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Abstract— Robot navigation in human environments is an
active research area that poses serious challenges. Among them,
social navigation and human-awareness has gain lot of attention
in the last years due to its important role in human safety
and robot acceptance. Learning has been proposed as a more
principled way of estimating the insights of human social
interactions. In this paper, inverse reinforcement learning is
analyzed as a tool to transfer the typical human navigation
behavior to the robot local navigation planner. Observations of
real human motion interactions found in one publicly available
datasets are employed to learn a cost function, which is then
used to determine a navigation controller. The paper presents
an analysis of the performance of the controller behavior in two
different scenarios interacting with persons, and a comparison
of this approach with a Proxemics-based method.

I. INTRODUCTION

This work is part of the Fun Robotic Outdoor Guide
(FROG) FP7 project1. It aims to deploy a guiding robot
in touristic sites. While robot guides have been developed
for more than a decade [1], [2], the project considers as
new contributions the development of social behaviors and
a wining robot personality by integrating social feedback, as
well as the robust operation in outdoors crowded scenarios.
The project aims to demonstrate the operation of the robot
in the Lisbon City Zoo and the Royal Alcazar in Seville
(see Fig. 1). Acting in these crowded scenarios (the Royal
Alcazar may have more than 5000 visits per day, totaling 1.5
million-visitors per year) involves not only ensuring a safe
and efficient navigation but also social interaction and social
awareness when performing the robot tasks.

In scenarios involving interaction with humans, these
considerations have to be taken into account in the entire
robot planning and navigation stack, from task planning [3],
task supervision and execution [4] to path planning and
execution [5], [6], [7].

Focusing on the particular case of the navigation stack,
current path planners are typically used to determine paths
that minimize time or length, which does not translate to
social paths in general. This requires determining costs
related to social compliance. Some authors [5], [8] have in-
cluded costs and constraints related to human-awareness into
planners to obtain socially acceptable paths, but these costs
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Fig. 1: The FROG project aims to deploy a guiding robot
with a fun personality, considering social feedback, in the
Royal Alcazar of Seville and the Zoo of Lisbon. A typical
situation of the first scenario is presented here.

are pre-programmed. However, hard-coded social behaviours
may be inappropriate [9]. Many have derived costs from
proxemics theory [10], but as commented in [11], proxemics
is focused on scenarios in which people interact, and it could
not be suitable for navigation among people.

Thus, learning these costs and models from data seems
a more principled approach. In the last years, several con-
tributions have been presented in this direction: supervised
learning is used in [7] to learn appropriate human motion
prediction models that take into account human-robot inter-
action when navigating in crowded scenarios. Unsupervised
learning is used by Luber et al., [11] to determine socially-
normative motion prototypes, which are then employed to
infer social costs when planning paths. In [12], a model based
on social forces is employed. The parameters for the social
forces are learnt from feedback provided by users.

An additional approach is learning from demonstrations
[13]: an expert indicates the robot how it should navigate
among humans. One way to implement it is through inverse
reinforcement learning [14], in which a reward (or cost)
function is recovered from the expert behavior, and then used
to obtain a corresponding robot policy.

In [15], a path planner based on inverse reinforcement
learning is presented. As the planner is learned for exemplary
trajectories involving interaction, it is also aware of typical
social behaviors. The authors have also considered inverse
reinforcement learning for social navigation. However, while
in [15] the costs are used to path plans, in [16] the authors
employ these techniques to learn local execution policies,
thus providing direct control of the robot. This can be
combined with other planning techniques at higher levels,
while alleviating the complexity associated to learning.

In this paper, a thorough analysis of the learning procedure
is described, as well as the data used for learning. Two
datasets of person motion in different scenarios are employed
here to learn the cost functions. We study the generalization



of the obtained reward functions by comparing the motion
behavior learned from one scenario when applied in the other
one. We also explore if the combination of the two training
sets improves the general behavior. Furthermore, we propose
a model with a simple set of features on which the reward
function is depending on, and we analyze and compare this
approach with a Proxemics-based cost function.

The structure of the paper is as follows: next section
describes the learning approach of social costs. Then, Section
IV deals with the evaluation of the generalization of the
social cost function and comparison with Proxemics-based
method. Finally, the conclusions and future open lines are
discussed.

