
Improving the Efficiency of Online POMDPs by using Belief Similarity

Measures

Joaquı́n Ballesteros1, Luis Merino2, Miguel Ángel Trujillo3, Antidio Viguria3 and Anı́bal Ollero1,3

Abstract— In this paper, we introduce an approach called
FSBS (Forward Search in Belief Space) for online planning in
POMDPs. The approach is based on the RTBSS (Real-Time
Belief Space Search) algorithm of [1]. The main departure
from the algorithm is the introduction of similarity measures in
the belief space. By considering statistical divergence measures,
the similarity between belief points in the forward search tree
can be computed. Therefore, it is possible to determine if a
certain belief point (or one very similar) has been already
visited. This way, it is possible to reduce the complexity of the
search by not expanding similar nodes already visited in the
same depth. This reduction of complexity makes possible the
real-time implementation of more complex problems in robots.
The paper describes the algorithm, and analyzes different
divergence measures. Benchmark problems are used to show
how the approach can obtain a ten-fold reduction in the
computation time for similar obtained rewards when compared
to the original RTBSS. The paper also presents experiments
with a quadrotor in a search application.

I. INTRODUCTION

Acting robustly in dynamic and outdoors environments re-

quires to cope with the uncertainties inherent to the limitation

of sensors, imprecise models, errors, etc. In the last years,

decision-theoretic planning methods coping with uncertain-

ties, like Partially Observable Markov Decision Processes

(POMDPs) [2] are more and more often used in robotics

[3], [4], [5]. However, the broader application of planning

under uncertainties methods faces a road blocker due to the

curse of dimensionality (both, with respect to the state space

and to the action-observation histories).

Two main kinds of algorithms can be found. In one hand,

offline POMDP algorithms try to find offline the best action

to be performed under all possible situations. Due to the

inherent complexity, the first proposed algorithms of this

kind were applied to just the simplest problems. Several

algorithms have been proposed in the last years to deal with

larger state, actions and observation spaces [6], [7], [8]. Most

of these algorithms require to recompute the full policy when

small changes on the environment dynamics happen.

Online forward-search-based POMDP algorithms have

been proposed in the last years as an alternative for planning

J.B., M.A.T., A.V. and A.O. are partially funded by the FP7 EC-
SAFEMOBIL Project (288082). The work of L.M. is partially funded by the
European Commission 7th Framework Programme under grant agreement
no. 288235 (FROG)

1J. Ballesteros and A. Ollero are with the University of Seville, Seville
(Spain) jballesteros,aollero@cartuja.us.es

2L. Merino is with Pablo de Olavide University, Seville (Spain)
lmercab@upo.es

3M.A. Trujillo, A. Viguria and A. Ollero are
with the Centre for Advanced Aerospace Technologies
matrujillo,aviguria@catec.aero

under uncertainties [9], [4]. In these online settings, the

planner tries, for a certain lookahead planning horizon, to

search for the best next action from an initial belief. These

algorithms create a tree representing the reachable belief

space for the horizon considered, and the objective is to

find the best route (the one with a highest expected reward)

through the tree in order to determine the best action to

perform. After deciding and executing the action, a new

planning iteration is performed. The problem again is that

this search scales exponentially with the planning horizon.

Different strategies are considered to overcome this com-

plexity. In some strategies, offline and online methods are

combined: the offline method is used to obtain bounds that

are later used in the online phase to prune branches of the

belief tree to reduce the computational time [9]. In [10], the

authors make use of the structure of certain problems, which

allows the automatic construction of macro-actions, reducing

effectively the action space for planning.

In this paper, we also consider a forward-search algorithm

for online planning under uncertainties. We analyze an

additional factor that can be used to improve the scalability

of these methods. In general, the algorithms described above

do not consider any metric within the belief manifold. Our

motivating idea is that planning can be made more efficient

by introducing an adequate metric or topological structure

in it. In general, the tree representation used in forward-

search will be actually a graph, where some belief points are

visited more than once through different observation-action

histories. Then we could reuse the computations for beliefs

that have already been visited.

