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Summary. This Chapter is devoted to the cooperation of multiple UAVs for environ-
ment perception. First, probabilistic methods for multi-UAV cooperative perception are
analyzed. Then, the problem of multi-UAV detection, localization and tracking is de-
scribed, and local image processing techniques are presented. Then, the Chapter shows
two approaches based on the Information Filter and on evidence grid representations.

4.1 Introduction

Applications such as natural and human made disasters scenarios, search and
rescue, law enforcement, aerial mapping, traffic surveillance, inspection or cine-
matography require robust and flexible perception systems [31]. These percep-
tion systems use the sensors on-board the UAVs to perceive the environment,
estimate the situation of an event and/or the own state of the robots.

In the case of the team of robots, one can do better than a robot perceiving
alone. The information that each robot obtains about the environment can be
shared to improve the perception, so that each robot obtains a better picture
of the world than if it would be alone. Moreover, from the perception point
of view, the robots can explicitly cooperate, developing actions to collect data.
Thus, cooperative robot perception could be defined as the collaboration inside
a fleet of robots for the estimation of the state of the environment, by sharing
information or even by developing cooperative actions.

In this chapter we consider multiple heterogeneous UAVs in cooperative per-
ception activities (Fig. 4.1 illustrates a possible scenario). The heterogeneity in-
creases the complexity of the problem, but also provides several advantages for
the application such us the possibility to exploit the complementarities of differ-
ent UAV platforms with different mobility attributes and also different sensor and
perception functionalities. It should be noted that many applications require sev-
eral sensors that cannot be carried by only one UAV due to payload limitations.
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Fig. 4.1. Different moments during a fire detection mission using three UAVs

In these cases the cooperation between the UAVs, equipped with different sensors,
should be established also at a perception level.

4.1.1 Main Issues

When considering multi-robot perception, there are several important issues that
should be addressed.

Knowledge representation and information fusion. Robots will use their
sensors to update their knowledge. This knowledge is usually arranged into a
hierarchy from lower to higher abstraction levels, ranging, for instance, from
the raw sensor readings, estimations of the own robot position and velocity
or the position of the surrounding obstacles to the estimation of the shape
or appearance aspects of an object or the identity of a particular object.

If the robots can communicate, then the information received from other
robots can be fused with the local one to improve this knowledge. Information
fusion is, then, a key issue in a cooperative perception system.

Information fusion requires to translate the received information to the
same local representation. Therefore, the general fusion architecture will
affect the local representation employed by each robot. Also, related to that is
the problem of data association, that should be solved in order to determine
if two robots are referring to the same part of the world.

Fusion rules should lead to an improved knowledge about the world, but
care should be taken to avoid rumor propagation in the case of decentralized
systems. This can occur within a fleet of robots, and can lead to overopti-
mistic estimations.

Cooperation. Robots use locally the perception estimates to react under a
changing world and even to develop plans if they are endowed with decisional
abilities. These actions can include information gathering tasks that improve
the local knowledge of the world, like visiting unknown zones or moving to
better points of view. Moreover, the robots can coordinate themselves and
even cooperate in these tasks. In this case, it should be considered metrics
about the gain of information that the actions of a particular robot of the
fleet produce from the point of view of perception.
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4.1.2 Approach and Outline

The framework that will be used for knowledge representation is probability the-
ory. It is accepted that any system capable of uncertain reasoning is generally more
robust that other one that does not [46]. So, the perception algorithms should be
able to handle uncertain data, and to maintain information about this uncertainty.
In the last decade, probabilistic algorithms have become one of the most promi-
nent tools for uncertain reasoning among roboticists. In probabilistic perception,
the current knowledge is represented by a probability distribution that assigns to
each possible value of the state space a probability, the belief state.

Regarding the multi-robot perception architecture, the first decision is whether
the information gathered by the fleet is combined in a purely centralized fashion
(all the data collected in a central node that builds a world representation) or in a
decentralized manner, in which each robot compounds its own model and commu-
nication occurs at a higher level. Also, the architecture considered could be some-
thing in between these two extremes. Of course, the solution depends on several
issues, like the physical communication layer available, the local processing power
of the robots, the tasks to be accomplished, the structure of the environment, the
autonomy with which the individual robots should be endowed, etc.

In general, centralized solutions can provide optimal solutions, but they do
not scale well with the number of robots. Therefore, the proposed multi-robot
perception architecture is decentralized, in which each robot builds its own local
(and possibly partial) representation of the world, which is described by the belief
state. Then, the robots will share their beliefs, and include the beliefs received
from other robots in order to improve their knowledge. No central node is re-
quired, although the information is transmitted to a central station for planning
and replanning activities, operator visualization, etc.

The rest of the Chapter is organized as follows. The probabilistic framework
for decentralized perception is summarized. This framework will be applied for
cooperative detection, localization and tracking. The main sensors considered
are video cameras. Then, the local processing techniques employed by the UAVs
are described. A first approach, based on the information filter, is presented.
Finally, a grid-based approach for fusion of heterogeneous sensors is described.

The perception system (see [25] for a more detailed description of the software
system), together with the decisional architecture presented in Chap. 2, allows
for cooperative detection, confirmation and localization of events of interest.
Chapter 8 will present the application to forest fire detection. This is a very
relevant application in many countries where forest fires have disastrous social,
economic and environmental impact.

4.1.3 Related Work

An important part of the work on multi-robot systems has been focused on
the development of architectures for robot coordination. Several architectures
have been summarized in Chap. 2. In general, these architectures focus on task
planning, task allocation, coordination, planning and control, conflict resolution,
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etc. Although a group of robots can coordinate with no or little communication
[24, 4], all in all the previous architectures require communication of actions,
plans, tasks, which can be interpreted as a kind of information sharing. However,
the knowledge sharing problem and its implications on robot coordination are
not explicitly considered in most of those approaches.

Of course, there have been applications of robot teams for distributed and/or
cooperative perception activities. For instance, in the task of map making [39, 38,
15, 5]. More recently, approaches including cooperative multi-robot Concurrent
Mapping and Localization (CML) have been presented [11, 47].

Other applications include multi-robot surveillance. For instance, the objec-
tive of the CyberScout project [35] is the development of a network of robots for
reconnaissance and surveillance operations. Multi-robot target tracking is consid-
ered in several multi-robot systems, like [33, 44]. More recently, Howard [19] has
described results within the DARPA Software for Distributed Robotics initiative
with an heterogeneous team of near 80 robots in indoor experiments. Mapping
activities, SLAM and cooperative detection of intruders are applications consid-
ered. In the context of Robocup several cooperative perception results have also
been presented, as for instance [43, 52, 36].

Many of the applications are ad-hoc algorithms for combining data from sev-
eral sources. The different approaches differ in the way they represent the in-
formation, how the data is communicated and fused, and the network topology
(centralized or distributed). References [28, 33] deal with issues of decentralized
information fusion employing probabilistic techniques.

Most previous approaches are applied in structured environments. Regarding
unstructured environments, less work can be identified. Moreover, the applica-
tion of cooperative perception for teams of UAVs are more rare than in teams
of ground robots.

In the BEAR project [50], pursuit-evasion games involving UAVs and Un-
manned Ground Vehicles (UGVs) are considered. A probabilistic framework is
employed for obstacle and evaders position estimation by the fleet of pursuers
(UAVs), and to determine pursuit polices [51]. In this case, the data fusion and
policy determination are carried out by a central node.

Closest to part of the work presented here is the work described in [45] devel-
oped in the framework of the ANSER project. In that project, an architecture for
multi-vehicle data fusion is designed, and its application to multi-UAV SLAM
using vision is presented. State estimation is performed distributelly using the
information form of the Kalman filter. Each vehicle uses the information received
to update its state and its local map. The map information (represented as the
location of a discrete set of landmarks) estimated for each vehicle is propagated
to the rest of the fleet. In this work, artificial landmarks of known size are used in
order to obtain range and bearing measurements. Nevertheless, the main issues
regarding decentralized data fusion are considered.

In the context of the same group, Reference [17] presents techniques for coor-
dination of sensor platforms in order to maximize the information gain, which is
important for cooperative perception activities. It describes results derived from
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the information form of the Kalman filter or Information Filter. A study on the
use of particle filters on the same context have been presented recently [32].

In [53], the authors present a multi-UAV map-building approach based on ev-
idential reasoning. The objective is that a group of UAVs build a certainty grid
about potential targets on an area. The paper shows results only in simulation,
and presents an interesting comparison with a Bayesian approach to the same
problem. The authors conclude that the Dempster-Shafer approach can yield
better results in terms of timing when the sensors’ accuracy is low. Also, the
paper considers cooperative path planning methods based on the results from
both, the Bayesian and evidential approaches. Nevertheless, the algorithm pre-
sented is purely centralized, and nothing is said about a decentralized version
for the evidential approach.

In [7] the feasibility of the application of a team of small (low-altitude short
endurance) UAVs to cooperatively monitor and track the propagation of large
forest fires is explored. The paper provides simulations using a six degree of
freedom dynamic model for the UAV and a numerical propagation model for the
forest fire.

4.2 Probabilistic Algorithms for Cooperative Perception

As said before, the robots will employ probability theory to represent their current
knowledge.The environment and the robots are characterized by what is called the
state, which is represented at a given instant t as the vector xt. The objective of
a cooperative perception system is to obtain an estimation of this state from the
sensorial data on-board the different robots. zt represents the set of measurements
obtained at time t. In a probabilistic framework, the current knowledge about the
state is given by what is called the belief on the state, defined as:

bel(xt) = p(xt|zt). (4.1)

that is, the probability distribution on the state conditioned on all the infor-
mation gathered up to time t, zt. From the probabilistic point of view, this
conditional distribution, called the posterior, represents all the information the
robot can compute from the sensor data collected.