II. LEARNING THE SOCIAL COST FUNCTION

The learning of the cost function is accomplished by
using inverse reinforcement learning (IRL, [14], [15]). IRL
assumes that the expert from which we want to learn can be
modeled by a Markov Decision Process (MDP). Formally,
a (discrete) MDP is defined by the tuple 〈S,A, T,R,D, γ〉.
The state space is the finite set of possible states s ∈ S; the
action space is defined as the finite set of possible actions
a ∈ A. At every step, an action is taken and a reward is
given (or cost is incurred). After performing an action a,
the state transition is modeled by the conditional probability
function T (s′, a, s) = p(s′|a, s). At every time instant then
the state is observed. The reward obtained at each step is
denoted R(s, a). A function a = π(s) that maps a state to
an action is called a policy. A policy that maximizes the sum
of expected rewards, or value, earned during D time steps
E[
∑D

t=0 γ
tR(s, a)] is called an optimal policy. To ensure

that the sum is finite when D → ∞, rewards are weighted
by a discount factor γ ∈ [0, 1).

The objective of IRL is to determine the reward function
R(s, a) that the expert is following by observing the expert
acting in the real world, assuming that it is executing a policy
according to the given MDP. In many cases, the reward
function can be assumed to depend on a set of features θ(s),
which are functions of the state.

A. Model

The most relevant aspect of the approach is to define the
MDP model, and, in particular, the state and the features on
which the reward function is depending on. This constitute
the main hypothesis considered here.

In principle, the actions of a person navigating among
other people will depend on the state of all the persons close
to the robot, plus many other factors, like obstacles and the
person goal. However, considering all the persons will lead
to a large (and time-variant in size) state space. In [15], this
is tackled by considering the density and flow direction as
features, and using them at the path planning level.

Here, the model considers the generation of the velocity
controls of the vehicle. Contrary to [15], we parameterize the
state on the local robot/expert frame. This allows reducing
the complexity of the problem. Furthermore, in the model we
consider just pairwise relative motions between two persons

Fig. 2: The state is defined as the relative pose of the person
with respect to the robot, encoded as the relative position of
the person in polar coordinates (d, θ), and the approach angle
ϕ. The actions (linear, v, and angular, ω, speeds) affect how
this state evolves.

(a robot and a person). The state is then defined by the
relative position and orientation of the person with respect
to the robot, encoded as s =

(
d θ ϕ

)T
(see Fig. 2).

As the parametrization is local, the pose of the robot is
not considered into the state space, resulting in a better
coverage with training data and a better generalization for
changing environments. Furthermore, as we are considering
a local navigation planner, it is not required to have a prior
probability distribution over the target positions on the global
map, as required in [15], were social global paths are seek.

The effects of the actions on the state are modeled by
using simple kinematic equations, and are considered to be
deterministic. Uncertainties are added on the person motion
part, sampling several variations on the speed and angular
velocity of the person and determining its future position.
This way, the transition function T (s′, a, s) is determined.

One hypothesis that will be analyzed in this paper is if
the model can be extrapolated to cases with more persons by
means of the cost function learned applied to all the persons
present in the scene.

III. DATASETS AND TRAINING

A. Datasets

As a source of examples on which the pedestrians motion
is extracted, The BIWI Walking Pedestrians dataset2 [17]
has been used (see Fig. 3). It consists of a bird view of two
outdoors urban environments:
• The first proposed scenario (DS1) is a busy sidewalk

next to an hotel entrance in Zurich (see Fig. 3, left).
• The second one (DS2), at the same dataset, is a bird

view of the ETH main building, in Zurich as well (see
Fig. 3, right).

For both scenarios, the positions and velocities of all
persons and the corresponding timestamps are manually
annotated.

2http://www.vision.ee.ethz.ch/datasets/



Fig. 3: Example images of the BIWI Walking Pedestrian
dataset used for learning [17]. Left: hotel entrance. Right:
ETH main building.

In the first scenario, the people are walking along the side-
walk crossing with people walking in the opposite direction,
resulting in two input/output flows of pedestrians in both
sides of the images. By contrast, in the second dataset, the
people flow may appear from anyway of the top and merge
into such narrower corridor.

By considering just local pairwise relative motions be-
tween two persons to learn the social avoiding maneuvers in
the expert local frame, we will have very similar situations in
other scenarios with people. So, we expect that the behavior
learned can be transferred between different scenarios, and
they could be applied to scenarios like the zoo.

