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Abstract— This paper proposes extending Monte Carlo Lo-
calization methods with visual information in order to build
a long term robot localization system. This system is aimed
to work in crowded and non-planar scenarios, where 2D laser
rangefinders may not always be enough to match the robot
position with the map. Thus, visual place recognition will be
used in order to obtain robot position clues that can be used to
detect when the robot is lost and also to reset its positions to
the right one. The paper presents experimental results based
on datasets gathered with a real robot in challenging scenarios.

I. INTRODUCTION

The work of this paper is part of larger project, the
project FROG3, that aims to deploy a guiding robot in touris-
tic sites involving outdoor and partially outdoor scenarios.
While robot guides have been developed since more than
a decade [1], the project considers as new contributions
the development of social behaviors and their adaptation by
integrating social feedback, as well as the robust operation in
outdoors crowded scenarios. It aims to demonstrate a long-
term operation of the robot in the Lisbon Zoo and the Royal
Alcazar in Seville (see Figure 1).

Navigating in these crowded places (the Royal Alcazar
may have more than 5000 visits per day) requires a robust lo-
calization system. Achieving long-term localization involves
several issues, like handling of variant environments, error
recovery, efficient place recognition, etc. Furthermore, those
algorithms based on vision and visual place-recognition have
to deal with illumination changes, different weather and
daylight conditions, etc. Besides that, these scenarios may
present a highly variable environment with partial sensor
occlusions due to the visitors, which can cause troubles
to map-based localization using laser readings and dead
reckoning [2].

Scan matching approaches based on 2D lasers are the most
extended localization algorithms, due to their high accuracy
compared to other sensors like ultrasonic sensors, and with
a low processing cost compared to vision sensors [3]. These
algorithms make use of a geometric map and scan matching
to guess the new position of the robot from previous ones and
dead reckoning. Scan matching can handle small variations
in the environment, such as changes of state of doors, but
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Fig. 1. The FROG project aims to deploy a guiding robot with a fun
personality, considering social feedback, in the Royal Alcazar of Seville
and the Zoo of Lisbon. Young visitors surrounding the robot in the Royal
Alcazar, interfering in sensor readings and interrupting robot’s trajectory.

it can perform poorly when large variations are present, as
it can be seen in crowded and dynamic environments like
the Lisbon Zoo and the Royal Alcazar, where people may
approach and surround the robot driven by curiosity (see
Figure 1) or while they are being guided.

Several approaches have been considered to enhance the
robustness of localization systems. Thus, Hentschel and
Wagner [4] and Dayoub and Duckett [5] present in their
works environmental representations for autonomous mobile
robots that continuously adapt over time, inspired by human
memory and storing the current as well as past knowledge of
the environment, using sensory memory, short-term memory
and long-term memory.

Online loop-detection algorithms based on scene-
recognition like OpenFabMap2 [6], DLoopDetector [7], and
others [8] that use structures based on Bag-of-Words [9]
have been presented to look for revisited places, what is
helpful for recovering from localization errors. Corke et
al. [10] present an algorithm for getting invariant images
for long-term localization based on scene appearance. They
describe how to convert different time outdoor colour images
to greyscale invariant ones by considering the response of
the colour channels in trichromatic vision and removing
illumination effect.

These visual algorithms can be easily used to provide addi-
tional localization hypotheses to the pose estimated by using
other sensorial modalities, like laser rangefinders. These new
hypotheses can be used to enhance the robustness of the
localization system. In this paper we propose a localization
algorithm based on a Monte Carlo Localization filter fed with
particles from appearance clues obtained from images, which
will be able to recover from possible errors in localization,
combining the high accuracy of lasers with a re-localization
process.

The structure of the paper is as follows: next section
describes the robotic platform used for tests. Then, Section



Fig. 2. Left: the FROG robot platform. It shows the main platform and
the positions of the sensors. Right: the stereo pair located in the robot eyes
and the touch screen. It can be seen the estimation of persons poses on the
screen.

III presents how ground truth pose was obtained for map
building and for testing our algorithm described in Section
IV for long-term-localization. Paper ends with Section V
detailing experiments done and results obtained and Section
VI details conclusions and future work.

