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Abstract— Planning under uncertainty faces a scalability
problem when considering multi-robot teams, as the informa-
tion space scales exponentially with the number of robots.
To address this issue, this paper proposes to decentralize
multiagent Partially Observable Markov Decision Process
(POMDPs) while maintaining cooperation between robots by
using POMDP policy auctions. Furthermore, communication
models in the multiagent POMDP literature severely mismatch
with real inter-robot communication. We address this issue
by applying a decentralized data fusion method in order to
efficiently maintain a joint belief state among the robots.
The paper focuses on a cooperative tracking application, in
which several robots have to jointly track a moving target of
interest. The proposed ideas are illustrated in real multi-robot
experiments, showcasing the flexible and robust cooperation
that our techniques can provide.

I. INTRODUCTION

Multi-robot systems are of great interest in many robotic

applications, such as surveillance or rescue robotics [9], [7].

These scenarios present uncertain and potentially hazardous

environments in which robots can experience communication

constraints regarding connectivity, bandwidth and delays.

We propose a scheme for exploiting the power of decision-

theoretic planning methods, while mitigating their complex-

ity by lowering the dependence between individual plans. A

key point in our approach is also that we relax the strict

assumptions on the quality of the communication channel

commonly found in the literature on multiagent planning

under uncertainty [13].

Partially Observable Markov Decision Processes

(POMDPs) provide a sound mathematical framework

to cope with decision-making in uncertain and partially

observable environments [8]. Although currently solvers

exist that are able to successfully handle large state spaces,

POMDPs ultimately face a scalability problem when

considering planning for multi-robot teams. Popular models

like Dec-POMDPs [1] remain limited to toy problems,

and other models presuppose flawless, instantaneous

communication [13].

In contrast, we consider fully decentralized solutions, that

is, solutions that only involve local information and local
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communications, and which are scalable with the total num-

ber of robots. In particular, this paper proposes an approach

that solves independent POMDPs for each robot but still

allows online cooperation during the execution phase, by

distributing the individual policies using auctions [5].

As a first contribution, we propose to emulate a multi-

robot POMDP by combining individual behaviors that can

be represented by single-robot POMDPs. We generalize a

centralized POMDP auction [15] to assign never-ending tasks

(behaviors) to different robots at every step. In this novel

decentralized auction, instead of tasks, POMDP policies

are distributed; robots can switch between these behaviors

dynamically at each decision step. The auction determines

continuously which behavior is best for each robot to co-

operatively attain the goal. Since only local POMDPs are

solved, the connection between the models is low and the

approach can scale well with the number of robots.

The second key component is to efficiently maintain a

joint belief state among the robots, which can serve as

coordination signal. We use an existing Decentralized Data

Fusion (DDF) approach [4], but in conjunction with POMDP

policies. Unlike most work on POMDPs, the belief update

here is separated from the decision-making process during

the execution phase. This decoupling increases the robustness

and reliability of real-time robotic teams.

We illustrate our method in a multi-robot tracking appli-

cation, in which several robots cooperate to track a moving

target as accurately as possible. In addition, our techniques

are suited for a range of problems such as surveillance [7] or

fire detection [9] which call for a cooperative effort of robots

coordinating their individual behaviors. We demonstrate our

approach in a multi-robot testbed, in a fully decentralized

setup.

The paper is organized as follows: Section II summarizes

POMDP models and describes the decentralized data fusion

algorithms. Section III discusses current approaches in the

literature for multiagent planning under uncertainty; Sec-

tion IV describes the overall system and the algorithms for

auctioning POMDPs in a decentralized manner; Section V

presents an application in cooperative tracking with multi-

robot systems; Section VI provides experimental results; and

Section VII presents the conclusions and future work.

II. BACKGROUND

We give a short description about POMDPs, followed by

a sketch of the DDF method, as developed before [4].

A. POMDP model

Formally, a POMDP is defined by the tuple

〈S,A, Z, T,O,R, h, γ〉 [8]. The state space is the finite set



of possible states s ∈ S; the action space is defined as the

finite set of possible actions a ∈ A; and the observation

space consists of the finite set of possible observations

z ∈ Z . At every step, an action is taken, an observation

is made and a reward is given. After performing an

action a, the state transition is modeled by the conditional

probability function T (s′, a, s) = p(s′|a, s), and the

posterior observation by the conditional probability function

O(z, a, s′) = p(z|a, s′). The reward obtained at each step

is R(s, a), and the objective is to maximize the sum of

expected rewards, or value, earned during h time steps.

