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Abstract Surveillance is an interesting application for

Unmanned Aerial Vehicles (UAVs). If a team of UAVs

is considered, the objective is usually to act coopera-

tively to gather as much information as possible from a

set of moving targets in the surveillance area. This is a

decision-making problem with severe uncertainties in-

volved: relying on imperfect sensors and models, UAVs

need to select targets to monitor and determine the best

actions to track them. Partially Observable Markov De-

cision Processes (POMDPs) are quite adequate for opti-

mal decision-making under uncertainties, but they lack

scalability in multi-UAV scenarios, becoming tractable

only for toy problems. In this paper, we take a step

forward to apply POMDP methods in real situations,

where the team needs to adapt to the circumstances

during the mission and foster cooperation among the
team-members. We propose to split the original prob-

lem into simpler behaviors that can be modeled by scal-

able POMDPs. Then, those behaviors are auctioned

during the mission among the UAVs, which follow dif-

ferent policies depending on the behavior assigned. We

evaluate the performance of our approach with exten-

sive simulations and propose an implementation with

real quadcopters in a testbed scenario.
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1 Introduction

Tracking a set of targets of interest is a relevant appli-

cation for surveillance. For example, this functionality

is relevant in search and rescue missions, environmen-

tal monitoring, traffic control, etc. Given their dynamic

and sensing capabilities, the use of Unmanned Aerial

Vehicles (UAVs) for these kind of missions is spreading

widely [6,12,3]. It is usually the case that UAVs pro-

vide wider fields of view and can access more hazardous

places than other vehicles.

Also, in complex scenarios, the use of cooperative

teams of UAVs for tracking can be of capital impor-

tance. Consider that, with a single UAV operating, the

targets may be too dynamic or numerous, and the surveil-

lance area too large. In other cases, the co-existence of

several UAVs collaborating is a way to achieve goals

faster and improve the efficiency of the mission, which

may be critical for some applications.

In a surveillance application where several UAVs

have to track the existing targets, serious uncertain-

ties are involved. An example is depicted in Fig. 1: the

positions of the targets are unknown and can only be

observed with imperfect sensors; occlusions can occur

due to elements in the scenario or due to other UAVs;

the dynamic models for the UAVs and the trackers are

not perfect; and so forth. Considering these uncertain-

ties when solving the tracking problem is key in order

to ensure optimal solutions.

The problem of target tracking has been extensively

considered from the point of view of sensing, which

means to maintain an estimation of the targets’ po-

sitions and their associated uncertainties [2]. For this

purpose, many different stochastic filters integrating

observations from sensors have been proposed. There

also exist multi-robot filters that fuse information from
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Fig. 1: Typical scenario for cooperative surveillance. A team
of UAVs has to track a set of (non-cooperative) targets, such
as cars or people. Reasoning about uncertainties due to occlu-
sions, imperfect sensors, targets’ motion, and so on, is manda-
tory. A problem to solve is how to assign UAVs to the differ-
ent targets considering the issues above and some criteria to
optimize (GCS stands for Ground Control Station).

all team-mates in situations where several robots coop-

erate in the tracking mission [18,7].

However, the problem we face in this paper is also

a decision-making problem. We are interested not only

in estimating the position of the targets with moving

sensors (UAVs), but also in controlling those sensors

to optimize some objectives. There are multiple targets

and multiple UAVs, so we need to decide dynamically

which UAVs track each target, and then, how they move

in order to do so. The criteria to optimize may vary

depending on the application, but they usually consider

the percentage of time that each target is within field of

view, the degree of uncertainty on the targets’ positions,
the fuel consumption, communication constraints, and

so on.

From the point of view of decision making, the prob-

lem of target tracking is often formulated as an stochas-

tic optimal control problem where an utility function

is optimized [1]. Many approaches [11,5,24,18,9] have

also been proposed to solve multi-target tracking with

a team of several vehicles.

As said before, target estimations are uncertain and

maximizing the information gathered from the targets

is usually quite relevant. This information can be quan-

tified by means of different metrics, such as entropy

or mutual information. Many works assume Gaussian

uncertainties and Kalman (or Information) Filters as

the underlying estimation frameworks, defining utility

functions based on these information metrics in order

to determine the actuations [10,23,16]. However, track-

ing applications can result in multi-modal distributions

when estimating the targets’ positions. Hence, other

works also consider alternative representations, such as

discrete Bayes filters [5,24] or Particle Filters [18].

Many of the previous works in the literature pro-

pose information-gathering approaches based on heuris-

tics or rigid optimization problems. Those approaches

lack usually adaptability to different scenarios and op-

timization criteria. Partially Observable Markov Deci-

sion Processes (POMDPs) provide a sound mathemat-

ical framework for planning under uncertainties [14].

Resulting policies reason about uncertainties and can

combine easily multiple objectives, such as maximiz-

ing information and fuel consumption. Moreover, these

policies do not constrain to specific scenarios, since they

can be recomputed by adapting the models involved or

the required objectives.