The main tool for probabilistic state estimation is Bayesian inference [42, 46].
Bayesian inference allows to integrate measurements generated by the perception
tools with prior knowledge about the state to obtain an updated estimation of
the belief on the state. Under some assumptions, the Bayes filter allows for
a recursive estimation of the state of the events. The equation for the Bayes
recursion [42] is:

p(xt|zt) =

update︷ ︸︸ ︷
η−1p(zt|xt)

∫
xt−1

p(xt|xt−1)p(xt−1|zt−1)dxt−1

︸ ︷︷ ︸
prediction

(4.2)

η = p(zt|zt−1) =
∫
xt

p(zt|xt)
∫
xt−1

p(xt|xt−1)p(xt−1|zt−1)dxt−1dxt (4.3)
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Equation (4.2) generally is decomposed in two steps, called prediction and
updating. Prediction usually implies an increase in the amount of uncertainty
on x, while updating narrows this uncertainty as a consequence of the new
measurement.

The important terms in the previous expressions are the conditional distribu-
tions p(xt|xt−1) (the transition model) and p(zt|xt) (the measurement model)
and the conditional dependencies among the random variables.

Using the same assumptions, it is possible to derive the Bayes filter for the
recursive estimation of the belief for the full state trajectory p(xt|zt) [42]:

p(xt|zt) = ηp(zt|xt)p(xt|xt−1)p(xt−1|zt−1) (4.4)

Another convenient expression for this equation, that unrolls the previous
expression until considering the prior information p(x0), is:

p(xt|zt) = η
′
p(x0)

τ=t∏
τ=1

p(zτ |xτ )p(xτ |xτ−1) (4.5)

4.2.1 Multi-robot Perception

In the case of a multi-robot fleet (for instance, a fleet of UAVs), the objective is to
cooperatively estimate the state of the world (that is, the relevant information,
represented by xt) from the measurements obtained by all the robots of the fleet.

In order to determine what information should be communicated and how this
information is fused with the local knowledge of each robot, first it is analyzed
the resultant knowledge in the case that all information were available at any
point of the fleet. That could be considered an ideal omniscient situation, in
which a central node gets all the available information at any time.

The measurements zt are the collection of all the measurements gathered by all
the sensors of the fleet of robots {zj,t, j = 1, . . . , Mt}. The current measurement
is given by the vector zm

t = [zT
1,t, . . . , z

T
Mt,t]

T . Then, the belief state for the
central node is given by:

belm(xt) = p(xt|zm,t) = ηp(zm
t |xt)

∫
p(xt|xt−1)p(xt−1|zm,t−1)dxt−1 (4.6)

Given the assumption that the data gathered by the different robots at any
time instant t are conditionally independent given the state xt, the previous
equation becomes:

belm(xt) = η

Mt∏
j=1

p(zj,t|xt)
∫

p(xt|xt−1)p(xt−1|zm,t−1)dxt−1 (4.7)

For data fusion purposes, it will be very important to determine the likelihood
function p(zj,t|xt) for every source of measurements within the robots of the fleet.
Likewise, in the multi-robot case, (4.5) becomes:

belm(xt) = p(xt|zm,t) = η
′
p(x0)

τ=t∏
τ=1

[ M(τ)∏
j=1

p(zj,τ |xτ )
]
p(xτ |xτ−1) (4.8)
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The computation of (4.7) and (4.8) are the ideal objective for the cooperative
perceptions algorithms. It should be noted that nothing has been commented
yet about what the state variables are, the particular distributions considered
and so forth.

4.2.2 Semi-decentralized Belief Computation

In general, it is not possible to dispose of all the data in a central node without
delays due to bandwidth limitations, bounded communication ranges, etc. On the
other hand, if the robots have decisional capabilities, then they should maintain
their own local belief states that will be used by those decisional layers for
planning activities and so forth. Therefore, the idea would be to combine in some
way these local estimations, by communicating high-level belief states instead of
raw data.

In a fully decentralized approach, the robots share their beliefs with their
neighbors. Then, the received information is locally fused in order to improve the
local perception of the world. The main question is if there is a way of combining
the belief states so that the final belief state is closer (ideally the same) to the
global belief that could be computed in the centralized case, represented by (4.7)
and (4.8).

Fig. 4.2. Scheme that shows the situation in the semi-decentralized scheme

Before getting into the issues related to the fully decentralized computation,
this section analyzes a first approach, depicted in Fig. 4.2. This approach will
be named semi-decentralized. In it, each robot i maintains its local belief state
beli(xt):

beli(xt) = p(xt|zt
i) = ηip(zi,t|xt)

∫
p(xt|xt−1)p(xt−1|zt−1

i )dxt−1 (4.9)

where η−1
i = p(zi,t|zt−1

i ). Then, the robot sends its belief state to a central node
that combines all the local beliefs to obtain a global one.
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The Case of Static State

If the state is static, then the belief state at time t using all robot data is given
by:

belm(xt) = ηmp(x)
τ=t∏
τ=1

p(zm
τ |x) (4.10)

where the time index has been removed to indicate that the state is static, and
then bel(xt) means the belief state after all the data gathered up to time t has
been integrated. Similarly, for any robot i:

beli(xt) = ηipi(x)
τ=t∏
τ=1

p(zi,τ |x) (4.11)

If M robots are considered, as p(zm
t |x) =

∏M
i=1 p(zi,t|x), then, if the prior

beliefs p(x) are the same:

belm(xt) = ηp(x)
M∏
i=1

beli(xt)
p(x)

(4.12)

This equation gives a basic formula to combine the robots beliefs in order
to obtain the global one. It means that the central node directly combines all
the beliefs received, after removing the common information that all robot share
(the prior p(x)). Another convenient way of representing the previous relations
are in recursive form.

belm(xt) = ηmp(zm
t |x)belm(xt−1) (4.13)

beli(xt) = ηip(zi,t|x)beli(xt−1) (4.14)

so

belm(xt) = ηbelm(xt−1)
M∏
i=1

beli(xt)
beli(xt−1)

(4.15)

Expressing the beliefs in logarithmic form:

belm(xt) = log(η) + belm(xt−1) +
M∑
i=1

[
beli(xt) − beli(xt−1)

]
(4.16)

Therefore, what the central node has to do is to sum (in logarithmic form) into
a running total the increase in evidence given by every robot of the fleet. Even
though no particular form or representation for the belief states is assumed yet,
an interesting characteristic of this case is that, as the state is static, the message
size for communicating the beliefs is fixed. Moreover, the number of messages
sent by each robot does not depend on the number of robots [33]. Finally, one
of the most important issues is that, in this case, the beliefs can be received
asynchronously and with arbitrary latency (i.e., in the previous equations t − 1
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can be substituted by the previous instant in which the central node received
information from each robot). Hence, in the case of a static state, each robot can
accumulate evidence and transmit it at convenience, without additional memory
costs.

Dynamic Environments

In order to reconstruct the ideal centralized belief state, as noted in [33], in the
dynamic case the role that was played before by belief state at time t, bel(xt), is
played now by the belief state over the full state trajectory up to time t, bel(xt).

The belief state over the full trajectory for robot i is:

beli(xt) = p(xt|zt
i) = η

′
p(x0)

τ=t∏
τ=1

p(zj,τ |xτ )p(xτ |xτ−1) (4.17)

Comparing this expression to (4.8) then:

belm(xt) = ηp(xt
0)

M∏
i=1

beli(xt)
p(xt

0)
(4.18)

where p(xt
0) = p(x0)

∏τ=t
τ=1 p(xτ |xτ−1). Therefore, if each robot sends its belief

state over the state trajectory, the beliefs can be combined to obtain a global one
that would be equal to the one obtained in a centralized version. Moreover, as in
the static case, the belief states can be received asynchronously. Each robot can
accumulate evidence, and send it whenever is possible to communicate with the
central node. However, the problem in this case is that the state grows over time,
and therefore the size of the message needed to communicate the corresponding
beliefs. In general, this will make this scheme of communication unaffordable.
Nevertheless, for the normal operation of the robots, only the state trajectory
over a time interval is needed, so this belief trajectory can be bounded. In any
case, depending on the representation of the belief states and the dimension of the
state itself, the size of information needed to be transmitted can be prohibitively
high.

4.2.3 Decentralized Cooperative Perception

In a fully decentralized scheme, there is no central node that fuses the beliefs
obtained by the robots. In a decentralized fleet, no robot have knowledge of the
global network topology, and there is no global communication facility, in the
sense that cannot be ensured that the information transmitted by one robot will
reach all the robots of the fleet [16]. At any time instant, each robot will be able
to communicate and share its belief directly with a subset of the fleet.

There is a situation in which the previous general equations can be applied.
If the belief network topology1 is a tree as shown in Fig. 4.3, that is, if there
1 The term network refers in this case should be interpreted at the data level. That

is, the underlying physical or transportation layers may have a different topology.
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Fig. 4.3. A group of UAVs forming a tree-shaped network

Fig. 4.4. Multiple paths can lead to overestimation, when incorporating several times
the same information

is a unique path between any pair of providers and receivers, then the fusion
equations (4.12) and (4.18) for the central node can be applied at every robot
to fuse the beliefs received from its neighbors [49], and then update their own
beliefs. The only aspect that must be considered is to avoid considering multiple
times the same information through the direct link between two robots with
direct communication (like UAV p and UAV q in Fig. 4.3). However, this can be
solved locally, without further information about the rest of the network. Each
robot only needs to know what information it transmitted to its neighbors in
order to remove it when integrating received data.