To ensure that the sum is finite when h → ∞, rewards

are weighted by a discount factor γ ∈ [0, 1). Given that

the current state is not directly observable, a probability

density function b(s) over the state space is maintained.

This is called the belief state, which can be updated with a

Bayesian filter starting from an initial belief b0:

b′(s′) = ηO(z, a, s′)
∑

s∈S

T (s′, a, s)b(s) (1)

where η acts as a normalizing constant such that b′ remains

a probability distribution. The objective of a POMDP is

to find a policy that maps beliefs into actions in the form

π(b) → a, so that the value is maximized. The value

gathered by following π starting from belief b is called the

value function: V π(b) = E
[

∑h

t=0 γ
tr(bt, π(bt))|b0 = b

]

,

where r(bt, π(bt)) =
∑

s∈S R(s, π(bt))bt(s). Therefore, the

optimal policy π∗ is the one that maximizes that value

function: π∗(b) = argmax
π

V π(b).

When a set of N robots that share the same reward

function is considered, it is straightforward to extend the

previous framework. In that case, each robot i can execute an

action ai from a finite set Ai and receives an observation zi

from a finite set Zi. The transition function T (s′, aJ , s) is

now defined over the set of joint actions aJ ∈ A1×· · ·×AN ,

and the observation function O(zJ , aJ , s′) relates the state to

the joint action and the joint observation zJ ∈ Z1×· · ·×ZN .

The common reward signal is defined over the joint set of

states and actions R : S×A1×· · ·×AN → R, and the goal

is to compute an optimal joint policy π∗ = {π1, · · · , πN}.

B. Decentralized Data Fusion

In the multi-robot case, maintaining a belief over the state

space according to (1) is not trivial. A centralized node with

access to all information would update the belief as follows:

b′cen(s
′) = ηp(zJ |aJ , s′)

∑

s∈S

p(s′|aJ , s)bcen(s). (2)

However, if the belief estimation is decentralized and each

robot i uses only its local information (action ai and observa-

tion zi) to obtain a local belief b′i(s
′), some communication

must be allowed among the robots so that they can recover

this centralized belief locally [13]. If the measurements

obtained by each robot are conditionally independent given

the state (a typical assumption in Bayesian data fusion), then

p(zJ |aJ , s′) =
∏

i p(z
i|ai, s′). By substituting this expres-

sion in (2), and assuming that robot actions are known when
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Fig. 1: Multiagent POMDP approaches according to inter-

dependence and level of communication between the agents.

“Auctioned POMDPs” refers to our approach.

predicting, robot i can locally combine beliefs received from

other robots with its own, b′i(s
′), to recover the centralized

belief: b′cen(s
′) ∝ b′i(s

′)
∏

j 6=i

b′j(s
′)

b′
ij
(s′) . This equation fuses the

belief in robot i with the one received from j by multiplying

them. The additional term b′ij(s
′) is the common information

previously exchanged by the robots, which must be removed

not to count it twice. This common information can be

maintained by a separate filter called a channel filter [2].

This fusion scheme can be applied to different belief

representations, like Gaussian representations [11], [4] or

grids [2]. Robots accumulate information that share with

their neighbors in the communication steps. Thus, the belief

will propagate through the network, which allows, under

certain conditions, the recovery of exactly the same belief

as in a centralized node [4].

III. MULTIAGENT PLANNING UNDER UNCERTAINTY

There is a wide variety of decision-theoretic models to deal

with multiagent systems, such as Multiagent POMDPs [13]

and Decentralized POMDPs [1], which we compare in terms

of agent interdependence and communication assumptions.

The level of interdependence is determined by 1) the amount

of information that an agent needs to know about the others

and 2) how coupled the final policies are. We call a system

highly interdependent if a change in one of the agents’ model

requires re-computing the policies for the others.

Fig. 1 classifies existing models with respect to their

interdependence and the grade of communication that is

assumed for the agents. The simplest approach is trying

to map the global task into a set of individual tasks, and

model these as independent POMDPs (Fig. 1, bottom left).