POMDPs suit very well planning problems under

uncertainty from a theoretical perspective, and policy

solvers for models in the domain of discrete states are

rife. However, they present a severe problem of scalabil-

ity for multi-robot decision making. Optimal policies in

a POMDP reason about future decisions (actions) and

sensor measurements (observations) in a receding time

horizon. Besides, the computational complexity for ob-

taining these policies depends on the size of the obser-

vation and action spaces. In our surveillance problem,

increasing the number of robots or targets entails an ex-

ponential growth in these spaces, leading to intractable

problems for a time horizon greater than 1, unless we

consider very small scenarios.

Some works try to alleviate the computational com-

plexity of the original problem by decoupling it into a

set of simpler sub-models. Thus, suboptimal policies

are obtained by exploiting weak interdependences be-

tween variables and restricting the states where multi-

ple robots should interact [17,15]. Factored models [21]

can also be used to reduce the complexity of POMDPs.

These models represent variables with several factors

and define the utility functions over those factors. Due

to conditional independences between the factors, the

original model can be reduced. Moreover, the use of

factored models allows us to considered mixed observ-

ability in the problem [19], assuming some factors as

observable and neglecting their associated uncertainty.

Our main idea is to come up with behaviors that

can be modeled as simpler POMDPs. We call them

factored behaviors because they can be extracted from

the factorization of the original model. Each factored

behavior can be emulated by means of a policy that is

computed from a factored POMDP simpler than the

original. Therefore, we take the original POMDP and

derive some simpler factored models to compute a set

of policies. Then, we use those policies to emulate dif-

ferent behaviors that can be combined to achieve co-



Cooperative decision-making under uncertainties for multi-target surveillance with multiples UAVs 3

operation with a multi-robot team. Thus, the mission

is somehow split into different behaviors represented by

policies that are derived from scalable POMDP models.

In this paper we extend our previous work [8] for

multi-target surveillance, where we proposed a decen-

tralized auction of behaviors based on POMDPs for

target tracking with multiple robots. Those behaviors

where assigned dynamically to the robots during the

execution of the mission in order to foster cooperation.

Here, we exploit the factorization of the models in or-

der to apply the same approach to multi-target track-

ing without increasing the problem complexity. For this

purpose, different behaviors are derived by applying the

same policy to different factored sub-models. This al-

lows us to re-use policies when emulating the behaviors,

reducing dramatically the computational complexity.

In addition, our approach is totally decentralized

and scalable, which is an advantage for multi-UAV ap-

plications with hard communication constraints. The

UAVs access only local observations and communicate

with others in their neighborhood. Even though infor-

mation is shared when the UAVs are within communi-

cation range, they can still take actions when only local

information is available.

The paper is organized as follows: Section 2 intro-

duces POMDPs for single and multiple robots as well as

factored models; Section 3 describes our online auction

for factored behaviors; Section 4 details the factored

models proposed for multi-target surveillance; Section

5 presents experimental results and Section 6 gives the

conclusions and future work.

2 Background

This section describes POMDP models for single and

multiple robots (UAVs in our case). The notion of fac-

tored POMDPs is also explained.

2.1 Single-robot POMDP

Formally, a discrete POMDP is defined by the tuple

〈S,A,Z, T,O,R,D, γ〉 [14]:

– The state space is the finite set of possible states

s ∈ S, for instance the poses of targets and the

UAV.

– The action space is defined as the finite set of pos-

sible actions that the UAV can take, a ∈ A.

– The observation space consists of the finite set of

possible observations z ∈ Z from the sensors on

board the UAV.

– After performing an action a, the state transition

is modeled by the conditional probability function

T (s′, a, s) = p(s′|a, s), which indicates the proba-

bility of reaching state s′ if action a is performed at

state s.

– The observations are modeled by the conditional

probability function O(z, a, s′) = p(z|a, s′), which

gives the probability of getting observation z given

that the state is s′ and action a is performed.

– The reward obtained performing action a at state s

is R(s, a).

The state is non-observable; at every time step the

UAV has only access to observations z that give in-

complete information about the state. Thus, a belief

function b is maintained by using the Bayes rule. The

new belief b′ obtained after applying action a at belief

b and getting observation z is given by:

b′(s′) = τ(b, a, z) = ηO(z, a, s′)
∑
s∈S

T (s′, a, s)b(s), (1)

where the normalization constant is defined as the prob-

ability of obtaining a certain observation z after execut-

ing action a for a belief b:

η = p(z|b, a) =
∑
s′∈S

O(z, a, s′)
∑
s∈S

T (s′, a, s)b(s). (2)

This POMDP model assumes that, at every step, an

action is taken, an observation is made and a reward

R(s, a) is obtained. The objective is to determine the

policy a = π(b) that maximizes the expected cumula-

tive reward earned during D time steps. This metric is

called value V π(b) and depends on the current belief:

V π(b) = R(b, π(b)) + γ
∑
z∈Z

p(z|b, a)V π(τ(b, π(b), z)),

(3)

where R(b, a) =
∑
sR(s, a)b(s) is the expected immedi-

ate reward. Rewards are weighted by a discount factor

γ ∈ [0, 1) to ensure that the sum is finite when D →∞.

