2.1 Experiments

The task of the robot was to reach the interaction target while dealing with the
social scenarios (depicted in Figure 3) performed by the other two confederates,
and then return to its starting position. Although the scenarios performed in-
clude static and dynamic configurations, this work deals only with the static
ones as a preliminar study. In the static scenarios, the social obstacles and the
interaction target remain standing in the scene at the same place. The robot has
to navigate towards the interaction target (and then moving back), performing
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Fig. 4: Left: the visitor is depicted. He observes the scene through the telepresence
robot interface in a laptop; he has a keyboard to enter his feedback by pressing a
key. Right: the WoZ performing the navigating teleoperating the robot through
the telepresence interface. There was no visual contact between them.

a trajectory that avoids in some way the social obstacles. As mentioned before,
the different configurations that the confederates could adopt are depicted in
Figure 3.

In the adjacent room, the WoZ was controlling the robot while the visitor was
observing and evaluating its actions, thinking that it was autonomous. Figure 4
describes the realization of the visitor room.

2.2 Data gathering

The effective area of the interaction room is 6x4 meters, and it is covered by a
motion capture system, in particular the OptiTrack4 system. This tool allowed
us to collect detailed information about the positions and orientations of all the
elements present in the interaction room, i.e. the robot, the confederates and
the interaction target. Sensing the robot environment during the experiments is
necessary in order to derive the states and features that can be later used for
learning.

Another important source of data is the feedback signal that the visitor
provides. During the experiments, the visitor gives direct feedback to the robot’s
instantaneous behavior using timestamped button presses (as showed in Figure 4
(left)) whenever he/her feels that the robot is behaving wrongly. The visitor was
instructed to press a button when he observed such an action and keep pressing
it until he thought that the robot had returned to normal behavior. During the
trajectories, the WoZ would deliberately execute socially unacceptable actions
sometimes.

Before the integration and collection of the data from the motion capture
system Optitrack and the labeling information provided by the visitor subject

4 https://www.naturalpoint.com/OptiTrack/
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Fig. 5: Left: Integrating the state capture data and labeling information into
rosbag log utility. The NTP ensures the time synchronization. Right: Formatting
of the extracted data for each trajectory into the txt files from bags. For each
ID (robot, R; interaction target, P1; confederates, P2 and P3) the position and
orientation are stored.

through the keystroke system (see Figure 5 (left)), a data post-processing step
was performed by applying a smoothing interpolation. These allowed us to deal
with small drop outs and tracking errors while performing the experiments.

Based on this data, several features can be derived and employed to represent
states used in the learning process (see Section 3). For all the features, additional
Gaussian filters were used in order to suppress any residual noise. This was
required because we are also interested in some features that are obtained by
differentiating previous ones.

It is important to notice that the observed feedback signal in the experiments
is very sparse. In addition we have very limited knowledge about the meaning of
the feedback and its duration. Thus, the dataset was pre-processed in order to
increase the duration of the feedback signal, making it less sparse while keeping
its interpretation meaningful. This is done by extending the feedback duration
forward and backwards. This filter is reasonable under the assumption that the
evaluator had some delay time in their reaction (backwards justification) and
that the robot actions are smooth, i.e., the robot does not escape from a situa-
tion instantaneously (forward justification). The chosen extended duration was
a second, centered at the exact time in which the visitor stamped his label. This
value was settled empirically after analyzing the total time duration of each
single trajectory and the usual length of ’train of keystrokes’ observed when a
person evaluate a bad behavior.

Despite the feedback signal extension performed, the number of bad examples
and good examples are clearly unbalanced on behalf of good ones. However, the
Adaboost algorithm implemented [3] deals with such kind of unbiassed datasets.

3 Features considered

The objective is finally to transfer the good behaviors of the WoZ into the robot
navigation stack, so that the robot is able to execute the task by itself in a socially
adequate manner. The first important issue is to determine which information
about the state is relevant for such task.
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Fig. 6: Features considered in this work. All of them are average values (moving
average with a 1-second window) and with respect to the closest person.

We will use the feedback given by the visitor. The idea is to use a supervised
machine learning approach to reproduce the labels given by the visitor using
as inputs different sets of features from the state. In general, features do not
contribute equally to predict the target response; in many situations the majority
of the features are in fact irrelevant.