Thus, each agent can solve its own POMDP and execute

its own policy without any communication. In this case, the

interdependence between agents is very low, but since each

agent ignores the others, there is no explicit cooperation.

Many interesting multiagent planning problems cannot be

addressed properly by such a loosely coupled approach.

On the other hand, MPOMDPs and Dec-POMDPs solve a

single decision-theoretic model for the whole team reasoning



about all the actions/observations of each agent (Fig. 1, right

column). The MPOMDP model assumes perfect communi-

cation and each agent accesses joint actions/observations at

every moment, whereas the Dec-POMDP model assumes no

communication at all. Such models allow for tight coor-

dination, but they exhibit a high level of interdependence,

since any small change in one of the agents entails a

recalculation of the policy for the whole team. Also, if due to

imperfect communication agents do not have access to other

agents’ observations, the behavior of the MPOMDP model

is not defined. The Dec-POMDP model does not exploit

communication, which in many scenarios could be benefi-

cial to improve team performance. In between MPOMDPs

and Dec-POMDPs there are several models in which some

communication is assumed [10], [14]. These models use the

fact that agents actually share information, but just partially

and at certain instants (usually without delays).

We aim to exploit the power of decision-theoretic multia-

gent methods, but keeping in mind the possibilities for multi-

robot systems. It is relevant the fact that communication

between robots is often possible, but the quality of the

channel can vary. This precludes centralized solutions as well

as methods requiring communication guarantees.

IV. DECENTRALIZED AUCTION WITH POMDPS

We focus on decentralized systems [11] in which: 1) There

is no central entity required for the operation; 2) There is no

common communication facility; that is, information cannot

be broadcasted to the whole team, and only local point-

to-point communications between neighbors are considered;

3) The robots do not have a global knowledge about the

team topology, they only know about their local neighbors.

These characteristics make the system scalable as it does

not require a central node and enough bandwidth to transmit

all the information to that node. Moreover, the system is

more robust and flexible with respect to loss or inclusion of

new robots (there is no need to know the global topology),

and regarding communication issues (a failure does not

compromise the whole system).

Our approach builds on two mechanisms to achieve de-

centralization: the DDF filter in Section II-B for sharing

information between robots and a POMDP auction for decen-

tralized behavior coordination (Section IV-A). In Fig. 1, our

approach can be seen as in between “independent POMDPs”

and MPOMDP/Dec-POMDP in terms of interdependence.

In terms of communication requirements, our approach does

not require the high-quality guarantees of the methods that

enhance the Dec-POMDP model with communications.

A. Auctioning POMDP Policies

In many multi-robot missions there is a certain objective

(e.g., detecting a target or alarm) and a set of behaviors or

roles that the robots can follow to achieve that objective

(e.g., patrol, approach, etc.). In a multi-robot POMDP this

overall objective is encoded into a reward function. We

propose single-robot behaviors, each of which is modeled

as a POMDP with its own reward function. Then, these

behaviors can be run simultaneously and combined in some

optimal manner to produce a joint behavior similar to the one

desired initially. Such a decomposition is reasonable in many

robotic applications [9], [7], like surveillance, tracking, fire

detection or robotic soccer, in which cooperation between

robots playing different roles is required.

The idea is to achieve a multi-robot objective combining a

set of simpler reward functions {R1, . . . , RM}, with M 6= N

in general. Each reward function Rk represents a certain

single-robot behavior that can be modeled by a POMDP

policy with a value function V π
k (b) associated. Although

the actual multi-robot objective cannot be modeled as a

set of single-robot reward functions, if these policies could

be assigned optimally to one or more robots, all together

should lead to a cooperative behavior pursuing the global

objective. The problem of determining which policy should

be assigned to each robot at each step can be modeled as a

task allocation [15].

A task allocation algorithm attempts to assign a set of

M tasks to a team of N robots minimizing a global cost.

In this case, each robot has to be assigned a sole task,

which is its POMDP policy. To foster cooperation, different

policies are assigned to different robots as long as possible.