The value of the optimal policy π∗ is usually denoted

by V ∗(b).

The same formulation could be cast using costs in-

stead of rewards. Note that, once the system is correctly

modeled through the transition and observation func-

tions, the reward (or cost) function is critical, since it

is the way the desired behavior is incorporated into the

system.

2.2 Multi-robot POMDP

If a set of n robots or UAVs is considered, each UAV

i can execute an action ai from a finite set Ai and can
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measure an observation zi from a finite set Zi. The

transition function T (s′, aJ , s) is now defined over the

set of joint actions aJ ∈ A1 × · · · × An (the actions

that the team as a whole can perform); and the obser-

vation function O(zJ , aJ , s′) relates the state and the

joint action to the joint observation zJ ∈ Z1×· · ·×Zn.

The team reward is defined over the joint set of states

and actions R : S × A1 × · · · × An → R. The goal in

the multi-robot POMDP is also to compute an opti-

mal joint policy π∗ = {π1, · · · , πn} that maximizes the

expected discounted reward.

On the one hand, a policy for a multi-robot POMDP

(MPOMDP) can be computed in a centralized fash-

ion [22], assuming that each robot has access to the

complete observation vector z. On the other hand, the

policy can be computed with a Decentralized POMDP

(Dec-POMDP) model [4], assuming that each robot has

only access to its local observation zi.

The main issue when computing policies for a multi-

robot model with the above approaches is that the com-

putational complexity of the problem increases expo-

nentially with the number of robots, since this com-

plexity depends on the observation and action spaces.

Moreover, the computational complexity of solving a

Dec-POMDP is significantly higher than that of an

MPOMDP (NEXP-complete [4] vs. PSPACE-complete

[20]). This precludes the direct application of these mod-

els except for very simple scenarios with small teams.

2.3 Factored POMDP

Factored models [21] are commonly used to simplify

POMDPs. These models decompose some variables into

factors, and the probability and reward functions are

expressed over those factors. In general, in a factored

POMDP the state consists of a set of d variables or

factors: s = (s1, s2, . . . , sd). A similar decomposition

can be applied to the action and observation variables.

The idea lying behind a factored model is to exploit

some degree of conditional independence of the factored

variables in order to obtain a more compact represen-

tation of the model. Thus, the transition, observation

and reward functions may depend only on a subset of

the factors, simplifying the original model. Moreover,

these functions could be defined as products of simpler

functions depending on subsets of factors.

The use of factored models also eases the integra-

tion of mixed observability into POMDPs [19]. Mixed

observability refers to considering part of the state as

observable, taking out that part from the belief compu-

tation. In general, this alleviates the complexity of the

model, since the belief space is reduced when search-

ing for optimal policies. Therefore, in a factored model,

some of the factors could be considered observable if

the degree of uncertainty associated with them is not

so relevant. For instance, if a team of UAVs can operate

with a highly precise localization (e.g., differential GPS

receivers), the uncertainty associated with their poses

may be negligible compared to that of the target poses,

assuming the former as observable.

3 Online auction of factored behaviors

In our previous work [8], we proposed to approximate

multi-robot POMDPs by auctioning behaviors. Those

behaviors were modeled by simpler POMDPs and en-

coded by polices precomputed offline. The objective

was to perform cooperative tracking of a target with-

out computing a policy for the joint multi-robot model,

which does not scale with the number of robots. In this

paper, we take a step forward and introduce the concept

of factored behaviors. This will allow us to represent

different behaviors with the same policy, and hence,

obtaining a solution for the multi-target case without

increasing the computational complexity.

3.1 Decentralized estimation of joint belief

The first manner to foster cooperation in the team is

to share information in order to maintain a common

belief of the state. Therefore, all UAVs have access to

a joint estimation that incorporates observations from

all team-members. This is accomplished by running a

decentralized filter for data fusion [7].

Basically, the joint belief is estimated by each UAV

using local information and exchanging that informa-

tion with other neighbors. UAVs employ local sensor

data to update their local belief, and then share those

beliefs with other neighbors at certain time instants.

The beliefs are received by other team-members and

fused with their local estimations in order to obtain

a joint belief that incorporates information from the

whole team. For instance, in our multi-target surveil-

lance application, this allows UAVs to gather informa-

tion relative to all detected targets, even if they are

being tracked by other UAVs.

3.2 Factored behaviors

We cast behaviors as POMDP models, so each behav-

ior has a reward function associated and is defined over

a state space. If the models are factored, we can in-

troduce the notion of factored behaviors, where differ-

ent behaviors can be obtained by applying the same

POMDP model to different subset of state factors.
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Joint state

Factored states

Policies

Behaviors

Fig. 2: A set of m factored behaviors are obtained from the
original joint model. Each behavior j is defined over a subset
of factors ŝj and has a value function associated Vj(b̂j). A
set of p ≤ m reward functions will suffice to model all the
behaviors. Evaluating the same value function based on a
certain reward function (e.g., R1) with different factors (e.g.,
ŝ1 and ŝ2) could lead to policies corresponding to different
behaviors.