II. THE ROBOT PLATFORM

Figure 2 shows a picture of the robot considered as
deployed in the Lisbon Zoo for a demonstration of its
capabilities. The robot platform consists of a skid-steering
platform, with 4 wheels adapted to the scenarios considered
in the paper. It has an autonomy of two to four hours depend-
ing on the type of ground and the number of embedded PCs
running, up to three. The robot weights 80Kg approximately
and its maximum velocity is 1.6 m/s (software limited to 0.8
m/s).

The robot is equipped with a wide range of sensors
for safety, localization and navigation. Among them, the
following sensors are considered for robot localization and
navigation:

• Odometry is computed by reading encoders and angular
velocities from an MTi-G IMU from XSense

• Three laser rangefinders are considered. Two deployed
horizontally forward and backwards, employed for lo-
calization and obstacle avoidance. The third laser is used
for 3D perception of slopes

• An stereo pair, employed for person detection, robot
pose estimation and 3D perception.

• An additional camera is used for low-range affective
computing of the interacting persons

III. MAP BUILDING

To test the proposed algorithm it is necessary to get a
map of the navigation area with high accuracy. The real
experiments shown in this paper were conducted at the
Lisbon Zoo. Being a GPS-denied place, this scenario requires
a SLAM solution for building an accurate map.

However, the application considered allows for an offline
SLAM solution: the robot can be deployed in the scenario

(a)

(b)

Fig. 3. (a) Loop closures obtained at the Lisbon Zoo (red lines, between
revisited places). It can be also appreciated the typical drift associated to
odometry. (b) Point cloud obtained from the Lisbon Zoo. The height of the
points is color-coded (reddish colors indicating higher ground).

to gather data and a map can be built offline (even though
map management will be needed to add future changes in
the environment). Thus, the map is obtained offline solving
the full-SLAM problem, consists of obtaining the map and
full robot trajectory given all the measurements available.

The full-SLAM problem can be casted as a non-linear
least-squares minimization problem, in which the sensorial
data provides constraints among the different variables of the
problem, typically robot poses and map feature positions.
The non-linear minimization is carried out by the SLAM
back-end. In particular, the backend employed here is g2o
[11], which requires an initial estimation of the values of all
variables, as well as the constraints between them, encoded
as a graph (or hypergraph).

This graph is provided by the SLAM front-end. In our
case, we solve the pose-SLAM problem, where only the
trajectory of the robot is recovered by the SLAM backend.
Our front-end considers odometry and loop closures provided
the algorithm OpenFabMap2 [6] over the images to provide
constraints on the state variables, in this case the robot poses.

After the execution of the previous minimization, an
optimal corrected robot trajectory is obtained. This robot



trajectory is then used to build a map from the sensor data
available. For instance, a 2D or 3D map can be constructed
from the laser scans and the stereo vision system. Figure
3 shows the resulting 3D map of the projected laser for a
trajectory of 1.4 km. at the Lisbon Zoo. It can be seen how
the odometry divergence distorts the map with respect to its
real form and how the loop-closing detection allows refining
the map and obtaining a globally consistent estimation.

However, while the robot trajectory is globally consistent,
the simple projection of sensorial data (for instance, laser
rangefinders, point clouds or stereo data) in the global frame
will lead to maps with slight errors, such as fuzzy walls or
double walls, as the information from those sensors was not
directly considered in the minimization process. Therefore,
a final procedure is used to optimize the resulting map. The
following steps are carried out:

1) A new set of constraints is obtained by performing
scan matching between pairs of laser scans or point
clouds. As an initial good estimation of the poses of the
robot is already available from the initial solution, the
scan matching process is performed not only between
consecutive robot poses, but also between close poses
in space but not in time.

2) The poses are refined by minimizing an error function
for these constraints which depends on the quality of
the alignment of scans.

3) The initial seed for the minimization is provided by
the previous solution.