There are some machine learning resources, like individual decision trees, that
intrinsically perform feature selection by selecting appropriate split points. This
information can be used to measure the importance of each feature; the basic
idea is: the more often a feature is used in the split points the more important
that feature is. In this work, we use AdaBoost [6], whose core principle is to fit a
sequence of weak learners (i.e., models that are only slightly better than random
guessing, such as small decision trees) on repeatedly modified versions of the
data. The input to the algorithm is a set of labeled training data (en, ln) , n =
1, ..., N , where each en is an example and ln ∈ {+1,−1} indicates whether en is
positive or negative respectively.

It is interesting to choose a weak learner that is fast to be trained, as usually
a large number of them is required. Examples of weak learners are decision trees,
multi-layer perceptron and radial basis function. In this work, decision stumps
are used, which is a one-level decision tree, making predictions based on a single
threshold over a single feature [15].

From the features point of view, one requirement was to keep the model as
simple as possible: the level of complexity must be such that the task description
is not trivial, which would make learning redundant, or too complex, which would
make learning impossible. So thus, the features considered were (see Figure 6):

– f1: Average Distance To Closest Person
– f2: Average Relative Velocity To Closest Person
– f3: Average Relative Orientation To Closest Person
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– f4: Average Angle To Closest Person
– f5: Average robot’s linear velocity
– f6: Average robot’s angular velocity

All the features are computed from the recorded data using a moving aver-
age with a 1-second window. Although these features are quite basic, they are
sufficient for the initial static scenario described in 2.1. All of the features used
here are also employed in the literature, as in [14] and [7], but in this case we do
not use a discrete approximation. It should be pointed out that, from the point
of view of the approach used in this work, it is plausible to add whatever feature
we can measure while the robot is performing the navigation task.

4 Results

A total of 4 sessions of the task described above were carried out. Each session
involved 12 different executions, by using different trajectories, locations of the
interaction target and configuration of the confederates. That results in 48 tra-
jectories. For each session, a unique visitor evaluated the robot behavior into bad
examples (by keystroke) or good examples (by default, no keystroke needed).

Each experiment was tagged with information related with the type of tra-
jectory, target layout, etc. This classification allows us to analyze the feature
importance over different set of trajectories, since we can take into account the
whole set of trajectories or some subset of them according to the three last tags
indicated before. We can also choose between different social navigation tasks,
being more specific with respect to what kind of navigation task we attempt to,
i.e. navigating towards a target while two persons are interacting (confederates’
pose 1 of Fig. 3) or not.

The tags allow distinguishing between approaching the interaction target
and getting away from him, called go and return trajectories respectively. This
division is made because the type and nature of the interaction might be different
when the robot approaches a person than when the robot leaves him away.

In addition to this, different subsets of features are considered at the learning
process of the AdaBoost from those suggested at section 3. Thus, 6 different
evaluations regarding to the set of features employed for the AdaBoost learning
process will be considered:

– F1 = (f1, f2, f3, f4)
– F2 = (f1, f2, f3)
– F3 = (f1, f2, f4)
– F1∗ = (f1, f2, f3, f4, f5, f6)
– F2∗ = (f1, f2, f3, f5, f6)
– F3∗ = (f1, f2, f4, f5, f6)

The evaluations F ∗ consider the last two features described at Section 3, i.e.
f5 and f6. Both of them could be described as action-based features, because
they enclose the robot actions. Thus, the idea is that these features could enclose
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robot behaviors in terms of bad (or good) maneuvers related to natural or smooth
movements that may not disturb the people surrounding the robot but that they
can be perceived as strange or unusual. On the other hand, sets F2 and F3 (and
their ∗ extensions) are intended to study the effects of suppressing some features
in the classification task. We focused in f3 and f4 in order to determine which
of them would be more descriptive for the navigation tasks.

Next paragraphs present the evaluation of the different features. In the fol-
lowing, only the experiments with configuration 1 for the confederates (see Fig.
3) were considered. The procedure followed consists on cross validation: 4 ran-
dom sets of training samples have been selected with other 4 sets of testing
samples. The ratio of samples was 80% for each set of training and 20% for each
set of testing. In the following, the details of the specific trajectories and features
employed will be provided.

4.1 Evaluation 1

Table 1 takes into account the whole set of trajectories gathered at the exper-
iments. This case represents the most global description of the task, since no
distinction was done between the type of the trajectory, targets’ layout and con-
federates’ poses. We intended to classify all the social configurations with a single
classifier. We do that with and without considering the action-based features.

Table 1: All trajectories and configurations are considered from the executed
examples. Evaluating the overall classification with respect all f1, f2, f3, f4 fea-
tures, with and without action-based features.