The concept of factored behaviors is depicted in

Fig. 2. Assuming that we have a joint factored state,

each behavior j is defined over a subset of factors ŝj .

The behavior is represented by a policy, which comes

from maximizing a certain value function defined over

that factored belief Vj(b̂j). In general, we could define a

reward function for each behavior, which would lead to

its corresponding value function. That would mean to

compute a policy per behavior. However, if the behav-

iors keep certain symmetry properties, we can match

several behaviors to the same reward function. This

idea is shown in Fig. 2, where a single reward func-

tion (R1) is used to generate different behaviors. Thus,

we can formulate a factored POMDP model with re-

ward function R1, and compute a policy and a value

function associated with it. Then, if we evaluate that

value function with a factored state ŝj , we obtain the

value corresponding to behavior j, as well as its associ-

ated optimal action. The same process can be repeated

to reproduce other beharviors.

This approach suits our multi-target surveillance

problem. Provided that the targets move independently,

and the targets and UAVs present homogeneous mod-

els; a policy for tracking a target will always be the

same, regardless of the UAV and target considered.

Thus, assuming that the different behaviors correspond

to tracking different targets, if we evaluate a sole value

function with the factors associated with target j, we

will obtain optimal actions corresponding to that be-

havior j (tracking target j).

By exploiting the symmetry properties of the prob-

lem, we manage to emulate a set of behaviors by com-

puting a lower number of policies, which alleviates the

computational complexity. In particular, for our multi-

target surveillance application, we convert the original

problem into another problem that scales with the num-

ber of targets and UAVs, since only POMDPs with a

single UAV and target will be used to compute policies.

3.3 Auction of factored behaviors

Once the behaviors are defined, they need to be exe-

cuted in a cooperative fashion by the team in order to

pursue the goals of the original multi-robot POMDP.

We propose an online auction during the mission where

the UAVs negotiate in a decentralized manner which

is the best behavior they can select at each moment.

Thus, behaviors are distributed optimally among the

UAVs, which leads to a cooperative performance of the

whole team. Moreover, this assignment is dynamic and

the UAVs can switch between behaviors during their

mission depending on the circumstances.

A UAV computes the bids for the auction by evalu-

ating the value function of each behavior. These value

functions provide the discounted cumulative reward ex-

pected from executing the different behaviors given the

current belief. Therefore, UAVs will bid for behaviors

with higher values, since that should produce more op-

timal team performances. As said before, a UAV can

obtain bids for several behaviors by evaluating the same

value function with several subset of factors. Recall that

each UAV has an estimation of all joint state factors

thanks to decentralized data fusion.

In the multi-target surveillance mission, the auction

can be executed to allocate targets to UAVs in some op-

timal manner. Each UAV will select its target according

to the probability it has to be rewarded by tracking it.

Then, as long as the belief changes, the behavior or

target distribution can vary too.

4 Factored models for multi-target surveillance

In this section we detail the factored models used for

multi-target surveillance with a team of UAVs. The ob-

jective is to maintain an estimation of the targets’ posi-

tions as certainly as possible during the mission. First,

we present the joint factored POMDP considering all

UAVs and targets. Then, a factored model for tracking

a single target with a single UAV. We do not compute

any policy for the complete joint model, but all behav-

iors are derived from the policy of the POMDP with a

single target and UAV. We show in this section how to
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emulate the different factored behaviors to track mul-

tiple targets with a single policy.

4.1 Factored POMDP for multiple UAVs

Our surveillance mission implies monitoring a set of m

targets with a team of n UAVs. Given the probabilis-

tic models and reward functions, the problem can be

cast as a discrete multi-robot POMDP. The scenario

is discretized into a cell grid and the state at each it-

eration is a vector with the following discrete factors:

smulti = (t1, . . . , tm, l1, . . . , ln). The position in the grid

of each target j is represented by a factor tj , while the

position of UAV i is represented by a factor li.

Each UAV is equipped with a camera sensor point-

ing downwards that provides (noisy) binary observa-

tions about the presence of targets. Therefore, the ob-

servation vector for each UAV i is zi = (oi1, . . . , o
i
m),

where oij is a binary factor indicating whether UAV i

has detected target j. At each iteration, each UAV can

take an action ai ∈ {stay,north,west, east, south}, in or-

der to hover on the same cell or move to a neighboring

cell. These actions issue waypoints to the correspond-

ing UAV, which uses a low-level control algorithm to

navigate to those waypoints.

UAVs maintain a state belief b(s), which is updated

by Eq. (1) with probabilistic transition and observation

functions: T (s′, aJ , s) and O(zJ , aJ , s′). UAVs’ actions

are not deterministic, but noisy transition functions are

considered. The movement of each target is modeled as

random, existing the same probability to move to any

of its neighboring cells at each time step. Moreover, a

UAV can detect a target with a probability pD if this

is in one of its 9-connected cells. In addition, the com-

plexity of the model is alleviated by considering mixed

observability. In this case, UAVs’ positions (li) are as-

sumed observable. In general, UAVs can localize them-

selves with high precision thanks to on-board sensors

(e.g., DGPS or vision), so it is reasonable to assume

that this uncertainty is insignificant compared to the

uncertainty on the targets’ positions.