Here we present a first approach in that direction. We

consider the use of similarity measures to determine the

difference between belief points in the tree, so that we can

determine nodes that represent the same belief point. By

setting a threshold on these measures and adjusting it, a

balance between complexity and optimality can be achieved.

This reduction of complexity is very important for the real-

time application of these methods in robotics.

The rest of the paper is organized as follows: the next

section describes the general algorithm. Then, the different

similarity measures considered are described. In the next sec-

tion, the algorithm and the different measures are analyzed

by using well-known benchmark problems, and compared

with the algorithm RTBSS [1]. Experimental results in a

quadrotor testbed are then presented. The adaptation to

heuristic search algorithms is considered before finalizing

with some conclusions and future work.



II. FSBS: FORWARD SEARCH IN BELIEF SPACE

ALGORITHM

A. Preliminaries

Formally, a discrete POMDP1 is defined by the tuple

〈S,A,Z, T,O,R,D, γ〉 [2]. The state space is the finite set

of possible states s ∈ S; the action space is defined as the

finite set of possible actions a ∈ A; and the observation

space consists of the finite set of possible observations z ∈
Z. At every step, an action is taken, an observation is made

and a reward is given. After performing an action a, the state

transition is modeled by the conditional probability function

T (s′, a, s) = p(s′|a, s), and the posterior observation by the

conditional probability function O(z, a, s′) = p(z|a, s′). The

reward obtained at each step is R(s, a), and the objective

is to maximize the sum of expected rewards, or value,

earned during D time steps. To ensure that the sum is finite

when D → ∞, rewards are weighted by a discount factor

γ ∈ [0, 1).
As the state is non-observable, a belief function b is

maintained by using Bayes rule. The belief obtained if we

apply the action a and get the observation z is b′(s′) =
τ(b, a, z) = ηO(z, a, s′)

∑

s∈S
T (s′, a, s)b(s). The normal-

ization constant:

η = P (z|b, a) =
∑

s′∈S

O(z, a, s′)
∑

s∈S

T (s′, a, s)b(s) (1)

gives the probability of obtaining a certain observation z

after executing action a for a belief b. As said above, the

objective is to determine the policy a = π(b) that maximizes

the cumulative reward, or value V π(b):

V π(b) = R(b, π(b)) + γ
∑

z∈Z

P (z|b, a)V π(bz
π(b))) (2)

where R(b, a) =
∑

s
R(s, a)b(s) is the expected immediate

reward2. The value of the optimal policy is usually denoted

by V ∗(b) and associated to it is the optimal Q function:

Q∗(b, a) = R(b, a) + γ
∑

z∈Z

P (z|b, a)V ∗(bza)) (3)

Forward-search algorithms create an AND-OR tree by

exploring the next beliefs for all possible actions and for

all possible observations starting at an initial belief (see Fig.

1). The branching factor in AND-OR POMDP trees is |A||Z|
where |A| is the number of actions and |Z| is the number

of observations, and the number of leaves nodes for a tree

of depth D is (|A||Z|)D. In [9], a classification of POMDP

online algorithms can be found, and also three strategies that

are employed to improve the computing time required to

choose the best action:

• Monte Carlo sampling algorithms: minimize the branch-

ing factor by sampling a subset of observations.

1In this paper we will limit our analysis to discrete POMDPs, although
most ideas can be considered in the continuous state case

2bz
a
= τ(b, a, z) will be used to obtain a more compact formula.

Fig. 1: An AND-OR Belief Tree with 2 actions and 2

observations. The OR-node are represented by triangles and

the AND-nodes by circle. If a repeated belief appears at the

same depth, it means that it has an identical subtree and the

same value (like belief b2).

• Heuristic search algorithms: guide the search of the

most relevant branch nodes.

• Branch and Bound algorithms: Prune nodes that are

suboptimal compared to other that have already been

expanded.