Figure 4 shows an example of this refinement. The final
resulting map after 2D laser scan integration is shown in
Figure 5. A comparison of laser scan integration and CAD
map is shown in Figure 6. The robot made a complete
exploration of navigable area for map generation, acquiring
data with both frontal and back laser. As can be seen in
the Figure 5, non-permanent obstacles like pedestrians are
eliminated due to data integration when building the map
(only consistent obstacles are included).

IV. LONG-TERM LOCALIZATION ALGORITHM

A. Base localization algorithm

The localization module should provide the robot pose in
6D to the rest of the robot modules. A map-based localization
approach is employed, and therefore this pose is actually the
pose with respect to the map. In particular, a Monte Carlo
Localization (MCL) approach is employed [12]. Particle
filters are very flexible representing arbitrary probability
distributions, and allow the fusion of information coming
from different sensorial inputs, which is relevant for the
approach presented here.

The 6 degree-of-freedom (DOF) pose of the robot is repre-
sented by xt =

[
x y z γ ϕ θ

]T
, where we represent

the orientation by the roll (γ), pitch (ϕ) and yaw (θ) angles.
However, as we are considering a ground robot, the robot
is bounded to navigate on the 2D surface of the scenarios
considered. Thus, the z coordinate is actually dependent on
the x and y coordinates and the map M . Furthermore, the

Fig. 4. Top: map obtained by projecting the information with the
optimized robot pose. Red lines refer to loop closure detection. Bottom:
Map refinement by considering the laser information into the optimization
process. It can be seen how the grass on the top left is correctly aligned.
Also, some trees are much better resolved.

IMU onboard the robot provides a stable solution for γ and
ϕ by using internal filters. In order to reduce the state space
required to be covered with the particles, we consider a
Rao-Blackwellized filter [13], in which the current 2D pose[
x y θ

]T
is tracked by using a particle filter, while the

height z is tracked by means of a Kalman filter (and the roll
and pitch angles are provided by the IMU).

Therefore, our distribution probability on the pose of
the robot is represented by a set of ω-weighted particles
〈x[i]t , y

[i]
t , θ

[i]
t , z̄

[i]
t , σ

[i]
z,t, γ, ϕ, ω

[i]〉. These particles are up-
dated by using the information coming from the odometry
measurements (linear and angular velocities) and the laser
rangefinders of the robot (see Algorithm 1, lines 6 to 9 for
odometry prediction, and 17 to 18 for updates). The height
is then updated in lines 10 and 11 by considering the height
map hM (x, y) built during the mapping phase by discretizing
the XY plane and determining the height at every cell. In
principle, this map may suffice to determine the height of the
robot given its x and y coordinates. However, we integrate
the estimation based on the odometry and that on the map
in order to smooth the height estimation in case of coarse
height maps.

B. Appearance-based particle injection

The resampling process and occlusions of laser rangefind-
ers may introduce errors in localization in certain executions
[14], causing the particle filter to diverge or to converge
to wrong locations. Intelligent re-sampling techniques can
be used to limit these effects [15], but they cannot be



Fig. 5. Resulting occupancy grid map of Lisbon Zoo after 2D laser scan
integration.

Fig. 6. 2D occupancy map of the Lisbon Zoo overlaid on a CAD drawing
of the Zoo.

completely avoided. For that reason we propose to extend the
base algorithm in order to use information from sensors of
different modalities than the laser rangefinders. In particular,
the main idea is to introduce appearance information coming
from the images by using the algorithm OpenFabMap2 [6].
OpenFabMap2 is a probabilistic framework for appearance
based navigation and mapping using spatial and visual ap-
pearance data based on a bag-of-words approach to detect
loop-closures. As OpenFabMap2 does not implement any
treatment for illumination variances, it is necessary to record
data at different hours or even weather seasons to improve
the accuracy of matches.