However, the same scheme cannot be applied to general topologies without
further considerations. Consider the scheme of connections of Fig. 4.4. In this
case, there are multiple paths from the same UAV to others. The problem in
this case is that the same information could be accounted several times. Thus,
the belief combination rule has to consider the common information [16, 22, 45].
Otherwise, this could lead to overconfident estimates.
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Fig. 4.5. In the general case, the topology of the network will change with time

Without additional assumptions on the form of the belief distributions, their
representations and others, there is no general solution to the problem of con-
sidering the common information in networks of arbitrary topology [49], if only
local information is considered. One solution would be to force a tree topology
in the network. However, in a fleet of robots, the topology of the connections is
dynamic and the tree structure of the network would have to be ensured along
the time. Also, if a tree topology is forced, an interesting property is lost. One
robot can act as a data mule between different subsets of robots of the fleet (see
Fig. 4.5). When connected to one subset, the robot updates its belief from the
information received from the subset. Then, when connected with the second
subset, the robots of this second subset will incorporate information from the
other subset indirectly through the belief state of the moving robot.

The previous sections have presented the general problem of information fu-
sion for cooperative perception. The development of working algorithms, even
in the case of centralized fusion, requires defining a particular representation of
the belief states, which itself depends on the problem.

4.2.4 Developing Cooperative Perception Actions

The previous sections have showed the main issues in decentralized information
fusion. The final important aspect of cooperative perception is the ability to
develop actions to improve the knowledge about the environment. The objective
is to determine which actions um the robots should carry out in order to increase
some measurement about the goodness of the current information.

Determining robots actions considering uncertain worlds is usually tackled
employing decision theoretic techniques. In the previous equations of the Bayes
filter, the actions of the robots um can be considered explicitly.

belm(xt) = η

Mt∏
j=1

p(zj,t|xt)
∫

p(xt|xt−1,um
t )p(xt−1|zm,t−1,um,t−1)dxt−1

(4.19)
The objective is to select actions considering the current knowledge of the

world (represented by the belief state) and the possible outcomes from actions
carried by the robot. The computation of rational actions is considered including
a payoff or reward function on the state R(x), Rn −→ R. This payoff value can
consider costs and revenues for being in a particular state. The objective is to
find an optimal policy, that is, a function π(x) → u, that determines what
action u should be carried out if the state is x. The policy should be optimal
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in the sense that it should maximize the expected cumulative payoff (also called
expected utility):

π∗ = arg max
π

E
[ T∑

t=0

γtR(xt)|π
]

(4.20)

that this, the expected sum of the rewards from time 0 to time T (T is called
the planning horizon and γ ∈ [0, 1] is the discount factor).

If the environment is fully observable (that is, if we are certain about the state
any time we get new information), but the effect of the actions carried out is
non-deterministic, the problem is called a Markov Decision Process (MDP) [34].
If the more general case in which the environment is not observable, the problem
is called Partially Observable Markov Decision Processes (POMDPs)[40].

Choosing a convenient payoff function, POMDPs can be used for developing
perception actions; in this case, the payoff function usually considers higher
values for narrower belief states, meaning that more informative belief states are
preferred. However, the POMDP framework is usually infeasible in this case, as
the number of unknown is high. The problem is even more important in the case
of multiple robots, in which the problem to be solved is to determine an optimal
policy that computes the actions of the robot of the fleet um given the global
belief state belm(x).

Another option for developing cooperative perception actions is to define a
measurement of the information gain obtained when executing a certain infor-
mation gathering task. Several different measurements of the information gain
can be used. For instance, for unimodal distributions, the covariance could give
a measure of the amount of information gained when executing an action (the
bigger the covariance, the more uncertain about the actual value of the state).
Another and more general measure about the information is the entropy of a
probability distribution. The entropy H(p) of a probability distribution p(x) is
defined as the expected value of the information − log[p(x)]. That is, the entropy
of the belief state is given by:

H(t) = E[− log bel(xt)] = −
∫

bel(xt) log bel(xt)dxt (4.21)

The information gain is defined as the variation in the entropy after carry-
ing an action ut+1. When executing this action, a new belief state bel(xt+1)
will be obtained from the measurement zt+1 received, with a new entropy
H(ut+1, zt+1). However, only the action ut+1 can be selected. Therefore, what
can be computed is the expected entropy considering the potential measurements
H(ut+1) = Ezt+1 [H(ut+1, zt+1)]. Therefore, the information gain associated to
action ut+1 is defined as follows:

I(ut+1) = H(t) − Ezt+1 [H(ut+1, zt+1)] (4.22)

This metric can be used to establish preferences among actions. A policy that
at the same time maximizes the information gain and minimices action costs can
be used for developing cooperative actions for perception purposes.
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The decisional architecture for multi-robot coordination presented in Chap. 2
can consider coordinated information gathering tasks, as cooperative detection
and confirmation, and cooperative monitoring. Nevertheless, the previous con-
siderations are not yet included and the actions are selected following off-line
learned models of performance (like detection rates and precision in localization
tasks).

4.3 Vision-Based Object Detection, Localization and
Tracking with Multiple UAVs

4.3.1 Initial Assumptions

In order to test the decentralized perception scheme presented above, the appli-
cation to the detection, localization and tracking of events of interest by a fleet
of UAVs is considered. The objective of the fleet is to detect potential targets,
estimate their positions and also discard false alarms.

The important information for this scenario is the location of the UAVs and
the location (and perhaps other information) of the events of interest. Then, the
state to be estimated in this case, in its most simple version, is comprised by the
information associated to a set of N events and by the position of the M UAVs.

It is assumed that the UAVs carry on-board Global Positioning System (GPS)
receivers, Inertial Measurement Units (IMUs) and other sensors, different from
cameras, for navigation. These sensors are used to localize the UAVs in a common
global frame, and thus the localization problem is not considered here. However,
as it will be seen, the conditional dependence of the measurements obtained by
the cameras on the robot pose estimates (denoted by qt) must be taken into
account.

The second assumption is that the actions of the robots will not affect the state
of the objects to be tracked. This assumption usually holds when the objects to
be tracked are not aware of the robots patrolling, for instance, if the objects of
interest are fire alarms, or are not evading targets, but this would not hold for
evading targets or opponent robots [51].

4.3.2 Event State Definition

In the general case of event detection and localization, the state x to be tracked
obviously include the position of the object pt. If a moving object is considered,
the velocity ṗt is also included into the state to be estimated. This will be called
the kinematic part of the state.

Further information will be also needed. An important objective in some mis-
sions is to confirm that an object belongs to a certain class within a set Γ (for
instance, in the case of fire alarms detection, this set will include as classes fire
alarms and false alarms). Therefore, the state will include information regarding
the classification of the object. Also, in certain applications, some appearance
information could be needed to characterize an event, which also can help in the
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Fig. 4.6. An infrared and a visual image of a fire alarm. The objective is to fuse all the
data from the different vehicles of the fleet to obtain a global belief on the parameters
of a given alarm.

task of data association between different UAVs with different cameras. This
kind of information usually will be static, and will be represented by θ.

The complete state to be estimated is composed by the status of all the events.
The number of events (Nt) can vary with the time. The state at time t is then
represented by vector xt = [xT

1,t, . . . ,x
T
Nt,t

]T . Each potential alarm i is defined
by:

xi,t =

⎛
⎝pi,t

ṗi,t

θi

⎞
⎠ . (4.23)

4.3.3 The Likelihood Function for Vision

The key point in the Bayesian framework adopted is to determine the likelihood
function p(zt|xt,qt) for the case of the cameras. Notice that the (uncertain) pose
of the UAV is included in the model, and to determine the final likelihood this
dependence will be marginalized out.

In the limit, p(zt|xt,qt) would be a probabilistic model of image formation,
that is, the probability that the pixels of the image have certain illuminance
or colour values given the status of the environment and the position of the
sensor. In most cases it is not needed such a complex model. Instead of the raw
pixels, some features related to the application are extracted from the images.
Nevertheless, it is required to formulate probabilistically all these steps in order
to incorporate the measurements in the estimation process.

Feature Extraction: Segmentation Algorithms

In the application considered (object detection and localization), the images
captured by the cameras on-board the UAVs should be analyzed looking for
the objects of interest. The image processing functions should be able to seg-
ment the objects of interest on the image plane, and differentiate them from the
background. Moreover, the algorithms will obtain a set of features related to the
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identity of the object θ. In order to include this into the probabilistic framework,
it is needed to relate the visual features to the state through:

p(zt|xt) = p(zt|p, ṗ, θ), θ ∈ Γ (4.24)

These features will depend on the application considered. In general, deter-
mining the likelihood function will consist on a learning phase over the sensorial
space; this learning phase should provide a map between features and classes.

In the particular application of fire detection, the space state for the identity
part of the state θ consists only on two potential values, Γ = {fire, no fire}.
Chapter 8 will present the techniques employed for forest fire detection using
cameras (of different modalities, both infrared and visual). These algorithms
provide directly a binary decision over the image plane, so that the measurements
zt are a set of blobs over the image plane classified of fire. As it will be seen, it
is important also to employ the negative information encoded in the regions of
the image not classified as fire.

There is always the chance for false positives and misdetections. False posi-
tives occur when the algorithm detects objects but there are no objects of the
considered class in the field of the camera. Misdetections happen if no response
is given when an object is present. These two facts have to be used to determine
the likelihood function associated to the processed images.

