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Abstract: The paper presents a system for cooperative fire detection by means of a
fleet of networked heterogeneous UAVs. A grid is used to represent the probability
of having fire in a certain position within a given area. Different sensors are
considered: infrared and visual cameras and a specialized fire sensor. A Bayesian
approach is followed for the integration of the sensor readings and the evolution
of the grid as new information is available. The paper presents results from actual
field experiments of small controlled fires. Copyright c©2006 IFAC.
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1. INTRODUCTION

Multi-robot teams have been object of research
during the last decade. Recently, research results
on teams of Unmanned Aerial Vehicles (UAVs)
have been presented (Ollero et al., 2005).

Cooperative perception is a main issue for net-
worked robot teams. We could define cooperative
perception as the collaboration between the net-
worked robots for the estimation of the state of
the environment, by sharing information or even
by developing cooperative actions.

Data fusion procedures are needed to take advan-
tage of the presence of several information sources.
Moreover, in a team of heterogeneous UAVs, the
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vehicles will carry sensors of different nature, due
to their different characteristics in terms of pay-
load and others. Therefore, the fusion algorithms
have to cope with different kinds of information.

Grids have been widely used as a method for single
and multi-robot localization and mapping tasks
(Thrun, 2001), and also for data fusion (Stepan et
al., 2005). This paper presents a grid-based data
fusion algorithm for multi-UAV cooperative fire
detection. The algorithm considers different types
of data (images of different modalities and fire
detector readings). A Bayesian approach is used
to compute the evolution of the grid each time
new data are available. This approach does not
need explicit data association, being more robust
than other methods that require the notion of
contacts. Although the techniques are applied for
fire detection, the same scheme can be used for
other applications.



Fig. 1. Two UAVs looking for a fire.

The paper presents results from field experiments,
in which the objective is that a group of networked
UAVs search a given area looking for fire alarms.
If a potential alarm(s) is detected, the fleet should
confirm or discard it, taking benefit of the di-
versity of sensors. The fleet should also provide
the geographical position of the alarm. Each step
implies some replanning mechanism and usually
involves new paths for the robots. Figure 1 shows
a photography of these experiments.

The rest of the paper is organized as follows.
Section 2 presents the sensors considered and the
preprocessing applied over the raw data. Section
3 describes the grid-based data fusion algorithm.
Finally, Section 4 presents results from the field
experiments.

2. SENSORS AND PREPROCESSING

The fleet considered in this paper is heterogeneous
in terms of the different kind of sensors carried by
the vehicles. One of the vehicles, the autonomous
helicopter MARVIN of the Technical University
of Berlin (TUB) (Remuss et al., 2002) carries a
fire sensor, which is a photodetector adjusted to
respond to ultraviolet radiations characteristic of
fire emission. The sensor gives a scalar measure-
ment proportional to the radiation received. These
raw values are thresholded obtaining a binary
value that indicates if there is fire within the field
of view of the sensor or not.

The helicopter HELIV (Ollero et al., 2003) carries
on board cameras of different modalities (infrared
and visual). A fire segmentation algorithm is ap-
plied over the images before data fusion. Using
the algorithm, both kind of images, infrared and
visual, are transformed into binary images con-
taining pixels classified as fire and pixels classified
as not fire. These algorithms are not described in
this paper. In (Mart́ınez-de-Dios and Ollero, 2004)
and (Phillips et al., 2002) the algorithms for seg-
mentation on IR and visual images respectively
are presented. Figure 2 shows one infrared image
as obtained by one of the vehicles.

Fig. 2. One infrared image of a scene with a fire.

Table 1. Preprocessed data characteris-
tics

Fire sensor IR Visual

PD 95% 100% 90%

PF 5% 10% 3%

As it will be seen, the Bayesian approach requires
to characterize each sensor by its likelihood func-
tion, which mainly depends on the probabilities
PD of detection and PF of false positive outputs.
For the case of the fire sensor, this probabilities de-
pend on the threshold selected. A higher threshold
gives lower values of PF but reduces the detection
capabilities (PD). The operating curve relating
these values has been obtained using data from
actual experiments with fire.

The image segmentation algorithms have also
been analyzed with a large set of images to de-
termine the values of PD and PF . Table 1 shows
the values for the algorithms used for fire segmen-
tation in visual and infrared images.