A joint reward function defined over the complete

factored state can be designed to achieve the objectives

of the mission. In particular, at each step, a high re-

ward is given for each UAV located in the same cell

as a target. If the target is already being monitored

by another UAV, the reward is lower. Therefore, we

foster cooperative surveillance, since UAVs will try to

catch all the targets as many times as possible and they

will distribute their sensing capabilities efficiently. Note

that the complexity of this model increases exponen-

tially with the number of UAVs or targets, since the

state’s, observation’s and action’s spaces do.

4.2 Factored POMDP for UAV-to-target policy

We do not compute a joint policy for the previous multi-

robot model, since that is intractable in most cases and

do not scale with the number of targets and UAVs in the

scenario. Instead, we solve a policy for a POMDP model

where a single UAV tracks a single target. From that

policy, we can emulate different behaviors depending on

the state factors used to apply the policy.

In this simpler model the state is slocal = (t, c, l),

where t and l are the positions of the target and UAV,

respectively. The binary factor c specifies whether the

target has been visited or not. Thus, when the UAV is

in the same cell as the target, this variable is set to 1.

Otherwise, if the target was already visited, there is a

probability pc at each time step that c switches back

to 0 (not caught). This factor is used by the UAV to

forget after some time that the target was detected, and

go after it again. In the next section, we will see how

this allows a single UAV to switch between different

targets in a scenario with multiple targets.

Observations and actions are the same as in the

multi-robot model, but restricted to a single UAV and a

single target. The reward function is modified in order

to take into account the new factor c. Basically, if the

UAV is at the same position as the target and c = 0,

a high reward is earned. If the UAV is at the same po-

sition as the target but c = 1, a low reward is earned.

Otherwise, no reward is earned.

4.3 Factored behaviors for multi-target surveillance

In this surveillance mission, the original problem is split

into m behaviors that can be executed in paralel. Each

behavior is executed by a single UAV and represents

tracking a specific target. Thus, if the behaviors are al-

located dynamically to the UAVs with some optimiza-

tion criteria, UAVs should be able to distribute the tar-

gets among them and monitor them cooperatively.

All behaviors are derived from the same policy. This

policy corresponds to the factored model in Section 4.2

and is computed offline in our experiments (although it

may be computed online too). Once we have that UAV-

to-target policy, we can emulate different factored be-

haviors by selecting the state factors adequately, as it

was explained in Section 3. For instance, the behavior

corresponding to tracking target j with UAV i, will be

defined over the factors (tj , cj , li). Plugging those into

the UAV-to-target policy we can evaluate the benefit

(value function) of executing behavior j with UAV i,

and obtain the optimal action to perform that behavior.

Thanks to factored models, we exploit the probabilis-
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tic independence of the targets and tackle the problem

without solving policies for multi-target models.

As explained in Section 3, decentralized data fusion

is performed so that all the UAVs can maintain a multi-

target belief with factors: (t1, . . . , tm, c1, . . . , cm). This

joint belief is useful for a UAV in order to evaluate the

different behaviors considering information from other

UAVs. Besides, during the execution of the mission, a

decentralized auction is performed online among the

UAVs in order to switch continuously between different

behaviors (between targets in this case). Bids for each

behavior correspond to evaluating the value function of

that behavior with the adequate factors depending on

the target and UAV involved.

This approach fosters cooperation between UAVs,

since the targets can be re-assigned continuously to

different vehicles. Note that a UAV gets a reward for

monitoring a target, but that reward is even higher if

that target has not been seen for a while (not caught).

This, together with the joint belief available, precludes

UAVs from tracking targets recently caught by other

UAVs (their c factors will have higher probabilities),

and forces UAVs to monitor all free targets in turns.

5 Experiments

Our approach for multi-target surveillance has been

evaluated and compared to alternative methods. First,

we present extensive simulations of our method under

different circumstances in order to analyze its perfor-

mance compared with simpler approaches. Second, we

describe the implementation of the method with a real

fleet of UAVs in a realistic testbed scenario.

5.1 Simulations

Simulations allow us to analyze our multi-target track-

ing approach under different circumstances (target dy-

namics) and compare it to simpler methods of target

assignment. We take the simulated scenario from [13],

since it presents interesting features for cooperative tar-

get tracking. That scenario is shown in Fig. 3, and it is

used to run experiments where two targets are moving

around. Simulations with two UAVs or a single UAV

performing surveillance are presented.

In these experiments, although it is not a require-

ment of our technique, targets are not evading. More-

over, three different cases for targets’ movement are

considered: (i) random: targets move around randomly,

with the same probability of going to any of their neigh-

boring cells at each step; (ii) route: targets follow a fixed

Fig. 3: Top: Simulated scenario. Two quadcopters act as tar-
gets (red and yellow), while two others act as the cooperative
trackers (green and magenta). Bottom: the two trackers main-
tain a belief over the position of the two targets by using a
decentralized data fusion filter. The figure shows the fused
belief for one of the targets (the yellow one in this case). The
scenario is discretized into a grid of cells (yellow tiles indi-
cate non-flyable zones). The belief state is used to determine
which tracker should be assigned to which target.

route unknown for the trackers, with the same proba-

bility of staying at the same cell or moving on along the

route at each step; and (iii) static: targets stay at fixed

positions during the whole experiment. Besides, three

different methods for allocating behaviors (or targets)

to the UAVs are tested for each experiment:

– Fixed allocation: UAVs are assigned to the same

target during the whole experiment.