Given that xik = 1 when policy k is assigned to robot i

and 0 otherwise, and cik is the cost associated with that

assignment, the problem consists of minimizing the total cost
∑N

i=1

(

∑M

k=1 cikxik

)

, subject to:

N
∑

i=1

xik ≤ 1, ∀k ∈ K,

M
∑

k=1

xik = 1, ∀i ∈ I,

xik ∈ {0, 1}, ∀i ∈ I, ∀k ∈ K,

where I = {1, . . . , N} and K = {1, . . . ,M}.
The best behavior for each robot is selected with an

auction algorithm [15] where the cost or bid of assigning

a policy k to a robot i is cik = −V π
k (bi). Thus, policies

with greater expected rewards are more likely to be selected

for robots, which helps to maximize the global reward for

the whole team. If N > M , the algorithm will leave robots

with no policy assigned. Therefore, the assignment problem

is repeated with these free robots until they all get a policy.

In this case, some policies would be assigned to more than

one robot at the same time. Algorithm 1 summarizes the

decentralized auction in which the assignment problem is

solved locally at each robot with the information available.

Each robot i computes its own bids for the behaviors from its

local belief bi and communicates them to other neighboring

robots. Then, with the bids received from other robots, a local

solution for the assignment is obtained. This computation

can be performed efficiently in polynomial time using the

Hungarian algorithm [3]. Note that each robot only consider

its neighboring peers (within communication range), what

bounds the complexity of the Hungarian algorithm.

B. Discussion

The local cost matrices, and hence the local solutions for

the assignments, should be the same at each robot as long as



Algorithm 1 Auctioneer Robot i (bi)

1: for all k ∈ K do

2: cik = −V π
k (bi) {; Local bids}

3: Send cik to neighbors.

4: end for

5: Receive bids from neighbors.

6: C = {cjk}j,k {; Create cost matrix}
7: {xjk}j,k ← Hungarian(C)
8: return Policy selected for robot i.

the communication is error-free and the beliefs are equal.

However, for DDF systems in which the beliefs are not

synchronized all the time, local cost matrices and solutions

may differ among robots, leading to suboptimal assignments.

A good synchronization of the beliefs is desirable to avoid

these situations. In contrast, the robustness of the system is

high, since information from all the robots is not required to

compute each local solution. In case some communication

links failed, each robot would still get a suboptimal solution

with the available information from their neighbors.

The approach is completely decentralized, since the belief

estimation and the decision-making are carried out with-

out the need for a central entity. The belief estimation is

computed by a DDF algorithm that is distributed along the

multiple robots. Furthermore, the POMDP controllers act

also separately for each robot. Despite the fact that a multi-

robot POMDP for the whole team is not solved (with its

computational benefits), cooperative behavior still arises in

two manners. First, thanks to the information shared by the

different DDF modules to achieve a fused belief (which acts

as a coordination signal for policy execution); and second, by

sharing the bid values for the decentralized auction, which

gives an idea about the behaviors others may be performing.

V. MULTI-ROBOT COOPERATIVE TRACKING

Target tracking problems benefit from reasoning about

future steps [6]. To illustrate our approach we use an active

perception approach where N robots have to track a moving

target estimating its position with their sensors. Moreover,

their actions are aimed at improving that estimate.

The state for each robot is composed of the target position

and its own position and heading. The space is discretized

into a grid, and a map of the scenario is assumed to be

known. There are four possible headings for every robot:

north, west, south or east. At each time step, each robot can

choose between four possible actions: stay, turn right, turn

left or go forward. stay means doing nothing; when turning,

the robot changes its heading 90◦; and when going forward,

it moves to the cell ahead. Nonetheless, noisy transition

functions for the states of the robots are considered. From

one time step to the next, the target can move to any of its

8-connected (and free) cells with equal probability. Besides,

the robots carry a bearing sensor that is boolean: detected

or non-detected. These sensors proceed as it follows, if the

target is out of its field of view (FOV), the sensor produces

(a) Testbed. (b) Occupancy grid.

Fig. 2: (a) Multi-robot testbed. (b) Testbed occupancy grid

(yellow cells are obstacles) and FOV for a robot (white cells).

All the robots have the same FOV. If the target is in one of

the cells with crosses and the heading is adequate, a high

reward is obtained.

a non-detected measurement. However, when the target is

within its FOV, it can be detected with a probability pD.