The sensors considered have different localization
characteristics (that is, how much information a
sensor provides about where a fire is). In the case
of the fire sensor, the localization characteristics
are poor, because it only provides a statement
indicating the presence or absence of fire within
the field of view of the sensor. In the case of the
cameras, the localization capabilities are better,
because cameras provides bearing measures. In
the next section, a more detailed perception model
of the sensors will be presented.

3. GRID-BASED COOPERATIVE ALARM
DETECTION AND LOCALIZATION

This section presents the algorithm used for co-
operative fire detection and localization. A digital
elevation map is assumed to be available (which
could be provided by other UAV (Hygounenc et
al., 2004). The 3D terrain surface is discretized
using a 2D grid. Each cell i of the grid has a 3D
associated position xi and a probability p(hi) of
containing fire. That is, each cell has associated a
Bernoulli binary random variable, hi. We denote
by hi the fact that there is fire at cell i and by
h̄i the fact that there is no fire at cell i, so that
p(hi) = 1 − p(h̄i).



3.1 Generic equations of the evolution of the grid

The cells of the grid are evolved using a prediction-
update cycle. Let Sk+1 = {S0, . . . ,Sk+1} be the
set of all data gathered up to time k + 1. The
objective is to estimate, at time k+1, the posterior
p(hi,k+1|S

k+1) for all the cells of the grid, that is,
the probability of having fire at each cell i at time
k+1, conditioned on the data. These data consists
of fire sensor readings or segmented images.

This posterior probability can be written as:

p(hi,k+1|S
k+1) = p(hi,k+1|Sk+1,S

k) (1)

By the Bayes rule:

p(hi,k+1|Sk+1,S
k) =

p(Sk+1|hi,k+1,S
k)p(hi,k+1|S

k)

η
(2)

where

η = p(Sk+1|hi,k+1,S
k)p(hi,k+1|S

k)+

+p(Sk+1|h̄i,k+1,S
k)p(h̄i,k+1|S

k)
(3)

and p(h̄i,k+1|S
k) = 1− p(hi,k+1|S

k) It is assumed
that the measures at different time instants are
independent, so that

p(Sk+1|hi,k+1,S
k) = p(Sk+1|hi,k+1) (4)

and the same applies for p(Sk+1|h̄i,k+1,S
k). The

term p(hi,k+1|S
k) is computed from the informa-

tion we have at time k, p(hi,k|S
k) using equation

5:

p(hi,k+1|S
k) =

∑
j

p(hi,k+1|hj,k)p(hj,k|S
k) (5)

where p(hi,k+1|hj,k) is the transition probability,
that relates the probability of having fire at cell
i if there is a fire at cell j the previous time
instant. Thus, we state the dependency of hi,k+1

on the full previous grid, and not only in the
state of the cell hi,k. The transition probability
p(hi,k+1|hj,k) can take into account the neighbor
relations between cells. This motion model de-
pends on the application. For the fire application,
and if nothing is known in advance (for example,
the wind direction, which could be included in the
model), this model consists of a smoothing of the
probabilities in the grid, with equal probability
of the fire propagating in all directions. Also, the
slope of the terrain could be taken into account in
the transition model.

So, if no new data are available, the information
up to time k+1 is given by the prediction equation

5. Each time new data arrive from a vehicle of the
fleet, the information is updated using equation 3.

The term p(Sk+1|hi,k+1) is the measurement
model, the likelihood function. It indicates the
probability of having data Sk+1 considering that
there is fire in cell i at time k + 1. The data Sk+1

consist of all the data gathered by the vehicles of
the fleet at time k + 1. The measurements by the
different sensors are considered to be independent,
and thus

p(Sk+1|hi,k+1) =
∏
j

p(Sj,k+1|hi,k+1) (6)

being j and index over all the sensors that provide
data at time k + 1.

The different terms in equation 6 will take into
account the position of the sensors respect to
the map and the geometric characteristics of the
distinct sensors. The latter are obtained through
calibration, while the former will be provided by
the vehicles. For a correct update of the grid,
it is very important to take into account the
uncertainties in the position measurements.

At time k + 1, for each sensor j, the hardware on
board the UAVs provide an estimation of the po-
sition tj,k+1 and orientation of the sensor Rj,k+1

in a global coordinate frame. We will denote this
attitude data by qj,k+1. Each vehicle also provides
an estimation of the errors on these quantities
up the second order (the covariance matrix of
these errors). The errors on the position data
are taken into account when computing the like-
lihood. Thus, each factor in equation 6 becomes
(the time index is removed from now on, unless
necessary):

p(Sj |hi) =

∫
p(Sj |hi,qj)p(qj)dqj (7)

Equivalent equations to 6 and 7 are used to
compute p(Sj |h̄i).