B. Training

We consider the algorithm Gaussian Process IRL (GPIRL)
[18] for solving the IRL problem. The main difference with
respect to other IRL approaches is that it employs a Gaussian
Process to learn a non-linear reward function over the feature
space. Thus, the GP allows to extrapolate the learnt reward
function to other state spaces within the domain of the
features considered.

In our case, we employ the dataset to gather the examples
from experts in the task of navigating among persons. Some
persons are selected as ”experts” among the pedestrians that
are moving in the dataset. For each point in the trajectory
followed by the person we extract:

• The state si =
(
d θ ϕ

)T
of the closest person within

the local planning zone. This local environment (see
Fig. 2) is defined as the region used for local planning
on the robot, and it is defined as a rectangular region
of 4x4 meters (4 meters in front and 2 meters at each
side of the robot).

• The action performed by the expert at the same time
instant. In the particular implementation considered, the
action space consists on the linear and angular velocities
ai =

(
v ω

)T
, in order to easily transfer them to the

robot. The angular velocity ω is computed by measuring
the change of orientation between consecutive poses of
the expert.

When the closest person abandons the local planning
region, the trajectory {si, ai}Ni=1 is stored as one episode
for the training phase. A new episode is created for the next
person. In order to have equal experiments, the number of

Fig. 4: Training points from all the episodes for scenario
DS1. Top: Approach angle ϕ vs. distance d in the local
frame. Middle: approach angle ϕ vs. θ. Bottom: polar
coordinates (d, θ) of the closest person in the local frame.

samples is equalized for each episodes, by dividing them in
several if needed.

From each dataset, only moving pedestrians for which at
least one person is within the local planner region for at least
6 time steps are selected as ”experts”. As we want to learn
the task of avoiding people, it is necessary that a pedestrian
exists within the local planning area for a certain number
of time steps. This value has been tuned for these datasets,
and it is a tradeoff between the temporally time horizon of
a training episode for the MDP policy resolution and the
number of trainings that we get with the current datasets.

Furthermore, we impose that these pedestrians have to
move at least 2 meters from their start point. This is an
heuristic filter to ensure that the pedestrian selected as expert
is really moving and he is not just standing at the same place,
i.e. waiting for the bus or for someone, or maybe seeing at
some shop window. Both conditions allow us to focus at
interesting samples of pedestrians making social navigation.
As a result, a training set per dataset is obtained. One of them
is a set of 103 episodes from 51 different persons, and the
other is a set of 47 episodes of 28 different persons. They are
used to learn the reward function and the rest of persons will
be used in the evaluation to validate the estimated function.



Fig. 5: Training points from all the episodes for scenario
DS2. Top: Approach angle ϕ vs. distance d in the local
frame. Middle: approach angle ϕ vs. θ. Bottom: polar
coordinates (d, θ) of the closest person in the local frame.

C. Analysis of the data

Before proceeding with the final details on the learning
data, an qualitative evaluation of the data is described here.

Figure 4 shows the values of the features for the scenario
1 (DS1), the building entrance. It should be recalled that all
the features are computed locally to the expert.

Fig. 4, bottom, shows the polar coordinates of the closest
person in the local frame. Several aspects can be highlighted.
First of all, the closest person can be as close as 0.5 meters,
well within the personal space according to proxemics. It can
be also seen that if the person is below 1 meter it is typically
located at the sides of the robot (θ ∼ 0 or θ ∼ π).

Fig. 4, top, shows the distance vs. approach angle ϕ, and θ
vs. ϕ respectively. What it can be seen there is that typically
in the scenario, the closest person is moving in the same
direction ( ϕ ∼ 0 or ϕ ∼ 2π), while there are less cases in
which the person cross in the contrary direction (ϕ ∼ π).
There are nearly no examples in which persons cross with
different angles, which indicates that persons try to follow
locally the flow of people in terms of direction. Also, it can
be noticed how approaching persons (ϕ ∼ π) are located at
the sides of the robot.

The same aspects can be observed in the training set for
DS2, shown in Fig. 5.

Fig. 6: Actions (linear and angular velocities) of the training
samples for both scenarios DS1 and DS2. The discretization
bins employed are also shown.