A simple model will be used. It consists of characterizing the segmentation
algorithms by two values:

• The probability of detection (PD), defined as the likelihood that, being an
object of the given class within the field of view, the object is effectively
detected p(zt|p, ṗ, θ = fire).

• The probability of false positive (PF), defined as the likelihood that the algo-
rithm generates a response when no actual object is within the field of view
of the camera p(zt|p, ṗ, θ = no fire).

Projective Geometry

In order to complete the main aspects of the likelihood function, it is needed
to relate objects on the image plane with the position of objects in the 3D
world (the location part of the state pt). Cameras project points in the space
into points on the image plane. Cameras are usually modeled using the tools of
projective geometry [18]. The projection is modeled by the pin-hole projection
model. Following this model, each point in the space, p and its corresponding
image pixel m on the image plane of the camera are related by (4.25), where p
and m are in homogeneous coordinates:

smt = A
(
Rt −tt

)
pt (4.25)

where A is the upper triangular internal calibration matrix of camera. Rt and tt

are the rotation and translation that refer the camera coordinate system and a
global reference frame, and are part of the estimated state of the UAV qt. Several
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Fig. 4.7. Propagation of uncertainties through the geolocation procedure

methods can be used for camera calibration. Here, the method presented by [55]
is used.

Equation (4.25) implies a non-linear relation between the state and the mea-
surements. Moreover, if the pose is uncertain, it has to be considered when
obtaining the corresponding likelihood.

Putting together the geometric model of the camera with the probabilistic
characterization of the segmentation algorithms allow to establish a likelihood
function for the image-base measurements obtained by the UAVs. p(zt|xt,qt)
would be the probability of getting the features extracted (that is, the objects
segmented on the image plane) given the state of the events xt and the position
and orientation of the camera qt.

Prior Position Information from Cameras

As it will be seen, sometimes it is needed to determine the position of an object
of interest from its position on the image plane. For instance, when an object is
detected by the first time, one should obtain an initial estimation of its position p.

Unfortunately, relation (4.25) is not invertible. Therefore, although A, R and
t may be known, from the position on the image plane of an object m, it is not
possible to recover its 3D position p. If nothing more is known, cameras provide
only bearing information, and the full 3D position is not observable.

Several images from different points of view of the same object can be used
to estimate the range of a point, and thus its 3D position, by triangulation, as
in stereo vision [3, 9]. Also, if a Digital Elevation Map (DEM) of the scene is
available, and the pose of the camera is known in the same coordinate frame
than the DEM, then it is possible to estimate the position of an object on the
ground by ray tracing techniques, provided that the camera is calibrated (A is
known). Through this Chapter, it is assumed that such a map exists. In some
applications, this kind of map could be provided by an UAV commanded to
generate a DEM of the scenario [20]. Using the geolocation procedure, the UAVs
will provide as measurements direct estimations on the position of potential
alarms.
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4.4 Local UAV Image Processing Techniques

The different UAVs will process locally their cameras in order to detect and
track events. Interesting events could be mobile objects on a zone, fire alarms,
and others. This section focuses on feature extraction and tracking and other
set of basic functionalities local to each UAV, while Chapter 8 will show the
fire segmentation techniques. These local functionalities are needed for cooper-
ative detection and monitoring activities. The algorithms refer to vision, which
currently is the most used exteroceptive sensor on-board UAVs.

4.4.1 Image Motion Estimation

Many algorithms and applications require as input an estimation on the image
motion (for instance, mobile object detection or motion compensation, as it will
be seen). Dense motion fields (or optical flow) has been used for monitoring ac-
tivities using UAVs [8]. However, the computation of dense motion fields usually
requires small displacement between consecutive images, which usually is not
the case when an UAV is moving. Here, a method based on matching point-like
features allows to obtain a sparse image motion field under less constrained mo-
tion. The image matching method presented is related to the described in [12],
although significant improvements have since been made, as summarized in [30].

In [12] corner points were selected using the criteria described in [48]; each
point was the centre of a fixed-size window which is used as a template in order to
build matching window sequences over the stream of video images. Window selec-
tion provides for initial startup of window sequences as well as candidates (called
direct candidates) for correlation-based matching tries with the last known tem-
plate window of a sequence. The selection of local maxima of the corner detector
function assured stable features, so window candidates in any given image were
usually near the right matching position for some window sequence.

The correlation-based matching process with direct candidates within a search
zone allowed to generate a matching pair data base, which described possibly
multiple and incompatible associations between tracked sequences and candi-
dates. A disambiguation process selected the right window to window matching
pairs by using two different constraints: least residual correlation error and sim-
ilarity between clusters of features.

The new approach uses the same feature selection procedure, but its matching
strategy is significantly different. First, the approach ceases to focus in individ-
ual features. Now clusters are not only built for validation purposes; they are
persistent structures which are expected to remain stable for a number of frames,
and are searched for as a whole. Second, the disambiguation algorithm changes
from a relaxation procedure to a more efficient predictive approach, similar to
the one used in [3] for contour matching. Rather than generating an exhaustive
data base of potential matching pairs, only selected hypothesis are considered.
Each hypothesis, with the help of the persistent cluster data base, allows to de-
fine reduced search zones for sequences known to belong to the same cluster as
the hypothesis, if a model for motion and deformation of clusters is known.
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For this approach to be feasible, the following points should be defined

• Cluster model.
• Cluster building and validation.
• Cluster based prediction.

Cluster Model

The similarity of shape between regions of different images is verified by searching
for clusters of windows whose members keep the same relative position, after a
scale factor is applied. For a cluster of window sequences Γ = {Φ1, Φ2, . . . ,Φn},
the shape similarity constraint is given by the following expressions:∣∣ ‖wΦk

,wΦl
‖

‖vΦk
,vΦl

‖ − ‖wΦp ,wΦq‖
‖vΦp ,vΦq‖

∣∣ ≤ kp , ∀Φk, Φl, Φp, Φq ∈ Γ (4.26)

In (4.26), kp is a tolerance factor, wi are candidate windows in the next
image and vi are template windows from the preceding image. The constraint
is equivalent to verify that the euclidean distances between windows in both
images are related by a similar scale factor; thus, the ideal cluster would be
obtained when euclidean transformation and scaling can account for the changes
in window distribution. Furthermore, an additional constraint over the maximum
difference of rotation angle between pair of windows is used:

|αΦk,Φl
− αΦp,Φq | ≤ γp , ∀Φk, Φl, Φp, Φq ∈ Γ (4.27)

where αrs is the rotation angle of the vector that links windows from sequences
r and s, if the matching hypothesis is accepted, and γp is a tolerance factor.
Although the cluster model is adequately simple and seems to fit the current
applications, more realistic local models such as affine or full homography could
be easily integrated in the same scheme.

Cluster-Based Prediction for Hypotesis Propagation

It is easy to verify that two hypothesized matching pairs allow to predict the posi-
tion of the other members of the cluster, if their motion can be modeled approxi-
mately by euclidean motion plus scaling, as the constraints (4.26) and (4.27) imply.
Using this model, the generation of candidate clusters for a previously known clus-
ter can start from a primary hypothesis, namely the matching window for one of
its window sequences. This assumption allows to restrict the search zone for other
sequences of the cluster, which are used to generate at least one secondary hypoth-
esis. Given both hypothesis, the full structure of the cluster can be predicted with
the small uncertainty imposed by the tolerance parameters kp and γp, and one or
several candidate clusters can be added to a data base.

For a specific cluster, assuming that a primary hypothesis is available, the
cluster candidate generation process involves three steps:

• Secondary hypothesis generation.
• Cluster-based prediction.
• Indirect candidate generation.



4 Multi-UAV Cooperative Perception Techniques 85

Fig. 4.8. Generation of cluster candidates

Secondary hypothesis are generated by single-window prediction. A search
area can be defined by considering maximum limits of frame-to-frame cluster
scaling and rotation, based on the knowledge of the environment; thus, the search
of matching pairs can be restricted to the direct candidates contained in the area.
Any window sequence linked to the cluster can be used as secondary hypothesis
this way.

Several primary/secondary pairs can be obtained. For each available pair of
primary/secondary hypothesis, a full cluster can be predicted; in this case, the
tolerance parameters kp and γp are used to further constraint the search zone of
each component. Matching windows for each sequence can be found by exploring
the set of direct or previously generated indirect candidates located within the
computed limits.

If there remains some window sequences without candidate after the direct
candidate expansion, new indirect candidates are generated by prediction of a
suitable starting point for the error minimization algorithm.

The creation of any given candidate cluster can trigger the creation of others
for neighbour clusters, provided that there is some overlap among them; in Fig.
4.8, for example, the creation of a candidate for cluster 1 can be used immediately
to propagate hypothesis and find a candidate for cluster 2. Direct searching of
matching windows is thus kept to a minimum. Indeed, it makes sense to consider
a higher likelihood for candidates which already take part in a sufficiently large
cluster candidate.

As Fig. 4.9 shows, successful candidate generation can be propagated through
neighbor clusters. Two clusters can be said to be connected if they can be linked
by an arbitrary long chain of overlapping clusters; the set of clusters can be parti-
tioned in subsets of connected elements, or groups. The computational efficiency
of the process is increased by maximizing propagation, so that candidates are
reused whenever possible and direct search and error-minimization is avoided. In
addition, window candidates which are already supported by a cluster candidate
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Fig. 4.9. Hypothesis propagation through cluster groups

Fig. 4.10. Example of cluster matching

should be preferred to unsupported candidates. At the final stage of the method,
the best cluster candidates are used to generate clusters in the last image, and
determine the matching windows for each sequence. The practical result of the
approach is to drastically reduce the number of matching tries, which are by
far the main component of processing time when a great number of features
have to be tracked, and large search zones are needed to account for high speed
image plane motion. This is the case in non-stabilized aerial images, specially if
only relatively low frame rate video streams are available. Figure 4.10 shows an
example with two frames of an aerial sequence.