The robots aim to improve the target estimation by re-

ducing its uncertainty. Their bearing sensors entail mainly

uncertainty in depth, so pointing at the target from different

angles definitely helps to reduce the uncertainty of its esti-

mation. Therefore, cross configurations should be fostered by

giving a high reward to each robot that is keeping the target

within its FOV, and even higher if the robot’s orientation

differs from the others’.

A multi-robot POMDP is a solution far from scalable with

the number of robots. Even considering just two robots and a

low number of cells for the grid (∼ 80), the problem becomes

intractable (for the solver and the computer indicated in the

experimental section). Hence, the method presented in this

paper to combine individual behaviors is used.

The robots should cooperate to track the target from

different directions, so each behavior could consist of fol-

lowing the target from a specific direction. Here, a single-

robot behavior for each possible orientation is considered:

{north,west, south, east}. The reward function for the pol-

icy k (Rk) gives a high reward to robot i only if the target

is within its FOV and its heading hi corresponds to the

orientation of behavior k. Since the objective is tracking the

target, the robots should position their sensors in the best

way not to lose it. For the sensors proposed, the high reward

is only obtained when the target is in one of the closest

cells. The robots’ FOV and their corresponding cells with

high rewards are represented in Fig. 2b.

Finally, to alleviate the complexity of the belief

space, Mixed Observability Markov Decision Processes

(MOMDPs) [12] are considered to find the policies. The

robots’ positions are assumed to be observable within

the POMDP, which is reasonable if the sensors for self-

positioning are accurate enough for a given grid resolution.

VI. EXPERIMENTS

Some experiments were conducted with the CONET

testbed1 (see Fig. 2a), that allows the user to combine

simulated and real robots (Pioneer-3AT).

1http://www.cooperating-objects.org



TABLE I: Average results for a three-robot team.

Error(m) Entropy
Auction+DDF

Robot 0 4.07± 0.16 2.61 ± 0.05

Robot 1 3.95± 0.15 2.55 ± 0.05

Robot 2 4.18± 0.16 2.66 ± 0.05

Independent+DDF

Robot 0 6.86± 0.32 2.80 ± 0.05

Robot 1 6.70± 0.32 2.70 ± 0.05

Robot 2 6.75± 0.32 2.68 ± 0.05

Auction

Robot 0 9.74± 0.29 3.85 ± 0.03

Robot 1 9.41± 0.34 3.28 ± 0.06

Robot 2 10.46 ± 0.40 3.62 ± 0.04

A. Experimental setup

The map of this testbed was discretized into 2×2-meter

cells and resulted in the occupancy grid of 12×10 dimensions

shown in Fig. 2b, where cells representing obstacles are in

yellow. For all the robots, pD = 0.9 and the FOV was the one

shown in Fig. 2b. For each POMDP, the high reward when

the target was in one of the nearby cells of the FOV was

100, otherwise the reward was 0. The pursuer’s observations

were obtained by simulating sensors with the mentioned

capabilities on board the robots, since the development of

real detectors is out of the scope of this paper.

During all the experiments the target (another robot)

followed a path unknown to the pursuers and with a random

component. A path planning algorithm was used to reach

the high-level goals provided by the POMDP controllers

(next cell to move and robot heading), whereas a local

navigation algorithm was used to safely navigate. Each robot

was running a DDF filter onboard (Section II-B) and an

auctioneer controller that executed Algorithm 1.

Three approaches were tested: (i) auctioned POMDPs with

DDF; (ii) auctioned POMDPs without DDF; (iii) independent

POMDPs with DDF. The two first approaches are based

on our auction method, but in the second one, each robot

only receives its local sensor readings. In the third approach,

a single and independent POMDP is used for each robot

and communication between the DDF modules is allowed.

All the policies were obtained by solving the corresponding

MOMDPs with a C++ implementation of the SARSOP al-

gorithm [12]. The solver ran 1700 seconds for each policy in

a computer with an Intel Core 2 Duo processor @2.47GHz.

For the approaches (i) and (ii), a different MOMDP is solved

for each heading, whereas for approach (iii), there is a single

MOMDP independent of the heading.

B. Experimental results

First, three Pioneer-3AT were used to track another one.

The robots always started at the same fixed points and the

sample times were 10 seconds for the decision-making and

3 seconds for the DDF. An experiment of 15 minutes was

performed for each of the three approaches above2.