D. Discretization

The GPIRL algorithm uses a discrete MDP as model.
Therefore, the state and actions spaces are discretized. The
local space used for the local planner discretized as follows:
• The distance d is discretized into 11 bins of 0.5 meters.
• The relative angle theta ∈ [0 π] is discretized into 6

bins of 0.62 rads.
• The person relative orientation φ ∈ [0 2π) is discretized

into 8 bins of 0.69 rads.
Figure 6 shows the linear and angular velocities of for

all the persons considered as experts in the dataset, for both
scenarios. The angular velocity is computed by looking at the
change of orientation of the linear velocity vector between
two time instants. The action space is discretized considering
the behavior of experts in the dataset (see Fig. 6). As we
are learning how to move among other people, only persons
moving over certain velocity are selected as experts; the
linear velocity is discretized into 8 values in v ∈ [0.7 2.1]
m/s. The angular velocity is discretized in other 11 values in
ω ∈ [−0.5 0.5] rad/s. Finally, in our case the state is used
directly as features to learn the reward function.

IV. EVALUATION

By using the examples and the IRL algorithm, a reward
function is obtained that associates a scalar value to each
state. As a first evaluation of the learnt reward function, we
compare the actions taken by a person of the dataset with the
commands given by the optimal policy obtained by solving
the MDP model described above using the learned reward
function.

The comparison is performed as follows: at each point of
the trajectory of the selected person, the state is computed,
as well as the action that should be applied according to the
policy, and the actual action performed by the person. If the
policy fits perfectly with the person behavior, the actions of
the MDP will be very similar to the actual ones. The actions
from the MDP are not applied so that in the next point the
state is the same in both cases.



TABLE I: IRL-based policy vs. Proxemics-based policy.
Mean errors and standard deviations.

Linear Vel(m/s) Angular Vel(rad/s)

IRL closest PRX closest IRL closest PRX closest

E1 0.267± 0.184 0.363± 0.217 0.078± 0.059 0.094± 0.076

E2 0.329± 0.214 0.371± 0.231 0.100± 0.079 0.102± 0.082

E3 0.300± 0.198 0.367± 0.216 0.086± 0.059 0.094± 0.078

E4 0.255± 0.187 0.279± 0.157 0.074± 0.068 0.111± 0.090

E5 0.280± 0.195 0.361± 0.216 0.074± 0.053 0.095± 0.077

E6 0.258± 0.160 0.269± 0.177 0.069± 0.053 0.089± 0.080

We compute the mean errors in the linear and angular
velocities of each person of the dataset that was not used for
training. In order to eliminate the effects of discretization on
the actions, the actual actions carried out by the person are
also discretized. Furthermore, the calculations are performed
in 6 different cases based on the scenario used to obtain
the pedestrian motions and the scenario used to test the
policy obtained by solving the respective MDP. The first
case is training with the data of scenario DS1 and evaluation
in the same scenario (E1). The same evaluation, but with
scenario DS2, is denoted E2. The two next experiments
evaluate the behavior obtained by training in one scenario
and testing in the other one (Experiments E3 and E4). The
last two experiments (E5 and E6), perform a training mixing
training samples from scenarios DS1 and DS2, and evaluate
the results in both scenarios respectively.

A. Local planning comparison

To evaluate the results of the model presented, we first
compare it with an heuristic cost based on Hall’s proxemics
(PRX) theory [19]. A cost function modeling the personal
space is implemented as two Gaussians distributions as in
[10]. The first function is asymmetric and placed in the front
of the person with σx = 1.20m and narrower space in the
sides σy = σx/1.5. The second Gaussian is placed in the
back of the person with σ = 0.5σx.

A new reward function is then obtained from this cost and
used to determine a proxemics-based policy by solving the
proposed MDP model over this reward. This way, we will
compare both policies in the same way.

The errors committed in all those approaches are presented
in Table I. It can be seen how the learnt reward function (the
IRL-based policy) obtains in mean a closer behavior than the
Proxemics approach. The main difference can be observed
in the linear velocity commands. On the other hand, there
is a large variability on the errors, which indicates that the
model based on just the closest person cannot account for all
the information used by humans to navigate among others.

B. Generalization of one pedestrian model to all pedestrian

In the real world, persons do not move considering just
the closest pedestrian when walking through the streets.
Normally, we take into account all the persons in front of us
up to some meters. This is why the reward function presented
before must be completed with the information from other
pedestrians in the local planning area of the robot. Thus, the

TABLE II: IRL-based policy using just the closest pedes-
trian (closest) and all pedestrians. Mean errors and standard
deviations.