B. The FSBS algorithm

The algorithm proposed is here is of the Branch and Bound

kind, and proceeds via look-ahead search up to a fixed depth

d. We use the structure of the RTBSS algorithm proposed by

[9] to elaborate the FSBS (see Algorithm 1). The algorithm

uses the max-planes lower bound [11] of the optimal value

implemented in [12] (line 3). The δ function determines how

the FSBS algorithm propagates this lower bound from the

leaves up to the root.

δ(b, 0) = LowerBound(b)

δ(b, d) = max
a∈A

(R(b, a) + γ
∑

z∈Z

Pr(z|b, a)δ(bza, d− 1))

The main idea of the algorithm is to reuse the calculated

rewards for the nodes that have been already explored at the

same depth. It is the heuristic that allows us not to expand

nodes and aims at minimizing the branched nodes as much

as possible. Therefore, if the next belief to be expanded is

similar to a saved belief at the same depth, that belief will

not be expanded because its value is already calculated (see

Fig. 1). The similarity between beliefs is computed by using

one of the divergence measures described in Section III.

To determine the similarity between beliefs, we keep a

node list for each depth d, nodeListd. Every node contains

the following items: the belief b; an action; and the accumu-

lated reward if that action is applied to the belief, δ(b, d).
We only keep the beliefs up to depth D−1 because the leaf

nodes cannot be expanded.

The function orderbyAccReward in line 5 is used to find

the accumulated rewards that are obtained when we apply

each action to the current belief.

For each action at depth d, the orderbyAccReward function

looks for a similar belief in nodeListd, b′, considering a

similarity threshold th. If a belief is successfully found,

the accumulated reward that was already stored, δ(b′, d), is

assigned to it, and if not, it is assigned as ∞ in order to



Algorithm 1: FSBS Algorithm

1: function FSBS(b, d, th)

2: if d == 0 then

3: return LowerBound(b)
4: end if

5: {st1, st2, ..., st|A|} ← orderbyAccReward(b, d, th)
6: LT (b)← −∞
7: i← 0
8: while i < |A| AND sti.AccReward > LT (b) do

9: a← sti.IdAction

10: rAcc← sti.AccReward

11: LT (b, a)← −∞
12: if sti.isFoundSimilar then

13: LT (b, a)← Reward(b, a) + γrAcc

14: else

15: LZ(b, a) ←
∑

z∈Z
P (z|b, a)FSBS(bza, d −

1, th)
16: LT (b, a)← Reward(b, a) + γLZ(b, a)
17: saveNode(b, a, d, LZ(b, a))
18: end if

19: LT (b)← max{LT (b), LT (b, a)}
20: end while

21: return LT (b)
22: end function

get expanded first. The orderbyAccReward function returns

a list, sorted by accumulated reward, in which each element

contains the following items: the action associated; the

accumulated reward if this action is applied to the input belief

if exists; and a variable that indicates whether the resulting

belief is already in a depth on the tree or not.

In line 12-13 we reuse the accumulated reward if a similar

node is found at the same depth. In this case, we stop

expanding along that path. If not, we expand and keep

the node (line 15-18). To finish we choose the action that

maximizes the accumulated reward (line 21).

We calculate the optimal policy as:

π∗(b,D) =

argmax
a∈A

(R(b, a) + γ
∑

z∈Z

P (z|b, a)FSBS(bza, D − 1, th))

This is applied in each planning iteration. At every itera-

tion, the optimal action is applied and then a new forward

search is performed, in receding horizon fashion.

III. DETERMINING THE SIMILARITY BETWEEN BELIEF

FUNCTIONS

The key idea of the FSBS algorithm is to define a

similarity measure between belief points. For close enough

belief points, we can reuse the computed lower bound on the

Q function, and it is not required to re-explore the subtree

rooted at that point.