– Allocation based on distance: at each iteration, UAVs

are assigned solving an auction based on distances

to the targets. Therefore, UAV-target pairs are se-

lected in terms of closeness. As the actual positions

of the targets are not known by the UAVs, distances

to targets are computed assuming targets at the po-

sitions with highest probability in the belief state.

– Allocation based on value: this is the approach pre-

sented in this paper. At each iteration, UAVs are

assigned to targets solving the auction in Section 3,
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Table 1: Average results and standard deviations for simulations with two UAVs tracking two targets. For each configuration
of targets’ movement and method to assign behaviors, 30 runs were performed.

Targets Random Route
Behaviors Fixed Distance Value Fixed Distance Value

Normalized reward 0.023 ± 0.007 0.025 ± 0.007 0.024 ± 0.006 0.010 ± 0.005 0.011 ± 0.005 0.012 ± 0.004
Entropy target 0 2.64 ± 0.47 2.52 ± 0.41 2.51 ± 0.38 2.92 ± 0.29 2.99 ± 0.29 3.00 ± 0.27
Entropy target 1 2.37 ± 0.32 2.45 ± 0.41 2.42 ± 0.35 3.04 ± 0.29 3.03 ± 0.30 3.02 ± 0.29

Error target 0 (cells) 2.61 ± 1.18 2.27 ± 0.92 2.26 ± 0.92 3.51 ± 0.90 3.76 ± 1.01 3.74 ± 0.82
Error target 1 (cells) 2.03 ± 0.88 2.23 ± 1.01 2.22 ± 1.00 3.78 ± 0.80 3.75 ± 0.92 3.72 ± 0.94
Movement UAV 0 (%) 58.46 ± 10.23 56.40 ± 12.91 59.43 ± 8.36 68.26 ± 11.26 68.13 ± 11.23 70.53 ± 7.75
Movement UAV 1 (%) 56.10 ± 10.18 59.56 ± 8.79 59.80 ± 8.76 68.16 ± 9.02 66.70 ± 8.87 70.86 ± 7.42

Targets Static
Behaviors Fixed Distance Value

Normalized reward 0.010 ± 0.007 0.010 ± 0.008 0.011 ± 0.008
Entropy target 0 2.20 ± 0.57 2.18 ± 0.61 2.14 ± 0.52
Entropy target 1 2.18 ± 0.62 2.16 ± 0.55 2.11 ± 0.51

Error target 0 (cells) 1.83 ± 1.76 1.90 ± 1.94 1.76 ± 1.67
Error target 1 (cells) 1.98 ± 1.36 2.01 ± 1.42 1.97 ± 1.40
Movement UAV 0 (%) 48.20 ± 25.60 42.40 ± 24.95 43.80 ± 23.79
Movement UAV 1 (%) 42.80 ± 19.15 49.13 ± 22.73 47.36 ± 20.69

Table 2: Average results and standard deviations for simulations with one UAV tracking two targets. For each configuration
of targets’ movement and method to assign behaviors, 30 runs were performed.

Targets Random Route
Behaviors Fixed Distance Value Fixed Distance Value

Normalized reward 0.023 ± 0.013 0.037 ± 0.014 0.030 ± 0.015 0.008 ± 0.007 0.013 ± 0.006 0.014 ± 0.009
Entropy target 0 3.46 ± 0.36 3.26 ± 0.55 3.29 ± 0.54 3.46 ± 0.27 3.54 ± 0.28 3.42 ± 0.26
Entropy target 1 2.91 ± 0.49 3.15 ± 0.52 3.17 ± 0.47 3.47 ± 0.24 3.53 ± 0.25 3.58 ± 0.29

Error target 0 (cells) 3.49 ± 1.41 3.53 ± 1.36 3.54 ± 1.47 4.44 ± 0.93 5.03 ± 1.0145 4.62 ± 1.15
Error target 1 (cells) 2.85 ± 1.43 3.14 ± 1.46 3.14 ± 1.37 4.55 ± 0.92 4.65 ± 1.36 4.86 ± 1.11
Movement UAV (%) 61.30 ± 11.14 54.30 ± 11.74 59.50 ± 9.35 74.73 ± 9.99 73.46 ± 8.12 72.86 ± 6.03

Targets Static
Behaviors Fixed Distance Value

Normalized reward 0.007 ± 0.008 0.009 ± 0.009 0.012 ± 0.012
Entropy target 0 2.59 ± 0.52 3.19 ± 0.87 3.16 ± 0.68
Entropy target 1 3.62 ± 0.38 2.98 ± 0.86 3.01 ± 0.74

Error target 0 (cells) 2.15 ± 1.09 3.10 ± 2.30 2.75 ± 1.88
Error target 1 (cells) 3.46 ± 2.08 3.20 ± 2.24 2.77 ± 2.08
Movement UAV (%) 47.46 ± 22.72 40.20 ± 23.17 59.06 ± 11.41

which means that UAVs select targets whose value

function are maximized.