Some average results are presented in Table I. At each

time step, the actual target position is compared to the

2See video at http://vimeo.com/18898325.
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Fig. 3: Normalized histograms of the maximum angle dif-

ferences between robots when the target is within FOV.

estimate (cell with highest likelihood). The entropies of

the belief (
∑

∀cell−pcell log(pcell)) are also averaged. Our

approach (Auction+DDF) reduces the entropy and the target

localization error with respect to the Independent POMDPs

approach, since the robots cooperate and track the target from

different directions. Also, the estimation of the target position

is worse for the auctioned approach in which no DDF is

included. In this example, the mean errors are bounded by

the resolution of the cells (2 meters).

Due to the nature of the sensors, cross configurations

among the pursuers allow them to reduce the uncertainty of

the estimation. Fig. 3 shows how our auctioned approach fos-

ters these configurations. A comparison with the Independent

POMDPs with DDF is made in terms of angle configuration

between the pursuers. Normalized histograms of the max-

imum angle difference between any of the pursuers every

time the target is within FOV are shown. The Auction+DDF

histogram presents a high peak close to 180◦ and a small

mode in 90◦ (cross configurations), whereas the histogram

is quite flat for the Independent POMDPs.

Second, to show the scalability and robustness of the

system, a tracking experiment with a four-robot team was

performed. The target was a simulated robot. We run this

experiment for more than 30 minutes with the algorithms

working on board the robots in a distributed way and

using Wi-Fi communications. An extract of the trajectories

followed by the pursuers and the target can be seen in Fig. 4a.

The orientation of the pursuers at the end of the experiment

has also been plotted to show how they surround the target

to reduce the estimation uncertainty. When the target turns

right, since they know the map, the pursuers opt for going

directly to the other exit of the aisle so they can find it there.

The cooperation is depicted in Fig. 4b, which shows

the policies allocated to each robot during the same time

frame (each iteration takes place every 10 seconds). Due to

differences in the local beliefs and different decision times

for the robots, inconsistent solutions (robots with the same

policy) are obtained in some occasions. In the end, due to

the target path, the assignment stabilizes (after iteration 22

in Fig. 4b).

Finally, some simulations were run in the testbed to check

how our auction algorithm performs when the robots do not

access the same information. The experiments consisted of

three simulated robots, 2 pursuers and a target, starting at

the same positions in each experiment. The communication

latency for the DDF modules was varied throughout the
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Fig. 5: Evolution of the performance of the distributed

auction under variable transmission rate for the DDFs.

simulations (two simulations of 20 minutes for each latency

value). The communication rate for the bid values was

maintained, as the data volume is not significant for the

bandwidth compared to the belief information. The percent-

age of inconsistent assignments for the distributed auction is

shown in Fig. 5. As the communication rate for the DDFs

is increased, the difference between the beliefs to which the

robots have access grows too. Thus, the consistency of the

assignments becomes more difficult under worse communi-

cations. However, Fig. 5 shows a graceful degradation.

VII. CONCLUSIONS

Planning-under-uncertainty techniques, such as POMDPs,

face a scalability problem when considering teams of

robots. Popular frameworks like Decentralized POMDPs

scale poorly to many robots, unless very severe independence

assumptions are applied [10]. Many of these models either

do not allow robots to exploit inter-agent communication,

or implicitly assume instantaneous cost-less communication

(MPOMDP). We focus on scalable techniques that do not

require such strict communication guarantees, which are

hard to meet in multi-robot domains with unreliable wireless

channels.

This paper presents an approach based on DDF and

auctioning of independent POMDP-based controllers during

the execution phase to generate a cooperative behavior in

the team. Our approach is much more scalable than other

multiagent POMDP approaches, and allows the robots to

exploit imperfect communication channels, offering a trade-

off between optimality and applicability. We presented as

proof of concept results on a cooperative tracking application

by a team of up to 4 robots. The same application cannot

be solved with the current state of the art in multiagent

POMDP solvers. Additionally, other multi-robot applications

that can be achieved through cooperative behaviors can be

modeled with this framework. For instance, the method can

be used in robotic soccer (allocating the best behaviors/roles

to the team depending on the current belief); or in fire-

fighting applications [9]. In the future, we will investigate

the exact range of multi-robot planning domains for which

our approach is valuable.
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