4.4.2 Blob Features

Although point-like features are suitable for image motion estimation, for certain
applications, such as matching disparate views (for instance, views taken by
different UAVs), features with more invariance properties are needed.

Homogeneity features are called blobs in scale-space theory [23]. In contrast to
segmentation, blob detection does not attempt to segment out exact shapes of
objects, but to extract robust and repeatable features discarding exact shapes and
thin connections between patches (see Fig. 4.11). Blob features are also related to
maximally stable extremal regions (MSER) [29]. MSER features are regions grown
around an intensity extrema (maxima or minima) and are used to generate affine
invariant frames, which are then used for view based object recognition [29].
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Fig. 4.11. Difference between segmentation and blob detection

Blob features can be extracted using a clustering pyramid built using robust
estimation in local image regions [14, 13]. Each extracted blob is represented by
its average colour pk, area ak, centroid mk, and inertia matrix Ik, i.e. each blob
is a 4-tuple

Bk = 〈pk, ak,mk, Ik〉 . (4.28)

Since an inertia matrix is symmetric, it has 3 degrees of freedom, and we have
a total of 3 + 1 + 2 + 3 = 9 degrees of freedom for each blob. Figure 4.12 gives a
brief overview of the blob detection algorithm.

Image Clustering Label Raw Merged
pyramid image blobs blobs

Fig. 4.12. Steps in blob detection algorithm

Starting from an image, the algorithm constructs a clustering pyramid, where
a pixel p∗ at a coarser scale is computed as the robust average of 12 pixels pk

at the lower scale
argmin

p∗

∑
k

rkρ(||pk − p∗||) . (4.29)

Regions where the support of the robust average is below a threshold cmin have
their confidence flag r∗ set to zero. The algorithm then creates a label image
using the pyramid, by traversing it top-down, assigning new labels to points
which have their confidence flag set, but do not contribute to any robust mean
on the level above. The labelling produces a set of compact regions, which are
then merged in the final step by agglomerative clustering. Regions with similar
colour, and which fulfil the condition

Mij > mthr

√
min(ai, aj) (4.30)

are merged. Here Mij is the count of pixels along the common border of blobs
Bi and Bj , and mthr is a threshold. For more information about the feature
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estimation, please refer to [14], and the implementation [1], both of these are
available on-line. These blob features have been applied for view matching be-
tween different vehicles for multi-UAV localization purposes [26].

4.4.3 Image Stabilization

Monitoring activities are easier if the visualized scene is static; also, the process-
ing algorithms are simpler because the reference positions are fixed along the
digital process.

Considering UAVs with hovering capabilities, unavoidable control errors, tur-
bulence and vibrations produce changes in the camera position which lead to
image motion. Therefore, for certain applications it is necessary to solve the cam-
era motion problem. Currently, electro-mechanic systems can solve this problem,
but they are heavy, expensive and usually have a residual vibration.

The proposed technique to cancel the camera motion is based on the ap-
parent motion computation between two consecutive image frames. The results
presented in this section are obtained by using the robust point-like feature
tracking method presented in Sect. 4.4.1, which provides a sparse image motion
field. The same method can be used with different features. If there are enough of
these features and they are equally distributed over the image, it will be possible
to extract the scene apparent motion.

A homographic model will be used to represent image motion between con-
secutive frames. This model describes the transformations in the image plane
when the scene is planar or, even being 3D scene, the camera undergoes a pure
rotation (which can model the motion of a camera affected by vibrations).

The algorithm described here assumes that the percentage of objects with in-
dependent motion in the scene is low, and can be treated as outliers (objects with
independent motion can mask the fundamental scene movement generated by vi-
brations or camera motion). The algorithm should be able to detect those outliers.

Finally, a homographic model is fitted to the computed sparse motion field
between two consecutive images. Then, the inverse model is applied to all pixel
positions in the current image to compensate the motion, this process is called
image warping.

Homography Computation

A homography is any linear and invertible application from the projective space
P2 into P2 [18]. These applications transform lines into lines. It is represented
by a 3×3 invertible matrix defined up to scale factor, so it is composed by eight
independent parameters.

If a set of points in the scene lies in a plane, and they are imaged from two
viewpoints, then the corresponding points in images i and j are related by a
plane-to-plane projectivity or planar homography, H:

sm̃i = Hm̃j (4.31)
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where m̃k = [uk, vk, 1]t is the vector of homogenous image coordinates for a point
in image k, H is a homography matrix and s is a scale factor. The same equation
holds if the image to image camera motion is a pure rotation. Even though the
hypothesis of planar surface or pure rotation may seem too restrictive, they have
proved to be frequently valid for aerial images ([30, 6] show some examples). An
approximate planar surface model usually holds if the UAV flies at a sufficiently
high altitude, while an approximate pure rotation model is a good approximation
for the motion induced by a hovering helicopter. Thus, the computation of H
will allow under such circumstances to compensate for camera motion.

Since H has only eight degrees of freedom, we only need four matches to
determine H linearly. In practice, more than four correspondences are available,
and the overdetermination is used to improve accuracy. For a robust recovery of
H, it is necessary to reject outlier data.

The homography computation is summarized in Fig. 4.13. It can be seen
that the computation is divided in two basic steps: oulier rejection and robust
estimation. The first step tries to detect the outliers in order to increase the
accuracy of the computed homography. In the proposed applications, outliers will
not always be wrong matching pairs; image zones where the homography model
does not hold (moving objects, buildings or structures which break the planar
hypothesis) will also be regarded as outliers, although they may offer potentially
useful information. The overall design of the outlier rejection procedure used in
this work is based on LMedS [54].

In the second step, robust estimation, the homography is computed by using
an iterative method (M-Estimator) that allows to automatically weight the set
of data in function of the residue in each iteration. It was selected a simple
weighting function, concretely a Fair function, because the set of data were well
filtered by the outlier rejection stage. The Fair M-Estimator will guarantee a
good convergence to the correct solution in few iterations.

Image Warping

Given the homography that relates two images, a model with information about
the motion of each pixel is known. This model can be used to compensate the
existing motion in order to avoid camera vibrations or movements.

Thus, if H is the homography that represents the motion produced from image
I to image I ′, the new position of the pixels of I after the compensation will be:

H =

⎡
⎣h11 h12 h13
h21 h22 h23
h31 h32 h33

⎤
⎦ ,

k = x ∗ h31 + y ∗ h32 + h33
x′ = (x ∗ h11 + y ∗ h12 + h13)/k
y′ = (x ∗ h21 + y ∗ h22 + h23)/k

(4.32)

In general, the transformed position m′ = [x′, y′]t, corresponding to pixel m =
[x, y]t, will not be an integer due to the algebraic operations.

It is necessary to define a method to assign an integer position to the trans-
formed pixels in order to warp correctly the images. This problem can be seen in
Fig. 4.14, where the point marks the position where the pixel has been placed.
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Fig. 4.13. Homography computation diagram Fig. 4.14. Warping problem
representation

Fig. 4.15. The sequences show a moving car and other UAV of the fleet detected using
a motion detection algorithm based on the image stabilization procedure

The integer nature of the pixels force to select one of the four point neighbors
(shadow pixels in the figure).

A method based on the pixel similarity is used. The technique uses the eu-
clidean distance between the RGB value of the actual pixel and the values of the
four neighbors in the previous image (shadow pixels in Fig. 4.14). The position
of the pixel will be the one corresponding to the neighbor with the shortest dis-
tance. Thus, for each pixel, the method tries to minimize the RGB differences
respect to the previous image. This helps to increase the alignment between
sequenced images even correcting little errors in the homography computation.

The image stabilization procedure described above can be used for moving
objects detection using monocular sequences of images. Given two consecutive
images, and using the stabilization procedure, the two images can be warped to
the same image coordinate frame. There, moving regions can be detected analyz-
ing image differences. The moving regions will be due to independently moving
objects or fixed objects with parallax respect to the plane used as reference for
the warping procedure. Figure 4.15 shows some results.
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4.5 Information Filter-Based Multi-UAV Detection and
Localization Using Vision

The first approach presented in this Chapter employs Gaussian distributions to
represent the belief state. They can be employed to represent unimodal beliefs,
with a value with maximum probability (the mean) and uncertainty represented
by the covariance of the distribution. They are used elsewhere to represent beliefs
about positions of objects, etc.

Therefore, the prior knowledge at some time will be described by a Gaussian
distribution p(x0) ∼ N (µ0,Σ0). If the state at time t is a linear function of the
state at time t − 1 plus Gaussian noise νt ∼ N(0,Rt), and the measurements
are a linear function of the state plus Gaussian noise εt ∼ N(0,St):

xt = Atxt−1 + νt, (4.33)

zt = Mtxt + εt, (4.34)

then the Bayes filter (4.2) reduces to the well-known Kalman filter.
In a multi-robot application, the Information form of the Kalman filter or

Information Filter (IF) [45, 46] has some interesting properties. Information
filters are derived employing the canonical form of Gaussian distributions. In the
canonical form, the parameters of a Gaussian distribution are the information
vector ξ and the information matrix Ω. If µ and Σ are the mean and covariance
matrix of a Gaussian distribution, its information matrix is Ω = Σ−1 and its
information vector ξ = Σ−1µ. Algorithm 4.1 shows the Information Filter for
updating the belief state bel(xt) = N (Ω−1

t ξt, Ω
−1
t ).