At each iteration, UAVs decide their target to track

and execute an action following the factored behavior

(POMDP policy) corresponding to that target. For each

configuration, 30 simulations were run with random ini-

tial positions for the targets and UAVs. Moreover, the

single POMDP policy for the UAV-to-target model was

computed offline with Symbolic Perseus [21]. In this

POMDP model, pD = 0.9 and pc = 0.04; the high re-

ward for catching a non-visited target was 500, and the

low reward for catching a visited target was 1.

Table 1 shows the results of the simulations with two

UAVs tracking two targets, whereas Table 2 shows the

results of the simulations with one UAV tracking two

targets. Several metrics are used to compare the dif-

ferent methods. The metric normalized reward shows

the discounted cumulative reward for the team, which

is computed using actual states during the experiments

and normalized dividing by the maximum possible cu-

mulative reward. Entropies for the belief estimation of

the targets at each step (
∑
∀cell−pcell log(pcell)) are av-

eraged. The errors estimating the targets’ positions are

computed by averaging the distances between the ac-

tual cell of the targets (ground truth) and the cell with

higher probability in the belief. The metric movement

measures the percentage of time steps that the UAV is

not staying at the same cell, i.e., it is moving.

There are several conclusions about the comparison

for the multi-UAV simulations (Table 1). In terms of en-

tropy and error in the estimations, all assignment meth-

ods behave better when the targets move randomly in-
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stead of along a fixed route (the standard deviations

are bigger in the case of random targets due to the

higher randomness of the simulations, this effect should

be reduced with more runs.). Despite the fact that the

second option constrains more the targets’ movements,

UAVs travel more and achieve worse tracking results.

The conclusion is that the model for the target move-

ment (random for all our policies) is quite relevant.

Thus, when the targets move along the path UAVs are

not able to take advantage of that information, since

they assume a different target model. Performances are

also better when the targets are static, but that is ex-

pected, since the UAVs can monitor easily static targets

once they have been detected.

Also, our assignment method (value) is slightly bet-

ter than the others in terms of entropy and error (aver-

aged for the two targets) when the targets are random

or static. However, the results for the three methods do

not differ significantly. Note that in this simple setup,

the number of UAVs and targets are equal and the sce-

nario is not excessively complex. Therefore, the match-

ing between UAVs and targets is not tough regardless

of the assignment method used, which prevents from

seeing bigger differences between methods. Moreover,

the method that assigns targets reasoning about dis-

tances can perform relatively well for this particular

application, but it implies incorporating additional in-

formation from the problem at hand. The value-based

approach is more general, as it can be applied to any

application using POMDPs, and reasons about future

steps (not only current distances). Hence, we expect to

obtain more efficient performances with our method in

complex planning scenarios.

Additionally, we can reason that our method should

be more adequate than others for cases where UAVs

need to visit targets in turns in order to monitor all of

them (more targets than UAVs). The other assignment

methods do not penalize the fact of keeping tracking the

same target while there are others not being monitored.

To highlight that advantage of our method, we run sim-

ulations where two targets need to be observed by a sin-

gle UAV (Table 2). In the case of static targets, where

the UAV can easily track them in turns once they have

been detected, we notice the difference clearly. With our

approach the UAV travels significantly more to cover

both targets, and achieves homogeneous entropies and

estimation errors for both targets. Other methods can

get better results for a specific target, but do not com-

pensate both targets. For instance, in the case of a fixed

assignment, the UAV focuses on one of the targets, not

gathering a lot of information about the other.

The sample experiment in Fig. 4 depicts the effect of

switching between targets during the mission. When the

Fig. 4: Evolution of the entropy of the target beliefs for a
short experiment with a UAV tracking two targets. Top: the
UAV selects the target reasoning about distances. Bottom:
the UAV selects the target reasoning about expected values
of the POMDP policy.

UAV selects targets with the distance-based method,

it sticks to target 0, not penalizing the fact of leaving

the other free. With our value-based method for assign-

ment, once target 0 is detected, the UAV switches to

target 1. It can be seen how entropies of both targets

are reduced in turns.

5.2 Testbed experiments

We implemented our approach for a real team of quad-

copters (AscTec Hummingbird) and run some prelimi-

nary experiments in an indoor testbed. We emulated in

the testbed a small part of a city and used two quad-

copters to track two radio-control cars that were mov-

ing around the city. Figure 5 shows the scenario and the

discretization employed for the POMDP models. Differ-

ent sets of states are considered for targets and UAVs,

since cars can only move along roads. The transition

functions assume that UAVs and cars can move to any

of their neighboring cells (U-turns are considered for the

cars). Moreover, the flying vehicles can move through

zones that cars cannot traverse. Finally, the observation

model for the UAVs is depicted in Fig. 5, right. UAVs

can detect cars that are in their 9-connected cells, ex-

cept for a tunnel in the city where cars move without be-

ing noticed. Apart from that, the POMDP model used

for computing a UAV-to-target policy is that in Section

4.2. That policy is used to reproduce two behaviors (one

to track each car).