There are different measures that can be used to determine

the similarity between probability distributions. In this paper,

we will analyze three measures from the field of information

theory; namely, the Bhattacharyya distance, DB (4); the

Jensen-Shannon (JS) divergence DJS (6), which uses the

Kullback-Leibler divergence DKL (7); and finally, the the

Rénji divergence, a generalization of relative entropy; in

particular the divergence of order 2, DR2 (5),. Given two

discrete beliefs (probability distributions) p(s) and q(s), they

are defined as:

DB(p ‖ q) = − ln

(

∑

s∈S

√

p(s)q(s)

)

(4)

DR2(p ‖ q) = logE[
p

q
] = log

∑

s∈S

p(s)
p(s)

q(s)
(5)

DJS(p‖q) =
1

2
(DKL(p‖

p+ q

2
) +DKL(q‖

p+ q

2
)) (6)

where

DKL(p‖q) =
∑

s∈S

p(s) ln
p(s)

q(s)
(7)

These three statistical divergences have been used in many

areas. Rénji divergence has been used in domain adaptation

[13]. The Jensen-Shannon divergence has been used in

imaging processing [14] and active learning settings [15];

also, the Bhattacharyya distance has been used in image

processing for histogram comparison [16].

For our algorithm, the best choice is a statistical distance

with a low computational complexity and that can compare

any given couple of probability distribution. The compu-

tational complexity of all of them is O(|S|), with |S| the

number of states. Among them, the Rénji divergence of order

2 is the fastest to compute. However, the main problem

here is that the divergence is only defined if q(s) > 0
for all p(s) > 0, and therefore it leads to many cases in

which the two beliefs are not comparable. Also, it is not

symmetric. By contrast, the JS divergence is always defined

for two fixed beliefs; moreover, it is bounded between 0

and 1 [17] and symmetric; the drawback is that it requires

to calculate the KL divergence twice. Between these both

statistical distances, we encounter the Bhattacharyya distance

with a medium computational complexity.

Although some of the measures are sometimes called

distances, as the KL distance, actually they are not proper

distance measures, as the triangle inequality usually does not

hold for them. However, the square root of the JS divergence

is a metric [18], and thus we will focus the analysis on the

JS divergence.

IV. ANALYSIS USING BENCHMARKS

In order to evaluate the FSBS algorithm, we have im-

plemented RTBSS [1] as baseline algorithm. We have used

Trey Smith’s library [12] for the implementations. Moreover,

we have adapted the library so that it can be used in ROS

(Robotic Operating System) [19]. We have used the POMDP

parser and the structure provided by [12] to implement FSBS,

and we have also used the lower bound included in it as



utility function (Algorithm 1, line 3). For the RTBSS imple-

mentation, we have employed the upper bound implemented

in it too.

For evaluation, we have considered two well known bench-

mark problems widely used to test and compare POMDP

algorithms: RockSample [20] and Tag [21]. The methodol-

ogy employed has been the following: the FSBS algorithm

is executed, considering different thresholds in the similarity

function used to compare belief points. Moreover:

• For RockSample we have executed all possible rock

configurations twenty times for each statistical diver-

gence measure of Section III and for each threshold.

• Regarding the Tag problem, we executed five times

all the possible start configurations (trivial cases not

included), only for the JS divergence and for each

threshold.

We also executed RTBSS (using the lower and upper

bound provided by [12]) and what we denominate the equal

case (the FSBS algorithm in which two beliefs b and b′ are

marked as similar only if ∀s ∈ S b(s) = b′(s)) for the

previous two benchmarks and the same configurations.

For each of these executions we have recorded the mean

number of branch nodes used by the algorithm, the mean

expected reward returned by the algorithm and the total time

used per run of the problem. The figures below will show

the mean of these values and their standard deviations for

all the runs performed3.

A. Rock Sample Benchmark

As RockSample7 8 is a problem with a branch factor 26,

and we are comparing all statistical divergences for a depth

of 4, we have therefore 18278 nodes that can be expanded.

In Fig. 2 we can see the mean number of branch nodes per

problem execution for the different options. All statistical

divergences are represented on the upper horizontal axis

except Rényi’s divergence of order 2 which is represented in

the lower horizontal axis. As said above, we compare here

different thresholds for each statistical divergence measure.