This representation has its advantages and drawbacks. One important advan-
tage is that complete uncertainty is easily represented by Ω = 0.

A second interesting property is that the corresponding information matrix
for the full trajectory is block-diagonal, and the space needed to store it is
then linear with the trajectory length. Algorithm 4.2 shows the filter for the
full belief trajectory. The functions Augment Matrix and Augment Vector
augment the state space. However, as line 1 shows, the information matrix for
the trajectory Ωt is block diagonal at any time (see Fig. 4.16).

Algorithm 4.1. (ξt,Ωt) ← Information Filter(ξt−1,Ωt−1, zt)

1: Ψt = A−T
t Ωt−1A−1

t

2: Ω̄t = Ψt − Ψt(R−1
t + Ψt)−1Ψt

3: ξ̄t = Ω̄tAtΩ−1
t−1ξt−1

4: p(xt|zt−1) ∼ N (Ω̄−1
t ξ̄t, Ω̄

−1
t )

5: Ωt = Ω̄t + MT
t S−1

t Mt

6: ξt = ξ̄t + MT
t S−1

t zt

7: p(xt|zt) ∼ N (Ω−1
t ξt,Ω

−1
t )
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Algorithm 4.2. (ξt,Ωt) ←Information Filter Trajectory(ξt−1,Ωt−1, zt)

1: Ω̄t = Augment Matrix( Ωt−1) +

⎛
⎝

(
I

−AT
t

)
R−1

t

(
I −At

)
0T

0 0

⎞
⎠

2: ξ̄t = Augment Vector (ξt−1)

3: Ωt = Ω̄t +
(
MT

t S−1
t Mt 0T

0 0

)

4: ξt = ξ̄t +
(
MT

t S−1
t zt

0

)

Fig. 4.16. Structure of the information matrix for the full trajectory. The information
matrix is a block tridiagonal symmetric matrix.

4.5.1 Multi-robot Perception Employing Information Filters

It is straightforward to determine the Information Filter (IF) for the central-
ized multi-robot perception case. Recalling (4.7), the likelihood is given by∏M

j=1 p(zj,t|xt). If the assumptions of the IF hold, and as the local likelihood
functions p(zj,t|xt) are Gaussian, then this updating step consists of a sum of
all the information contributions from all the robots of the fleet:

Ωt = Ω̄t +
M∑

j=1

MT
j,tS

−1
j,t Mj,t (4.35)

ξt = ξ̄t +
M∑

j=1

MT
j,tS

−1
j,t zj,t (4.36)

The centralized solution requires that the central node should receive all the
information gathered by the UAVs. Even having a preprocessing stage carried on
board the different UAVs, so that the central node does not receive the raw data,
but only estimated features, the system does not scale well with the number of
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robots. Moreover, in this case the central node should be within communication
range at any time. However, the IF leads to a decentralized implementation in
which each UAV maintains a local belief employing only local information, and
then shares this belief with the local neighbors.

In this case, each UAV will run locally Algorithm 4.1 (with At = I and Rt = 0
if the state is static) or 4.2. And, for updating the status of its alarms, it will
use the information obtained from its sensors. Of course, the estimated belief
state will be different from the centralized one due to the missed terms in the
updating steps 5 and 6 (the information collected by the rest of the robots).

When UAV iflies within communication rangewith otherUAV j, they can share
their beliefs. UAV i can apply the relation (4.15) to update its belief state. Denot-
ing by beli,m(xt) the resultant belief state of UAV i after incorporating the belief
from UAV j, and employing the logarithmic form of the combination rule (4.16):

beli,m(xt) = log(C) + beli(xt) + belj(xt) − belj(xt−1) =

= log(C) − 1
2
xT Ωi

tx + xT ξi
t − 1

2
xTΩj

tx + xT ξj
t − 1

2
xTΩj

t−1x + xT ξj
t−1 =

= log(C) − 1
2
[
xT (Ωi

t + Ωj
t − Ωj

t−1)x
]
+ xT (ξi

t + ξj
t − ξj

t−1)

(4.37)

Comparing this with the logarithmic of the Gaussian distribution it can be seen
that the resultant information vector and matrix are updated with the increase in
evidence Ωi,m

t = Ωi
t +(Ωj

t −Ωj
t−1) and ξi,m

t = ξi
t +(ξj

t −ξj
t−1), where Ωj

t−1, ξ
j
t−1

in this case denotes the last received belief from UAV j (whenever it was received).
If there are more than one UAV within communication range, then, if C(i) is

the set of neighbors of UAV i:

Ωi,m
t = Ωi

t +
∑

j∈C(i)

(Ωj
t − Ωj

t−1) (4.38)

ξi,m
t = ξi

t +
∑

j∈C(i)

(ξj
t − ξj

t−1) (4.39)

If the state is static the amount of information needed to store the belief state
(and to communicate it) is constant along time. Moreover, one UAV does not have
to communicate continuously its belief, as it can accumulate evidence and transmit
it later (without increasing the storage). Therefore, from the point of view of band-
width requirements, it could be adjusted depending on the network conditions.

If the state is dynamic, the UAVs update and transmit their trajectory esti-
mations. This estimation grows with time, although only linearly. Nevertheless,
the amount of information to be transmitted should be bounded. Each UAV only
stores a trajectory interval (the last 20 seconds). The rest of the trajectory is
marginalized out, which maintains the sparse structure of the information matrix.

Eliminating Common Information

The previous equations, as commented in Sect. 4.2.3, assume that there are no
loops in the network of UAVs, in the sense that the belief information shared
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between two robots follows an unique path. If it is not the case, prior to com-
bining the beliefs, the common information should be removed.

There are several options that can be considered for avoiding an overconfident
estimation due to accounting common information several times. The first one is
to ensure a tree topology in the belief network, as seen in Sect. 4.2.3. However,
this option imposes a strong constraint on the potential communication links
among the UAVs.

Another option is that each UAV only sends its last local information update
at every time instant. This way, no information is duplicated. The problem in
this case is that the use of an UAV as data mule is lost: one UAV that collects
the evidence from a group of local neighbors will communicate it to other robots
that could be initially disconnected from the firsts. Moreover, if the connection
between two UAVs is lost, it will lose information that would have been available
in the case that the robot had sent the complete belief.

The last option is to employ a conservative fusion rule, which ensures that
the robot does not become overconfident. For the case of the information filter,
there is an analytic solution for this, given by the Covariance Intersection (CI)
algorithm [22]. The CI algorithm is a way of combining information from random
variables whose cross-correlations are unknown.

Therefore, the conservative rule to combine the belief of UAV i with that
received from the set C(i) of local neighbors is given by:

Ωi,m
t = ωΩi

t + (1 − ω)
∑

j∈C(i)

Ωj
t (4.40)

ξi,m
t = ωξi

t + (1 − ω)
∑

j∈C(i)

ξj
t (4.41)

for ω ∈ [0 1]. It can be seen that the estimation is consistent in the sense that
Σi,m − Σ̂

i ≥ 0 (where Σi,m = Ωi,m−1 is the estimated covariance matrix and
Σ̂

i
is the actual covariance matrix) for any (unknown) cross-correlation matrix

Σij , and for any ω. The value of ω can be selected following some criteria, as
maximizing the obtained determinant of Ωi,m (minimizing the entropy of the
final distribution). Another option is to use it as a weight that shows the UAV
confidence in its own estimation and the neighbor’s ones.

4.5.2 Decentralized Information Filter for Object Detection and
Localization

Recalling what was presented in Sect. 4.3, the objective is to estimate the state of
the potential alarms present in an scenario. In the general case that the objects
move, the state will be the position and velocity of all the alarms, and its nature.

xt = [pT
1,t, ṗ

T
1,t, θ1, . . . ,pT

Nt,t, ṗ
T
Nt,t, θNt ]

T (4.42)

Each UAV will update its knowledge locally employing the Information Filter.
The local estimations will be shared with the other UAVs of the fleet, which will
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combine them by using the relations given by (4.40) and (4.41) in order to avoid
overconfident estimates in the fully decentralized case.

Motion Model

In general, the motion of the alarms will not depend on the others. That is, at
time t, At = diag{A1,t, . . . ,ANt,t}. Also Rt = diag{R1,t, . . . ,RNt,t}.

As a generic motion model of the targets, a discrete version of the continuous
white noise acceleration model or second-order kinematic model is used [42]. In
this model, the velocity is assumed to be affected by an acceleration modeled as
a white noise of zero mean and with power spectral density δ. The discretized
version of this linear motion model for an object i, is characterized by:

Ai,t =
(

I ∆tI
0 I

)
(4.43)

and

Ri,t =
(1

3∆t3I 1
2∆t2I

1
2∆t2I ∆tI

)
δ (4.44)

Measurement Model and Likelihood Function

If the alarms are located on the ground, and if the geolocation procedure de-
scribed above can be applied, each UAV can determine directly the 3D position
of the objects segmented on the image plane. If a measurement j is associated
to a particular alarm i, then:

Mji,t =
(
Ii 0

)
(4.45)

The errors εj,t in the estimated position arise due to the errors on the po-
sition and orientation of the sensor (qt) and the terrain model. Moreover, the
geolocation procedure is non-linear. In order to propagate the uncertainties in qt

and obtain an estimation of the covariances of the error in (4.34) the Unscented
Transform (UT) is used. Therefore, the UT is used to determine the mean zj,t

and covariance matrix Sj,t on the estimated position for any alarm detected on
the image plane.