Linear Vel(m/s) Angular Vel(rad/s)

IRL closest IRL all IRL closest IRL all

E1 0.267± 0.184 0.271± 0.189 0.078± 0.059 0.097± 0.076

E2 0.329± 0.214 0.325± 0.217 0.100± 0.079 0.097± 0.076

E3 0.300± 0.198 0.298± 0.190 0.086± 0.059 0.085± 0.067

E4 0.255± 0.187 0.303± 0.199 0.267± 0.184 0.271± 0.189

E5 0.280± 0.195 0.316± 0.190 0.074± 0.053 0.077± 0.064

E6 0.258± 0.160 0.316± 0.204 0.069± 0.053 0.096± 0.080

Fig. 7: Comparison of the different policies and evaluations.
Top: error on linear velocities with respect to the ground
truth actions. Bottom: error on angular velocities. IRL all and
PRX all denote the IRL-based and Proxemics-based policies
respectively, when considering all the pedestrians within the
local navigation area.

previous algorithms are modified such as the action taken
by the robot in this case is the one that maximizes sum of
the value function of the MDP for all the pedestrians on the
local navigation area.

In Table II it can be seen the comparison between the pre-
vious model, considering just the closest pedestrian (closest)
and its generalization to all pedestrians (all). It can be seen
that there are no significative differences with respect to the
previous cases, and even worsens the performance in some of
the cases. These results suggest that just a linear combination
of the proposed model of one pedestrian does not account for
all the necessary features to be generalized to all pedestrians
case and new features should be taken into account.

C. Evaluation in different scenarios

Another aspect that we evaluate is how transferable the
reward function is between different scenarios (DS1 and
DS2) with different conditions such as space, crowd or
crossing directions of pedestrians.



TABLE III: Scenarios comparison. Mean errors and standard
deviations

Scenario DS1

IRL closest Policy DS1 Policy DS2 Policy DS1+DS2

Linear Vel(m/s) 0.235 ± 0.214 0.242 ± 0.210 0.242 ± 0.226

Angular Vel(rad/s) 0.075 ± 0.071 0.064 ± 0.055 0.069 ± 0.063

Scenario DS2

IRL closest Policy DS1 Policy DS2 Policy DS1+DS2

Linear Vel(m/s) 0.254 ± 0.234 0.297 ± 0.205 0.250 ± 0.155

Angular Vel(rad/s) 0.082 ± 0.071 0.093 ± 0.095 0.063 ± 0.055

Table III shows the errors in actions according to the
testing scenario and the scenario in which the policy is
learnt. We also include a mixed policy obtained with training
samples from both scenarios. It can be observed that there are
not relevant differences in the errors between scenarios, and
moreover, the policy obtained from the mixed samples does
not improve the results significantly. The policy learnt in one
scenario can be used in the other. By observing Figures 4 and
5, it can be seen that, in this particular case, both scenarios
are quite similar.

So we consider that a proper evaluation would require
further testing with a greater variety of walking conditions
between pedestrians and the reformulation of some of the
parameters of the model.

Finally, Fig. 7 shows graphically the comparison for all
policies and experiments.

V. CONCLUSIONS AND FUTURE WORK

The paper has analyzed the use of inverse reinforcement
learning to learn cost/reward functions from examples for
the task of navigating among persons. The model employed
and the methodology to extract the cost function from a
public dataset are described. Furthermore, the cost function
is used to derive a navigation policy. This navigation policy
is compared to the original human behavior and a policy
derived from a cost function derived from Proxemics.

The comparisons show that the IRL policy is better than
the policy based on proxemics in all cases. Furthermore, the
costs learnt can be used in different setups. On the other
hand, a simple extension of the model to deal with more
persons in the environment by linearly combining the cost
functions associated to each person worsens the behavior.
Therefore, other features may be more adequate when crowds
are present. Furthermore, the variability of the obtained
behaviors indicates that the model should be refined further.

As future work, we will develop models considering fea-
tures based on densities and flows to compare with this mod-
els and analyzed its behavior. Moreover, we will consider
unsupervised approaches to learn the underlying structure
from the data available and extract exemplary motions.

Furthermore, we will integrate the insights into a real robot
and perform experiments in crowded scenarios, performing

a qualitative evaluation of the robot behavior.
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