The RTBSS and equal comparison are duplicated for all

threshold values for a more user-friendly reading.

As expected, the number of branch nodes decreases if we

increase the threshold. The Bhattacharyya distance behaves

worse than the JS case as when pi = 0 it cannot differentiate

the value for qi and vice versa, so less nodes are found

as being similar. The Rényi’s divergence needs a higher

threshold to prune because it is not defined in case qi is equal

to 0. It is important, moreover, to notice that even in the case

of the removal of equal nodes, a significative reduction of

nodes is achieved with respect to the original RTBSS.

More importantly, we also compare the expected reward

to check how the reduction of nodes affects the performance

of the planner. In Fig. 3 we can see the comparison of

3Please notice that the library employed does not use factored POMDP.
The rewards obtained here are therefore worse than the ones that can be
obtained with factored POMDPs, like in [9]. However, the conclusions are
not affected by the particular implementation, as we are interested in the
relative gain obtained by incorporating the divergence measures.

Fig. 2: Number of branch nodes (RockSample): the graphic

shows the mean number of nodes and its variance for

different divergence measures and thresholds. The RTBSS

case and the equal case are shown as well.

Fig. 3: Expected Reward (right vertical axis) and execution

time (left vertical axis) for RTBSS and FSBS using the JS

divergence (RockSample).

the expected reward for FSBS using the JS divergence and

RTBSS. We observe how the expected reward of the JS

case remains very close to the one obtained by the RTBSS

for a threshold lower than 0.25. The figure also shows the

execution time for both algorithms. Above this threshold

our algorithm improves the time performance because it

always expands a little quantity of nodes (less than 5%). For

lower thresholds than 0.2, the Jensen Shannon divergence

computation cost increases and makes the expected time

worst than RTBSS. As expected, for larger thresholds the

reward obtained is reduced.

In Fig. 4 we can see the comparison for the case of the

Bhattacharyya distance. The Bhattacharyya distance has a

similar behavior to the JS Divergence, as it remains very

close to the expected value of RTBSS for thresholds lower

0.3. However, the expected reward for JS is most often better

than for the Bhattacharyya distance. The lower computation

cost improves the expected time, although the number of

branch nodes is always higher than in the JS case for

thresholds higher than 0.1 (see Fig. 2).

Regarding RockSample we can finally see in Fig. 5 the



Fig. 4: Expected Reward (right axis) and execution time

(left axis) for RTBSS and for FSBS using the Bhattacharyya

distance (RockSample).

Fig. 5: Expected Reward (right axis) and execution time (left

axis) for RTBSS and for FSBS using the Rényi’s divergence

of order 2 (RockSample)

comparison when using the Rényi’s divergence of order 2.

The reward also remains very close to the expected for

thresholds lower than 2.

When comparing the mean execution time for each statis-

tical distance, using the maximum threshold that maintains

the expected reward equal in mean to the RTBSS (0.2 JS,

0.3 in Bhattacharyya and 2 in Rényi), it can be seen that the

Bhattacharyya gets the lowest execution time.

B. Tag Benchmark

In the case of the Tag benchmark [21] the branching factor

is 145. We carried out a comparison for depth 4, which

implies that 3069795 nodes can be expanded, and we focus

on the JS divergence in this case, as commented above. In

Fig. 6 we can observe the mean of the number of branch

nodes per problem execution for the different options. It can

be seen how the FSBS algorithm with the JS divergence

manages to reduce the number of branch nodes to nearly

an 8% of the nodes expanded by RTBSS. As expected,

the number of branch nodes decreases if we increase the

threshold, and we therefore obtain the same behavior as in

RockSample.

In Fig. 7 we can observe the comparison of the expected

cumulative reward for FSBS using the JS divergence and

Fig. 6: Number of branch nodes (Tag): the graphic shows the

mean number of nodes and its variance for Jensen Shannon

divergence and thresholds (right axis). The RTBSS case and

the equal case are shown as well (left axis).