Prior Belief

The only issue to be described is how alarms are initialized. When an UAV
segments an alarm, the geolocation procedure directly provides the initial values
for ξi and Ωi:

Ωi =
(
S−1

j,t 0
0 0

)
(4.46)

and

ξi =
(
S−1

j,t zj,t

0

)
(4.47)



96 L. Merino et al.

Fig. 4.17. The errors in qt induce correlated errors in the estimated position of the
alarms zi,t (left). If the alarms are to be evolved independently, the dependences should
be marginalized out (right).

Local Information Filter with Perfect Data Association

The previous equations are then used locally by each UAV to update their local
beliefs about the current alarms. A further assumption allows to simplify the algo-
rithm. As the motion model and motion noise νt covariances are block diagonal, if
the information matrix is block diagonal Ωt−1 = diag{Ω1,t−1, . . . ,ΩNt,t−1}, each
alarm i can be predicted separately leading to a (local) parallelized computation.

If the set of measurements can be associated with the current set of alarms, so
that any measurement j is associated to an alarm i (that is, only one block Mji,t

for each row of matrix Mt is non zero) and if the measurements are independent
(and thus, Qt is block diagonal), the global Information Filter for all the alarms
can be divided into N Information Filters, a separated one for each alarm.

However, the position measurements about the different alarms obtained by
one UAV are not independent. When obtaining the position of the alarms, the er-
rors on the UAV position qt induce errors on the estimated position, errors that
are correlated for all the alarms detected (see Fig. 4.17). Therefore, the depen-
dencies among measurements should be explicitly marginalized out if one wants
to keep the alarms updated independently. The marginalization is straightfor-
ward for the case of Gaussian measurements. It should be noted that getting
rid of measurements dependencies reduce the amount of storage required and
the computational burden, but it comes at a cost. Some information is lost: the
relation between alarms. This information would allow to propagate information
about one alarm to the other related (as in the SLAM problem).

Data Association

Previous sections have presented the filter under the assumption of perfect data
association. That is, each measurement j is associated to one particular alarm
i, or when an UAV receives information from other, it knows to which alarm it
belongs.

The data association problem tries to determine what measurements corre-
spond to what alarms, or what alarm corresponds to what alarm when combining
beliefs received from other UAVs. The first one is usually called scan-to-track as-
sociation, while the later is called track-to-track association. This general problem
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is known to be NP-hard in the general case. As the main objective is to show co-
operative characteristics, the approach followed is fairly simple, although more
complex ones could be used.

For the scan-to-track association a gated nearest neighbor technique [10] is
employed. For the track-to-track association, each alarm is marked with a label,
but the labels are not synchronized, so the UAVs must determine the conversion.
This is also accomplished by using a nearest neighbor technique, so that two
alarms p and q of UAVs i and j are associated if the Mahalanobis distance is
below a threshold:

dij2
kp = [µi

k − µj
p]

TΣij−1
kp [µi

k − µj
p] ≤ d2

th (4.48)

In the case of combining belief trajectories, it is needed to recover the mean µi

for every alarm by solving the system Ωiµi = ξi. Also, it is needed to obtain the
inverse of Σij . The information matrix Ωi for the case of the full trajectory (and,
thus, matrix Σij) can be of the order of hundreds of rows/columns (for instance,
for a 20 seconds trajectory and if each block row corresponds to one second, the
matrix is 120× 120). However, the information matrix is very structured, which
allows for efficient algorithms for matrix inversion. In [2], the authors show how
for a symmetric tridiagonal block matrix there exist algorithms that are nearly
two orders of magnitude more efficient than direct inversion.

In the case of track-to-track association, once the same identifier has been
associated to a local alarm the track is definitely associated, so that the data
association problem becomes straightforward. However, this comes at cost that
sometimes this could lead to wrong assignments. More complex data association
techniques can be used. An approach based on the information representation
of the posterior over all potential track-to-track associations is described in [37].

4.5.3 Results

This section presents some results obtained in simulation. The same algorithms
have been applied for real experiments of fire detection and monitoring, which
are presented in Chap. 8.

Experiment 1

In the first experiments, three vehicles are considered, and two static alarms.
Figure 4.18 shows the simulated trajectories and the position of the alarms. One
of the vehicles flies at a higher altitude, while the others are given a certain area
to patrol. The vehicle flying at higher altitude acts as an information relay for
the other two UAVs.

Figures 4.19 and 4.20 show the estimated positions and estimated variances
for the two objects and 3 UAVs. The UAVs employ the Covariance Intersection
to avoid overconfident estimates. It can be seen as all converge to the same
solution and to the correct position of the alarms.
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Fig. 4.18. Map showing the trajectories of the vehicles and the position of the events
for Experiment 1
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Fig. 4.19. Estimated position of both alarms for the three vehicles in Experiment 1
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Fig. 4.20. Estimated variances of the errors for the three vehicles in Experiment 1
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Fig. 4.21. Map showing the trajectory of the event (solid), the trajectories of the two
vehicles (dashed) and the estimated position of the object (triangles) in Experiment 2

Experiment 2

The second experiment consists of the detection and tracking of a moving object.
Two UAVs are commanded to fly to a certain point and hover looking to the
object. Figure 4.21 shows the estimated position of a moving object by two UAVs
using cameras.

Figure 4.22 shows a detail of the estimated position by the UAV located
around position (0, 50) against the actual one. It can be seen that first the
object is within its field of view. One it abandons it, the uncertainty grows until
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Fig. 4.22. Left: Estimated position of the object (solid) and actual one (dashed).
Right: estimated variances for one of the UAVs. At time 115 it receives information
from the other UAV, incorporating it into its own belief.
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Fig. 4.23. Estimated velocity of the object (solid) and actual one (dashed)

it receives information from the other UAV. Also, the variances in the X and Y
coordinates are shown. Figure 4.23 shows the estimated velocity of the object
for the same UAV.

4.6 Grid-Based Multi-UAV Detection and Localization
Using Vision and Other Sensors

The Information Filter (and its dual, the Kalman Filter), requires some re-
strictions that in some cases do not hold. For instance, they are restricted to
Gaussian distributions, and thus they cannot handle multi-modal distributions,
which arise when several hypotheses should be maintained at the same time.
Also, the problem of data association has to be taken into account [42].

Furthermore, the previous method is suitable for sensors that can provide
contacts. That is, the raw data that each sensor provides can be segmented into
information that can be associated to a particular alarm. However, there are
sensors that do not provide directly the position of objects of interest (indeed,
cameras only provide bearing measurements, and only under the assumption of
a known DEM the position of the objects on the ground can be determined,
even for a perfectly localized camera). For instance, in Chapter 8 a fire detection
application is presented which also uses fire detectors as sensors. Fire detectors
are cheap sensors that provide information about the presence or absence of fire
within their fields of view, but no direct information about the actual localization
or size of the fire.

Grid-based approaches [27, 41, 46] can overcome the previous mentioned prob-
lems. The approach is to divide the scenario to be explored into cells, in what
is called a certainty or evidence grid. To each cell k, a discrete (binary) random
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Algorithm 4.3. {lk,t} ← Binary LogOdds Filter({lk,t−1}, zt)
1: for k = 1 to L do
2: lk,t = lk,t−1 + log p(zi,t|xk) − log p(zi,t|x̄k)
3: end for

variable xk is attached, representing the presence or absence of the object. Also,
each cell of the grid has a 3D position associated, pk.

The variable can have two values, true or false. The probability that there is
an object at cell k is represented by p(xk = 1) or p(xk), and we denote by x̄k the
fact that there is no object at cell k. Then, by definition, p(xk = 0) = p(x̄k) =
1 − p(xk). The objective of the robot team is to update the probability of the
different cells.

4.6.1 Local Filter

For this application, it is assumed that the status of each cell does not change
with time. The state xt is comprised by the status of all the cells of the grid
xk,t at time t. The joint posterior p(xt|zt) has to take into account all the
possible combinations of values for all the cells. The full posterior for a grid
with L cells should consider 2L different states [46]. Maintaining this posterior
is computationally unaffordable. Instead, this posterior will be approximated by
the products of its marginals over each cell.

p(xt|zt) =
∏
k

p(xk|zt) (4.49)

In this case, the Bayes filter takes a particular simple form considering log-odds:

bel(xk,t)
1 − bel(xk,t)

=
p(zt|xk)
p(zt|x̄k)

bel(xk,t−1)
1 − bel(xk,t−1)

= =
t∏

τ=0

p(zτ |xk)
p(zτ |x̄k)

bel(xk,0)
1 − bel(xk,0)

(4.50)

Calling lk,t = log bel(xk,t)
1−bel(xk,t)

, then the local algorithm for updating all the cells
of the grid is given by Algorithm 4.3.