Figure 6 shows the reconstruction of the city sce-

nario in the indoor testbed during some experiments.

In the experiments, the two quadcopters were executing
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Fig. 5: Discretization of the scenario: yellow cells are unattain-
able for both, targets and quadcopters. Left: non-shadowed
cells are the possible states for targets (cars have to move
along the roads). Middle: non-shadowed cells are the possi-
ble states for quadcopters (they can traverse more places).
Right: non-shadowed cells are those where cars can be de-
tected (there is a tunnel in the right where quadcopters can-
not see).

Fig. 6: Two views of the experiments performed in the
testbed. A city is emulated and two radio-control cars used as
targets. The two quadcopters (in circles) are controlled with
our proposed method.

in real time our proposed method. First, a decentralized

data fusion filter was used to maintain a multi-target

belief over the two cars. In this particular experiment,

both quadcopters were within communication range all

the time. Second, at each step, the quadcopters selected

a behavior to monitor one of the cars, and then selected

the next cell to move depending on the action provided

by the corresponding policy.

Regarding the implementation in the testbed sys-

tem, our POMDP planners send waypoints to the UAV

controllers depending on their next cell to go (or com-

mand them to hover at their current cell). The UAVs

move between waypoints following straight lines, and in

the current implementation, they fly at different heights

to avoid collisions (a path planner could be used to

navigate between waypoints). There is a VICON sys-

tem (motion capture system) which provides positions

of the quadcopters and cars with millimeter accuracy.

The poses of the UAVs are used for flight stabilization

and control, as well as part of the observable state of

the POMDP. The poses of the cars are used in conjunc-

tion with the poses of the UAVs to emulate measure-

ments from the onboard sensors, taking into account

the limited fields of view and probabilities of detection

(UAVs cannot observe directly the real positions of the

cars). All the modules, except for the low-level UAV

controllers, are implemented using the Robotic Oper-

ating System (ROS).

Figure 7 shows our visualizer based on RViz during

an experiment1. That visualizer depicts the actual posi-

tions of the quadcopters and the belief over the targets

positions (maintained by the decentralized data fusion

filter). The belief of each target is shown with a dif-

ferent color map, where brighter cells indicate higher

probabilities. Furthermore, the POMDP planners rea-

son about negative information, and thus many times

the vehicles move to places to discard possibilities. They

also reason about the lack of information in the tunnel,

and thus Fig. 7 illustrates how one of the UAVs waits

at one of the entrances of the tunnel while receiving at

the same time information from the other UAV.

6 Conclusions

We have presented a method for multi-target surveil-

lance with multiple UAVs. The method uses POMDPs

in order to reason about the uncertainties present in

the application, both in the dynamic and observation

models (due to occlusions, noise, etc). In order to scale

POMDPs to real-time missions for teams of multiple

UAVs, we propose a behavior-based auction. Instead

of solving a joint multi-UAV POMDP, which is usu-

ally intractable, a policy for a factored POMDP with a

single UAV and target is computed. Then, the factored

policy is used to emulate different behaviors that are al-

located dynamically to the UAVs, fostering cooperation

between them. Furthermore, a decentralized data fusion

system is used to obtain a belief of the joint factored

state integrating observation from all team-members.

While the method and architecture are general, we

apply them to the case of multi-target surveillance. Our

main contributions are showing that POMDPs are an

1 A sample video can also be found at
http://personal.us.es/jcapitan/capitan jint.mp4



Cooperative decision-making under uncertainties for multi-target surveillance with multiples UAVs 11

Fig. 7: Two snapshots of our visualizer during an experiment.
A map of the city is shown. The beliefs of the positions of the
two targets are represented in red and green, respectively.
Top: the estimations of the two targets are quite informative,
and both quadcopters follow different cars. Bottom: one of the
quadcopters is tracking the green target, while the other is
searching for the red one. The magenta quadcopter is waiting
in one of the endings of the tunnel. The information provided
by the green quadcopter about the green target is also fused
by the magenta quadcopter.

adequate model for multi-UAV planning and making

the system scalable with the number of targets and

UAVs. The computational complexity to compute the

policies does not grow with more UAVs or targets, and

the complexity of the auction and the decentralized

data fusion only depend on the size of the local com-

munication neighborhood of each UAV. Moreover, the

methods have been evaluated using simulations, both

from a quantitative and qualitative points of view. We

have also implemented our system in a testbed with real

quadcopters tracking moving cars in a city-like scenario.

As future work, instead of predefining them, the dy-

namic and observation models could be learned from

data from previous missions. A key issue in our ap-

proach is also a proper definition of the reward (cost)

functions. An interesting line of research is learning

those cost functions from observing human experts de-

termining the actions to be carried out. Also, exper-

iments with larger teams and more complex scenar-

ios will be performed to highlight the benefits of the

method presented.
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