Fig. 7: Expected Reward (right axis) and execution time (left

axis) for RTBSS and for FSBS using the JS divergence (Tag).

that of RTBSS. In this case, the expected reward of the

JS case is nearly equal to the expected value of RTBSS

for thresholds below 0.01. For higher thresholds, the reward

remain fairly close to the to the RTBBS reward. However,

time improves substantially, like in RockSample, as we

increase the threshold, with a 90% reduction of execution

time when compared to RTBSS for thresholds above 0.2.

Table I shows the total expected time used per run for

different planning depths when using the Jensen Shannon

divergence. We have chosen the following two thresholds: on

one hand, 0.5 that gets a good compromise between reward

and time in the tests shown previously; and on the other hand,

0.8 that gets a better total time against the obtained reward.

As expected, the reward obtained in both cases increases with

the planning horizon. Another observation is that the total

time is more negatively affected when depth is increased by

lower thresholds.

V. EXPERIMENTAL RESULTS

We have also tested the algorithms in real time in the

quadrotor testbed of the Center for Advanced Aerospace

Technologies (CATEC), see Fig. 8. The testbed is equipped

with 20 VICON cameras, which allow to know the position

and orientation of the vehicles with great precision, and to

perform experiments with up to 8 quadcopters at the same

time.



TABLE I: Comparative table for different planning depths

using Jensen-Shannon

Threshold 0.5

Depth 5 6 7

Time 3.90 9.64 20.51

Reward -14.90 -12.78 -12.32

Threshold 0.8

Depth 5 6 7

Time 0.1 0.12 0.14

Reward -17.17 -16.90 -16.71

Fig. 8: Four snapshots of the experiments at CATEC’s

testbed. The last image shows the moment when the intruder

is finally detected.

The ROS module implementing our online POMDP has

been integrated into the testbed. In the experiments per-

formed, the Tag problem is employed to model a search

mission in which one quadcopter has to localize an intruder.

The objective is to localize and indicate the position of the

intruder.

The space is discretized into 27 cells of 80 cm. each. The

pursuer can observe its own location. It also has a camera

(simulated using the VICON system) with a field of view

limited to the cell below the quadcopter. This camera is able

to detect if the intruder is in that cell or not. The intruder

knows the position of the pursuer, and tries to separate from

it 80% of the time (the other 20% stays at the same cell).

The actions that the pursuer can take are staying at the same

cell or moving to one of the 4 neighbor cells. In this setup,

the online POMDP acts as a planner that sends waypoints to

the path planner. These waypoints are the centre of the next

neighbor cell to move.

Figures 9 and 10 show the trajectories obtained in one

experiment using a planning horizon of 4 and a threshold of

0.1 in the FSBS algorithm (using the JS divergence). In the

test, the intruder is successfully detected around the second

260. The planning loop can be executed in real-time (well

below 1 second each iteration, as the computers of the testbed

are more powerful than the one used in the previous section).

VI. ADAPTATION TO HEURISTIC SEARCH ALGORITHMS

Our goal in this paper was to show that introducing

similarity measurements between belief points in online

POMDP algorithms reduces the complexity and minimizes

−4

−3

−2

−1

0

1

2

3

4

−4
−3

−2
−1

0
1

2
3

4

0

0.5

1

1.5

2

X (m.)

Y (m.)

Z
 (

m
.)

Fig. 9: 3D trajectories of the pursuer (blue) and the intruder

(red). The quadrotors are limited to be in the indicated

scenario (in black).

50 100 150 200 250 300 350
−4

−3

−2

−1

0

1

2

3

4

X
 (

m
.)

50 100 150 200 250 300 350
−4

−3

−2

−1

0

1

2

Time (sec.)

Y
 (

m
.)

Fig. 10: X and Y coordinates as a function of time for the

pursuer (blue) and the intruder (red). Around 260 seconds

the pursuer detects the intruder when it is over it.

the number of nodes used. We have employed a branch and

bound algorithm as baseline as branch and bound algorithms

always explore the same tree for a fixed depth and a same

given input, which enables us to carry out comparisons

between trees with the same depth.