3.2 Measurement equation for the fire sensor

After the preprocessing step, the sensor provides
a binary decision stating if there is fire within its
field of view or not. The field of view of the sensor
is characterized by two aperture angles (vertical
and horizontal) and a maximum range.

The model p(Sj |hi,qj) is defined by the probabil-
ities PD,j and PF,j of Table 1. These probabilities
are modified depending mainly on the relative
position of the cell i, xi, respect to the position
and orientation of the sensor (qj). Thus:



Fig. 3. Scheme of the fire sensor measurement
model
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Fig. 4. Plots of equations 8 and 9. Left, angular
component, right, distance component. Solid,
PD, dotted, PF

PD,j(xi,qj) = PD,j − wD,j(d
2
ij , θij , αij) (8)

PF,j(xi,qj) = PF,j − wF,j(d
2
ij , θij , αij) (9)

where wD,j and wF,j are functions that decrease
the values of PD,j and PF,j with the distance
between cell i and sensor j, dij , and the angles
that form cell i respect to the sensor j heading,
θi,j and αi,j (see Figure 3). Figure 4 shows a plot
of these functions.

If the sensor detects fire, then the model is:

p(Sj |hi,qj) = PD,j(xi,qj) (10)

p(Sj |h̄i,qj) = PF,j(xi,qj) (11)

If the sensor does not detect fire, then the model
becomes:

p(Sj |hi,qj) = 1 − PD,j(xi,qj) (12)

p(Sj |h̄i,qj) = 1 − PF,j(xi,qj) (13)

The evaluation of equation 7 can be done drawing
samples from p(qj). The main effect of equation
7 applies over the boundary of the field of view.
However, in the particular case of the experiments
presented, the UAV that carries the fire sensor has
very good positioning capabilities, and then the
effect of the uncertainties in qj are neglected.

3.3 Measurement equation for the cameras

As a result of the preprocessing step, the data pro-
vided by the cameras are binary images in which
true pixels indicate presence of fire, regardless the
modality of the cameras.

The measurement function of the camera consid-
ers the pin-hole projection model. Each cell has a
position associated, xi, and the center of the cell
will correspond to a pixel mj,i on the image plane
of camera j (if it is within the field of view of
the camera). If xi and mj,i are in homogeneous
coordinates, the position of the pixel is given by

smT
j,i = Aj [Rjtj ]xi = f(qj ,xi) (14)

where Aj is the internal calibration matrix of
camera j. This matrix is obtained for every cam-
era using a calibration procedure. Rj and tj are
the rotation and translation that refers the camera
coordinate system and the global reference frame,
and are provided, as said before, by the hardware
on board the UAV.

To compute the likelihood p(Sj |hi) , equation 7
should be integrated for all possible values of qj .
And this should be done for all the cells of the grid
that are within the field of view of the camera. In
this case is very important to take into account the
uncertainties in qj , because the camera provides
much more information about the location of the
fire.

The direct solution of equation 7 using Monte-
Carlo like procedures is computationally hard.
Instead of directly solving equation 7, the un-
certainties in qj are propagated into uncertain-
ties on the pixel position mj,i through the non-
linear function f . This is done using the Unscented
Transform (Julier and Uhlmann, 1997) (and actu-
ally, also the uncertainties in the position xi due to
the resolution of the grid are taken into account).

Then, equation (7) becomes:

p(Sj |hi) =
∑
m

p(sj |mj,i)p(mj,i) (15)

The term p(sj |mj,i) corresponds to equation 10 if
pixel mj,i corresponds to a region segmented as
fire, while if the pixel is classified as background,
then the term is given by equation 12. The same
approximation is used to compute p(Sj |h̄i).

For the cameras, the weighting functions wD,j and
wF,j in equations 8 and 9 only depend on the
distance of the cell to the camera dij , and not
on the relative orientation angles.

3.4 Obtaining measures from the grid

Using the equations described above, the status
of the grid is recursively estimated using the data
the vehicles are providing.