Algorithm 2 summarizes the idea. During the mapping
stage detailed in Section III, left images from the stereo
pair are gathered at regular space intervals and included
into the OpenFabMap2 database tagged with their respective
positions. This database is loaded and used in a modified
OpenFabMap2 algorithm, that will compare the present im-
age It with the stored database, which is not modified during
execution. If a match between images It and image Ik of the
database is detected (Figure 7), the algorithm will evaluate
the pose error between the current robot pose (according to
the most-likely particle) and the stored pose of Ik. If the error

Algorithm 1 Base Localization Algorithm

1: 〈x[i]t , y
[i]
t , θ

[i]
t , z̄

[i]
t , σ

[i]
z,t, γ, ϕ, ω

[i]〉Li Current state of the
filter /* Prediction stage */

2: if Odometric measurement ut =[
v θ̇ γimu ϕimu

]T then
3: ϕ← ϕimu
4: γ ← γimu
5: for i = 1 to L do
6: 〈x[i]t+1, y

[i]
t+1, θ

[i]
t+1〉 ← sample kinematic model

(x
[i]
t , y

[i]
t , θ

[i]
t ,ut,∆t)

7: v
[i]
g = R(γ, ϕ, θ[i])

[
v 0 0

]T
8: ẑ

[i]
t+1 = z̄

[i]
t + ∆tv

[i]
g,z

9: σ̂
[i]2
z,t+1 = σ̄

[i]2
z,t + σ2

10: z̄
[i]
t+1 = z̄

[i]
t −

σ̂
[i]2
z,t+1

σ̂
[i]2
z,t+1+σ

2
z,M

(z
[i]
t − hM (x

[i]
t , y

[i]
t ))

11: σ̄
[i]2
z,t+1 =

σ̂
[i]2
z,t+1σ

2
z,M

σ̂
[i]2
z,t+1+σ

2
z,M

12: ω
[i]
t+1 = ω

(i)
t N (ẑ

[i]
t+1;hM (x

[i]
t , y

[i]
t ), σ̂

[i]2
z,t+1 + σ2

z,M )
13: end for
14: end if
15: if Laser measurement zt then
16: for i = 1 to L do
17: Compute likelihood p(zt|x[i]t+1, y

[i]
t+1, θ

[i]
t+1,M)

18: Update weight ω
[i]
t+1 =

p(zt|x[i]t+1, y
[i]
t+1, θ

[i]
t+1,M)ω

(i)
t

19: end for
20: end if
21: Normalize weights {ω(i)

t }, i = 1, . . . , L
22: Resample if necessary

Fig. 7. Matching between images.

is over a predefined threshold for position and orientation
some particles will be injected into the current sample set.

The process of Particle Injection consists of replacing the
pf th less significant particles, where pf th is a percentage
of the current number of particles in the particle set (value
of 1% in tests done), by new particles generated from a
Gaussian distribution centered at the pose where the image
Ik was taken, and a new predefined weight winjected relative
to maximum weight in the present set of particles (value of
50% in tests).

The Particle Injection is done in the base algorithm before
evaluating the laser measurements (before line 15 in Algo-
rithm 1), so the new inserted particles will get their weights
updated according to the likelihood described of the laser



Algorithm 2 Particle injection based on OpenFabMap2 place
recognition

1: BoW database 〈xi, yi, θi, BoWi〉
2: if New image It then
3: Extract BoWt from It
4: if match between present BoWt and BoWk from

database then
5: Evaluate error in pose
6: if Error in position > thresholdposition OR error

in orientation > thresholdorientation then
7: Substitute pf th% particles with others dis-

tributed with center pose 〈xk, yk, θk〉 and weight
winjected

8: end if
9: end if

10: end if

measurements. After this, the algorithm will continue with
the resampling process, favoring the particles with higher
weights. This process of injection will not affect the particles
with highest weight if the robot is well localized, allowing
the localization module to have a permanent and fast re-
covery process from errors in localization and kidnapping
problem (in Figure 2 can be seen that recovery time is in
order of 17 secs in worst case).

V. EXPERIMENTAL RESULTS

This section details a set of experiments conceived to
validate the proposed method. The robot sensors (lasers,
cameras, odometry, ...) were recorded for one hour ap-
proximately while navigating 1.5 km. at the Lisbon Zoo,
a challenging scenario with slopes, vegetation and non-
structured information. This dataset is different than the
one used to build the map and the position-tagged images
for place recognition. The experiments will evaluate how
the localization accuracy is improved when visual place
recognition is integrated into the MCL algorithm.