Of course, heuristic search algorithms can obtain better

policies. In heuristic search algorithms, the belief tree is not

completely explored for a fixed depth. Instead, the nodes are

expanded according to a heuristic function until a timeout

is exceeded. The heuristic computation has an additional

computational cost and it should be known for all the fringe

nodes before the candidate to be expanded is chosen. For this

reason, the number of expanded nodes is far inferior than

in branch and bound algorithms. However, heuristic search

algorithms select only representative nodes, which usually

improves the final result.

We implemented a version of AEMS2 [9] by using the

measurement divergence in order to compare beliefs at the

same depth. We based our evaluation work on the Rock-

sample benchmark. We compared our AEMS2 version with

the original AEMS2 by using the JS divergence and the

Bhattacharyya distance, both with 0.2 threshold and a 2-

second timeout.



TABLE II: Comparative table for different distance measure-

ment in AEMS2

AEMS2

Distance None JS Bahata

Rewards 14.2 14.24 15.09

Nodes 2758 98 141

The result can be observed in table II. It can be seen

how, due to the additional complexity introduced by the

comparisons, less nodes are expanded for the same planning

time than in the original AEMS2 algorithm. However, the

reward obtained is very similar. This leads us to conclude

that more efficient implementations of the comparisons, for

instance by using other data structures like kd-trees, can lead

to enhance the performance of heuristic search algorithms.

VII. CONCLUSIONS AND FUTURE WORK

In the paper, we have presented a forward-search algorithm

for online planning under uncertainties. The algorithm con-

siders some divergence measures to determine the similarity

between belief nodes of the forward search tree, allowing to

discard branches that are similar to branches already visited,

and thus reducing the computational cost of the algorithm.

The threshold considered for the divergence measure allows

to tradeoff optimality and execution time. This allows apply-

ing online POMDPs to actual robotic problems with larger

domains and/or planning depths.

We have presented comparisons with state of the art

algorithms that support this claim using two benchmark

problems. It has been shown that if the threshold remains

below a certain value for a given statistical distance, the

expected reward remains very close to the ǫ-optimal value

calculated in RTBSS. Moreover, we have also tested the

planner in real-time in a quadrotor testbed in a searching

application in which the robot is equipped with very limited

sensors. The same ideas can be applied to heuristic search

algorithms.

As future work, we will consider more efficient data

structures, like kd-trees and hashing tables, to reduce the

computational burden of the distance comparisons. Fur-

thermore, the same ideas will be used to build graph-like

structures, in which the beliefs are compared at different

levels of the tree; this way we expect that better results can be

obtained when combining the approach with methods based

on heuristic search. Another interesting line is to develop

adaptive thresholds depending on the planning time available.

We will also analyze the potential applications of results on

information geometry [22] to the planning under uncertainty

problem, by considering the introduction of proper metrics

into the belief manifold.

REFERENCES

[1] S. Paquet, B. Chaib-draa, and S. Ross, “Hybrid POMDP algorithms,”
in Workshop in Multiagent Sequential Decision Making in Uncertain

Domains (MSDM). The 10th International Joint Conference on Au-

tonomous Agents and Multiagent Systems (AAMAS), 2006, pp. 133–
147.

[2] L. P. Kaelbling, M. L. Littman, and A. R. Cassandra, “Planning and
acting in partially observable stochastic domains,” Artificial Intelli-

gence, vol. 101, pp. 99–134, 1998.
[3] S. Ong, S. W. Png, D. Hsu, and W. S. Lee, “POMDPs for Robotic

Tasks with Mixed Observability,” in Proc. Robotics: Science and

Systems, RSS, 2009.
[4] R. He, A. Bachrach, and N. Roy, “Efficient planning under uncertainty

for a target-tracking micro-aerial vehicle,” in Proc. International

Conference on Robotics and Automation, ICRA, 2010.
[5] J. Capitan, M. Spaan, L. Merino, and A. Ollero, “Decentralized Multi-