From a Bayesian point of view, the grid represents
all the information about the possible fire alarms



Fig. 5. A view of the scenario from MARVIN
helicopter

at time k+1. However, in some applications, more
specific measures are required. For instance, if a
fleet is looking for fire alarms, a control center
would expect the position of the potential fire
alarm detected, in order to plan a new mission,
sending new vehicles to confirm the alarm. Also,
we will use this value to compare it with the po-
sition of the fire recorded with GPS for validation
purposes.

This can be accomplished in various ways. In this
case, the set of cells of the grid with probabilities
over a given threshold is obtained every T seconds.
An alarm is raised for each set R of connected cells
over this threshold. The position of the alarm is
computed as the weighted geometric mean of the
positions of the cells.

µR =

∑
i⊂R xip(hi|S)∑

i⊂R p(hi|S)
(16)

Also, it can be obtained an estimation of the
uncertainty on the computed position from the
second order moments of the region R.

4. EXPERIMENTAL RESULTS

4.1 Description of the experiments

The techniques described has been tested during
field experiments involving several heterogeneous
UAVs, in the frame of the COMETS project
(Ollero et al., 2005). The cooperative perception
functions have a role in a more general mission
of fire searching and confirmation, that also in-
volves multi-robot path planning, coordination
and other aspects not covered in this paper.

Figure 5 shows the scenario of the experiments
as seen from autonomous helicopter MARVIN.
During the experiments, a fire will be set up
within the scenario. The scenario considered is a
square of side-length of 400 meters approximately.
The controlled fires used in the fire detection tests
are originated by the burning of small shrubs. The
fire position is previously recorded using a GPS
receiver, as ground truth.

Fig. 6. General scheme of the mission considered.

A grid with resolution of 1 meter is defined over
the scenario. The terrain is mostly planar, whose
altitude is known. However, the method could be
also used with any kind of terrain.

In the experiment presented, two UAVs, MARVIN
and HELIV, are considered, one carrying a fire
sensor and the other carrying an infrared camera.
In the experiment, first MARVIN is sent, looking
for potential fire alarms using the fire sensor.
Then, if a possible fire alarm is raised from the
grid, HELIV is sent over the position and both
vehicles cooperate to confirm the alarm and to
obtain the position of the alarm more precisely.
If the alarm is confirmed, the mission continues
initiating a monitoring phase not described here.
Figure 6 shows a scheme of this mission.

4.2 Experimental results

Figure 7 shows the evolution of the grid in several
phases of the experiment. The first image shows
the status of the grid after MARVIN has flown
over a place with no fire, using only the fire sensor.
The second image shows how MARVIN produces
two big high probability blobs on the grid, one due
to a false alarm and other due to the actual alarm.
Two alarms are generated and HELIV takes off
and uses its IR camera over the zone of the
possible alarms. The third image shows how after
several images and fire sensor data are integrated,
the high probability region is constrained to a
smaller region, which includes the actual position
of the fire.

Figure 8 shows the evolution of the position of the
high probability regions computed using equation
16 compared to the actual fire position. It also
shows the estimation on the uncertainty on the
computed position.

Regarding the implementation issues, the grid fu-
sion part of the algorithm is run in a centralized
node. However, the preprocessing part (that is,
the segmentation of the images and sensor pre-
processing) is performed distributively, and each
vehicle sends to the fusion algorithm the prepro-
cessed data. This way, the bandwidth required to
transmit the data is drastically reduced.



Fig. 7. The status of the grid at three moments
during the mission. The filled square repre-
sents the actual position of the fire.
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Fig. 8. Estimated mean position of one of the
high probability regions. Dotted: estimated
variances. Dash-dotted: actual fire position.

5. CONCLUSIONS AND FUTURE TRENDS

The paper shows how several different sensors can
be integrated employing a probabilistic represen-
tation and a grid. It is assumed that the UAV are
able to provide their positions in a global frame
(in the experiments, GPS and compass are used to
compute this global frame). For the proper work-
ing of the algorithm, it is very important to take
into account the uncertainties in the UAV local-
ization while updating the grid. The algorithm is
tested in field conditions, and experimental results
of actual flights with small controlled fires are
presented.

A fully distributed version of the algorithm can be
devised. Each vehicle could maintain and update
a local grid, and include information from other
robots of the fleet that can be broadcasted using
the network established.

Also, this algorithm can be considered within a
multi-UAV planning framework. In the COMETS
project, the results from the detection functions
are used to launch replanning in the mission. How-
ever, the grid itself provides more information,
and can be used for intelligent path planning for
exploration and other applications.
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