In order to measure the localization accuracy of the
algorithms, a ground truth robot pose is computed by using
two 2D laser scanners covering 360 degrees surrounding the
robot and executing MCL using 5.000 particles. The pro-
posed algorithm (Particle Injection) and the base localization
algorithm (called plain MCL) are tested against this ground
truth data using the front laser and the cameras onboard.
Different low cost lasers and the effect of crowded scenarios
are simulated by decreasing the maximum range of the lasers.
Tests are done by running 6 times both algorithms for one
single frontal laser of 5m, 10m, 15m and 20m as maximum
range.

Figure 8 shows the mean absolute error in position and
orientation of the six trials with different laser configuration
for both Particle Injection and plain MCL with respect to
the ground-truth trajectory. It can be seen how the proposed
approach have smaller mean errors than MCL and, more
importantly, that MCL had to be manually recovered when

TABLE I
MEAN MANUALLY RECOVERIES (TIMES PER TEST)

Test (Max Laser Range) MCL MCL + Particle Injection
5m 2.5 0

10m 0.83 0
15m 0.66 0
20m 0 0

TABLE II
MEAN AND STD. DEVIATION FOR POSITION AND ORIENTATION ERROR

FOR MCL

Max Laser Range MCL
position error (m.) orientation error (rad.)

5m 10.73± 13.64 0.20± 0.33
10m 10.39± 19.74 0.20± 0.35
15m 2.27± 6.87 0.08± 0.19
20m 2.83± 6.18 0.12± 0.24

necessary in every configuration test, while our particle
injection algorithm did not need to be manually recovered.

It can be seen in Figure 8 how Particle Injection gives a
fast and strong recovery even in the worst scenarios of laser
occlusion and people surrounding, dramatically reducing the
mean number of times the robot get lost down to zero. This
information is summarized for different laser rangefinder
maximum distances in Table I. As expected, the shorter is
this distance, the greater is the probability to get the robot
lost.

Tables II and III presents the computed mean errors of
all the trials for each laser configuration with respect the
trajectory ground-truth for both, Plain MCL (Table II) and
with particle injection (Table III). It can be seen that the
errors stay close to 1 m. in position and 0.01 rad. in
orientation for all the laser configurations for the proposed
algorithm, while the errors in position are very large in the
case of the plain MCL when laser is limited to 5 and 10
meters.

VI. CONCLUSIONS AND FUTURE WORK

The paper presented an algorithm to integrate visual place
recognition and Monte Carlo Localization in order to provide
a more robust localization of the robot in crowded and non-
planar scenarios. The method allows injecting particles in the
close loop candidates, checking the position hypotheses with
the measured laser.

The experimental results with datasets show that the
method behaves correctly and dramatically reduce the mean
number of times the robot get lost, with the corresponding
impact in position accuracy and reliability.

Future work related with this algorithm may include the
analysis of navigation area and the realization of different
models of distribution probability for particles in different
areas of the map. In this approach Gaussian model has
been used as distribution, but in corridors should be more
efficient use of distributions that grow along them, making
distribution more elongated in the direction of corridor and
shorter in the cross direction. Same analysis can be done
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Fig. 8. Mean position error (left) and mean absolute orientation error (right) comparison between MCL (blue) and Particle Injection Algorithm (red) of
6 simulations done for each laser configuration. MCL was supervised and manually recovered when lost. All manual recoveries are represented in these
graphics (a point is shown if at least 1 of the 6 simulations got lost at that point). It can be see the impact on the mean errors. Mean manual recoveries
are presented in Table I for each laser configuration.



TABLE III
MEAN AND STD. DEVIATION FOR POSITION AND ORIENTATION ERROR

FOR AMCL + PARTICLE INJECTION

Max Laser Range AMCL + Particle Injection
position error (m.) orientation error (rad.)

5m 1.95± 6.59 0.08± 0.19
10m 1.27± 5.14 0.05± 0.14
15m 1.04± 4.85 0.04± 0.13
20m 1.10± 6.55 0.037± 0.10

for other areas, taking into account how people walk and
distribute in this crowded environment, areas like patios,
large rooms and others of interest and also with information
about typical planned tours for visitors.
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