Robot Cooperation with Auctioned POMDPs,” in The 6th Workshop

in Multiagent Sequential Decision Making in Uncertain Domains

(MSDM). The 10th International Joint Conference on Autonomous

Agents and Multiagent Systems (AAMAS), 2011.
[6] M. T. J. Spaan and N. Vlassis, “Perseus: Randomized point-based

value iteration for POMDPs,” Journal of Artificial Intelligence Re-

search, vol. 24, pp. 195–220, 2005.
[7] H. Kurniawati, D. Hsu, and W. Lee, “SARSOP: Efficient point-

based POMDP planning by approximating optimally reachable belief
spaces,” in Proceedings of the Robotics: Science and Systems Confer-

ence, Zurich, Switzerland, 2008.
[8] B. Bonet and H. Geffner, “Solving pomdps: Rtdp-bel vs. point-based

algorithms,” in Proceedings of the 21st international jont conference

on Artifical intelligence, ser. IJCAI’09. San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc., 2009, pp. 1641–1646.

[9] S. Ross, J. Pineau, S. Paquet, and B. Chaib-draa, “Online planning
algorithms for POMDPs,” Journal of Artificial Intelligence Research,
2008.

[10] R. He, E. Brunskill, and N. Roy, “Efficient planning under uncer-
tainty with macro-actions,” Journal of Artificial Intelligence Research,
vol. 40, pp. 523–570, February 2011.

[11] T. Smith, “Probabilistic planning for robotic exploration,” Ph.D. disser-
tation, The Robotics Institute, Carnegie Mellon University, Pittsburgh,
PA, July 2007.

[12] ——, “ZMDP software for POMDP and MDP planning,”
http://www.cs.cmu.edu/ trey/zmdp/, 2012.

[13] Y. Mansour, M. Mohri, and A. Rostamizadeh, “Multiple source
adaptation and the Rényi divergence,” in Proceedings of the Twenty-

Fifth Conference on Uncertainty in Artificial Intelligence. AUAI
Press, 2009, pp. 367–374.

[14] J. Gómez-Lopera, J. Martı́nez-Aroza, A. Robles-Pérez, and R. Román-
Roldán, “An analysis of edge detection by using the Jensen-Shannon
divergence,” Journal of Mathematical Imaging and Vision, vol. 13,
no. 1, pp. 35–56, 2000.

[15] M. Aminian, “Active learning for reducing bias and variance
of a classifier using Jensen-Shannon divergence,” in Proceedings

of the Fourth International Conference on Machine Learning

and Applications, ser. ICMLA ’05. Washington, DC, USA:
IEEE Computer Society, 2005, pp. 43–48. [Online]. Available:
http://dx.doi.org/10.1109/ICMLA.2005.7

[16] E. Choi and C. Lee, “Feature extraction based on the Bhattacharyya
distance,” Pattern Recognition, vol. 36, no. 8, pp. 1703–1709, 2003.

[17] J. Lin, “Divergence Measures Based on the Shannon Entropy,” IEEE

Transactions on Information Theory, vol. 37, pp. 145–151, 1991.
[18] D. Endres and J. Schindelin, “A new metric for probability distribu-

tions,” Information Theory, IEEE Transactions on, vol. 49, no. 7, pp.
1858 – 1860, july 2003.

[19] M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, J. Leibs,
E. Berger, R. Wheeler, and A. Ng, “ROS: an open-source robot
operating system,” in ICRA Workshop on Open Source Software, 2009.

[20] T. Smith and R. Simmons, “Heuristic search value iteration for
POMDPs,” in Proceedings of the 20th conference on Uncertainty in

artificial intelligence. AUAI Press, 2004, pp. 520–527.
[21] J. Pineau, G. Gordon, and S. Thrun, “Point-based value iteration: An

anytime algorithm for POMDPs,” in International Joint Conference

on Artificial Intelligence, vol. 18. Citeseer, 2003, pp. 1025–1032.
[22] S. Amari and H. Nagaoky, Methods of information geometry. Amer-

ican Mathematical Society, 2000.