4.6.2 Distributed Filter in the Multi-robot Case

If a centralized node receives all the data provided by the robots, as p(zm
t |xk,t) =∏

j p(zj,t|xk,t) the central filter is the same as Algorithm 4.3, but line 2 is sub-
stituted by

lk,t = lk,t−1 +
∑

j

[log p(zj,t|xk) − log p(zj,t|x̄k)] (4.51)

The filter is easily decentralized. Each robot i computes part of the running
total of (4.51) considering only local data, and sends to the other robots its
own belief state in logarithmic form. Each robot incorporates the information
received from others by using (4.37) adapted to the binary static case. The final
filter is given by Algorithm 4.4.
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Algorithm 4.4. Decentralized Grid Multi Robot(i)
1: for all k do
2: lik,0 = 0
3: end for
4: while true do
5: for all k do
6: if New data zi,t then
7: lik,t ← lik,t−1 + log p(zi,t|xk) − log p(zi,t|x̄k)
8: end if
9: if New belief from UAV j then

10: lik,t ← lik,t + ljk,t − ljk,t−∆t

11: end if
12: end for
13: end while

4.6.3 Grid-Based Detection and Localization of Events

The main issue in the filter described is to determine the likelihood function
p(zt|xk). It indicates the probability of having data zt considering that there is
an object of the class considered in cell k at time t. The data zt consist of all
the data gathered by the vehicles of the fleet at time t, and in the particular
case considered, these data are images and fire sensor readings gathered by the
different vehicles.

The likelihood function should take into account the position of the sensors re-
spect to the map and the geometric characteristics of the distinct sensors (for in-
stance the pin-hole model of the cameras). The latter are obtained through cal-
ibration, while the former will be provided by the UAVs. As commented above,
the uncertainty on the pose of each UAV j, qj,t, should be taken into account for
a correct definition of the likelihood function for the measurements gathered by
this UAV zj,t:

p(zj,t|xk) =
∫

p(zj,t|xk,qj,t)p(qj,t)dqj,t (4.52)

An equivalent equation to (4.52) is used to compute p(zj,t|x̄k) (which is re-
quired in the filter). Equation (4.52) implies a further simplification. The mea-
surements depend conditionally not only in one cell, but at least in all the cells
of the grid within their field of view S(j) of the sensor j. Therefore,

p(zj,t|xk,qj,t) =
∑

i∈S(j)

∑
xi

p(zj,t|xk, xi,qj,t)p(xi) (4.53)

However, when computing (4.52) this dependence will not be considered. The
rest of the section describes the likelihood functions for several sensors.

Measurement Model for the Cameras

As presented in Sect. 4.3.3, cameras are an important source of information in
the fleet of UAVs. Cameras of different modalities can be considered, but the first
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assumption is that in a preprocessing stage, objects of interest are segmented
from the background, so that the measurements provided by the cameras are
binary images that classify the pixels as belonging to the class or not (as fire or no
fire for instance). This segmentation algorithms are defined by the probabilities
PD,j and PF,j for sensor j.

Fig. 4.24. Due to the uncertainties in sensor position and the cell resolution, one cell
corresponds to a zone on the image plane (represented by the ellipse)

In order to determine the likelihood function (4.52), it should be considered
the following. Each cell k has a position associated, pk. For a given value of the
position of the sensor qj,t, the center of the cell will correspond to a pixel mk,j

on the image plane of camera j (if it is within the field of view of that camera).
The pixel position is given by (4.25).

If pixel mk,j corresponds to a region segmented as fire, then the likelihood is
defined by p(zj,t|xk,qj,t):

p(zj,t|xk,qj,t) = PD,j

p(zj,t|x̄k,qj,t) = PF,j

(4.54)

while if the pixel is classified as background, then the term is given by:

p(zj,t|xk,qj,t) = 1 − PD,j

p(zj,t|x̄k,qj,t) = 1 − PF,j

(4.55)

However, the position of the sensor is not known accurately, and thus, the
position of the corresponding pixel is also uncertain. So in order to compute the
likelihood p(zj,t|xk), (4.52) should be integrated for possible values of the pose
of the camera qj,t. This could be done by sampling values of qj,t. However, this
is computationally expensive, and indeed this should be done for all the cells of
the grid that are within the field of view of the camera.

The pixel position is related to the sensor and cell position through the non-
linear pin-hole model of (4.25), so that mkj = f(qj,t,pk). Instead of directly
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solving (4.52), the uncertainties in qj,t are propagated into uncertainties on the
pixel position mkj corresponding to cell k using the Unscented Transform [21].
Moreover, in the procedure, the uncertainties in the position pk due to the
limited resolution of the grid are also taken into account. As a result, each cell k
corresponds to a Gaussian distribution on the pixel position p(mkj). And then,
equation (4.52) becomes:

p(zj,t|xk) =
∫

p(zj,t|xk,qj,t)p(qj,t)dqj,t =
∑
m

p(zj,t|mkj,t)p(mkj,t) (4.56)

where the sum is done over a region on the image plane determined by the
second order moments of the distribution p(mjk,t). The same procedure is used
to compute the likelihood function for the hypotheses x̄k.

To complete the model, the probabilities PD,j and PF,j are modified depending
mainly on the relative position of the cell k, pk, respect to the position and
orientation of the sensor qj . Thus:

PD,j(pk,qj) = PD,j − wD,j(d2
kj)

PF,j(pk,qj) = PF,j − wF,j(d2
kj)

(4.57)

where wD,j and wF,j are functions that decrease the values of PD,j and PF,j

with the distance between cell k and sensor j, dkj . These are the actual values
employed by the likelihood function.

Measurement Model for the Fire Sensor

The fire sensor considered is a fire detector, whose main component is a photodi-
ode set-up to limit its sensibility to the band of [185, 260] nm, normally associated
to fires. The output of the sensor is a scalar value, proportional to the radiation
received. Being a magnitude sensor, it is not possible to determine if a measure
is due to a big fire far away or a nearby small fire. Using a threshold, this value
is used to indicate if a fire is present or not within the field of view of the sensor.

Thus, the functioning of the sensor can be also characterized by probabilities
of detection PD and false positive generation PF. These probabilities depend on
the threshold selected. A higher threshold implies a lower PF at a cost of worse
detection capabilities.

If the sensor detects something, then for the updating of the cells the following
values hold:

p(zj,t|xk) = PD,j(pk,qj) = PD,j − wD,j(d2
kj , αkj , θkj)

p(zj,t|x̄k) = PF,j(pk,qj) = PF,j − wF,j(d2
kj , αkj , θkj)

(4.58)

and, in case that the sensor does not detect anything:

p(zj,t|xk) = 1 − PD,j(pk,qj) = 1 − [PD,j − wD,j(d2
kj , αkj , θkj)]

p(zj,t|x̄k) = 1 − PF,j(pk,qj) = 1 − [PF,j − wF,j(d2
kj , αkj , θkj)]

(4.59)

In fact, this model could be used for any other presence sensor that provides
binary decisions about the presence or absence of an object of a certain kind
within its field of view.
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Fig. 4.25. Plots of equations PD,j(d2
kj , αkj , θkj) and PF,j(d2

kj , αkj , θkj). Left, distance
component; right, angular component. Solid, PD, dotted, PF.

Obtaining Measures from the Grid

Using the equations described above, the status of the grid is recursively esti-
mated using the data the vehicles are providing. From a Bayesian point of view,
the grid represents all the information about the possible alarms at time t. How-
ever, in some applications, more specific measures are required. For instance, if
a fleet is looking for fire alarms, a control center would expect the position of
the potential fire alarm detected, in order to plan a new mission, sending new
vehicles to confirm the alarm. Also, we will use this value to compare it with the
position of the fire recorded with GPS for validation purposes.

This can be accomplished in various ways. In this case, the set of cells of the
grid with probabilities over a given threshold is obtained every T seconds. An
alarm is raised for each set R of connected cells over this threshold. The position
of the alarm is computed as the weighted geometric mean of the positions of the
cells.

µR =
∑

k⊂R pkp(xk|zt)∑
k⊂R p(xk|zt)

(4.60)

Also, it can be obtained an estimation of the uncertainty on the computed
position from the second order moments of the region R.

Experimental Results

Figure 4.26 shows the evolution of the grid of one UAV in several phases of an
actual fire experiment carried out in the framework of the COMETS project, and
that are described in Chap. 8. The first figure shows the status of the grid after
one of the UAVs has flown over a place with no fire, using a fire detector. The
second figure shows how the sensor produces two big high probability blobs on
the grid, one due to a false alarm and other due to the actual alarm. Afterwards,
another UAV takes off and uses its IR camera over the zone of the possible
alarms. This UAV receives the estimated grid from the other one. The third
grid shows how after several images and fire sensor data are integrated, the high
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Fig. 4.26. The status of the gird at three moments during the mission. The filled
square represents the actual position of the fire.
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Fig. 4.27. Estimated mean position of one of the high probability regions. Dotted:
estimated variances. Dash-dotted: actual fire position.

probability region is constrained to a smaller region, which includes the actual
position of the fire.

Figure 4.27 shows the evolution of the position of the high probability regions
computed using (4.60) compared to the actual fire position. It also shows the
estimation on the uncertainty on the computed position.

4.7 Conclusions

UAV environment perception is a main issue in aerial robotics. UAV perception
techniques include motion estimation from images, stabilization in sequences of
images taken with on-board cameras subject to vibrations and UAV turbulences,
automatic detection, classification and geo-localization of objects in the images,
and UAV vision-based localization, which can be very useful in case of GPS
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unavailability or failures. Different methods for the application of these tech-
niques have been presented in this Chapter.

The Chapter has also shown that a probabilistic approach is suitable for coop-
erative detection, localization and tracking. Particularly, an information filter for
multi-UAV cooperative perception has been presented showing good results in
detection and tracking. Moreover, a grid-based method for detection and track-
ing using vision and other sensors has been also presented demonstrating its
capability for fire detection and tracking.

The presented methods can be applied integrated in the decisional architecture
presented in Chap. 2. Chapter 8 of this book will present experiments on forest
fire detection and monitoring.
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