All trajectories; All poses
F1 F1∗

Detected Label Detected Label
True Label No-Social Social No-Social Social
No-Social 46% 81% 59% 85%
Social 54% 19% 41% 15%

The results shown in Table 1 indicate that it is not possible to correctly
classify all the trajectories. Next, we considered ways to alleviate the complex-
ity of the model being learned, and proposed some easier models by reducing
the variance across the examples. During the experiments, the WoZ always in-
troduced the visitor the individual trajectories, differentiating between go and
return trajectories (explained above). Thus, the next natural step was making
this distinction. Table 2 evaluates the construction of two different classifiers for
both go and return types of trajectories, taking into account the sets of features
F1 and F1∗.

It can be seen that the introduction of the action-based features improves
the classification task in all the cases (see Tables 1 and 2). Other important con-
clusion is the fact that training a single classifier with all the examples performs
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Table 2: go and return trajectories with confederates’ pose 1: Evaluating the
effects of adding action-based features.

Type: go Type: return
Set F1 Set F1∗ Set F1 Set F1∗

Detected Label Detected Label Detected Label Detected Label
True Label No-Social Social No-Social Social No-Social Social No-Social Social
No-Social 93% 10% 93% 3% 67% 13% 94% 7%
Social 7% 90% 7% 97% 33% 87% 6% 93%

poorly with respect to training different classifiers for some specific configura-
tions of the task. Performance differences observed between types go and return
may not be as obvious at a first glance. This could be produced by the lack of
some unknown features, like context information, or by a significant difference
between both trajectories due to the proximity of the goal to a target in the case
of the go task.

4.2 Evaluation 2

This evaluation focuses on the analysis of the impact of some features. The main
objective is to study how the introduction (or removal) of a specific feature into
the classification could affect the performance obtained in F1 and F1∗. Tables 3
and 4 presents the confusion matrix of sets {F2,F3} and {F2∗,F3∗}, respectively.

Table 3: go and return trajectories with confederates’ pose 1: Evaluating the
effects of extracting a feature. No action-based features considered.

Type: go Type: return
Set F2 Set F3 Set F2 Set F3

Detected Label Detected Label Detected Label Detected Label
True Label No-Social Social No-Social Social No-Social Social No-Social Social
No-Social 84% 6% 76% 21% 90% 38% 67% 20%
Social 16% 94% 24% 79% 10% 62% 33% 80%

Table 4: go and return trajectories with confederates’ pose 1: Evaluating the
effects of extracting a feature. Action-based features considered here.

Type: go Type: return
Set F2∗ Set F3∗ Set F2∗ Set F3∗

Detected Label Detected Label Detected Label Detected Label
True Label No-Social Social No-Social Social No-Social Social No-Social Social
No-Social 99% 3% 93% 11% 88% 12% 87% 10%
Social 1% 97% 7% 89% 12% 88% 13% 90%
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If we compare the Tables 1, 2, 3 and 4, it can be observed that the best
performance is obtained by using the set F2∗, which performs only slightly better
than using the set F1∗. Comparing the Tables 3 and 4, we also conclude that the
feature f3 (average relative orientation to closest person) is more relevant than
the feature f4 (average angle to closest person) for the description of the task in
both situations (go and return trajectories).

5 Conclusions and Future Work

This paper presented an analysis of the features used to model the interaction
between persons and robots when the latter are performing a particular social
navigation task. An experimental setup have been conceived and implemented in
order to gather enough data for the validation of the technique. The experiment
also included feedback from the user so that supervised learning approaches can
be applied to learn such features.

Two main conclusions arise from the data evaluation: First, the type of tra-
jectory followed by the robot plays an important role in the learning phase. A
classifier trained with go and return trajectories performs worst than two dif-
ferent classifiers, one per type of trajectory. We guess this is produced by the
different perspectives when the robot needs to approach a goal close to a per-
son (go) with respect to a less constrained goal in terms of gaze and body pose
expectations (return), which basically are considered different navigation tasks.
Furthermore, the social situation of other persons in the environment (repre-
sented in the experiments by the confederates) is also important, even in such a
simple task. Finally, the introduction of features related with the robot action
clearly improve the classification. The evaluations showed that considering the
robot actions (in terms of velocities and accelerations) help to identify if the
robot is behaving normative or not.

Future work considers extending this study to more complex escenarios, in-
cluding dynamic confederates and targets. In addition, the set of possible fea-
tures will be increased, considering also some high level information as groups
of persons or social situation.
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