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Abstract— Partially Observable Markov Decision Processes
(POMDPs) provide a sound mathematical framework to deal
with robotic planning when tasks outcomes and perception are
uncertain, but their main problem is scalability. This paper
deals with planning in multi-robot teams, where this problem
is even more evident. The paper presents a novel combination
of two methods to cope with this complexity. Mixed observability
can lead to simpler representations of the problem. The basic
idea is to assume that some of the components in the state are
fully observable, and solve the POMDP only on the partially
observable part. For multi-robot teams, the complexity can
be also reduced by using a decentralized approach in which
robots have no knowledge about others’ actions. In this sense,
an implicit coordination will be derived from the sharing of the
beliefs among the robots. The paper illustrates the advantages
of the methods proposed in a multi-robot tracking application.
Simulations and actual experiments are shown.

I. INTRODUCTION

Techniques for planning under uncertainty are being ap-
plied more and more to robotics (see for example [1], [2]). In
all cases, the underlying idea is that the state is only partially
observable, and thus, the planning objective is to find a policy
that indicates which action a robot should take given the
information available (the history of actions and observations
gathered by the robot so far, called the information space) in
order to reach a goal. This paper is concerned with decision
making in applications that consider teams of networked
robots.

Considering probabilistic models and a Markovian envi-
ronment, a belief state can be used to represent the infor-
mation space; in this case, POMDP techniques provide an
elegant way to model the interaction of a robot with its en-
vironment. Based on prior knowledge of the sensor’s model
and the environment dynamics, policies which indicate the
robot how to act given the belief can be computed. These
policies can be extracted by optimizing iteratively a certain
value function over the belief space. However, the main
problem of POMDPs is scalability. The optimal plan has
to be searched on the belief space, which can be very large.
This drawback is even more evident in multi-robot teams, as
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the space of actions and observations increases exponentially
with the number of robots.

Approximate point-based methods to obtain POMDP poli-
cies for large state spaces have been studied ([3], [4], [5]).
They restrict the optimization procedure to a bounded set of
feasible sampled beliefs. Particularly, [4] proposes a point-
based solver called Perseus, where no computation is needed
for all the belief points at every iteration, hence improving
performance. In [6], an extension of Perseus is presented.
It is called Symbolic Perseus and uses Algebraic Decision
Diagrams (ADDs) [7] in order to optimize the operations for
factored POMDPs. Besides, [8] proposes SARSOP, which
maintains a tree-shaped set of reachable beliefs that is
expanded at every iteration using the best policy so far.

Other authors try to cope with the high dimensionality
of the belief space by exploiting the idea that many robotic
systems often have mixed observability, i.e. although the state
is not fully observable, some components might be. Thus, [9]
propose MOMDPs (Mixed Observability Markov Decision
Processes), which separate the fully and partially observable
components, leading to a lower-dimensional representation
of the belief space.

Nevertheless, these techniques face ultimately an scalabil-
ity problem with the number of robots in a team. A decentral-
ized (Dec-)POMDP [10] is a suitable model for multi-agent
planning considering decentralized execution. Basically, in a
Dec-POMDP each agent only access to local information,
and no communication is available. Thus, the agents reason
on all the potential action-observation histories of the other
agents (which cannot be observed) in order to compute an
optimal policy. Despite their decentralized execution, Dec-
POMDP policies are computed in a centralized manner,
which is a NEXP-complete problem [10].

The idea presented in this paper is that communication
and data fusion between the robots can induce a common
Markovian belief signal, which can be used to coordinate
the robots’ local plans, alleviating the mentioned complexity
and scaling with the number of robots. Hence, MOMDPs are
considered for local planning, whereas Decentralized data
fusion (DDF) is used to induce a common belief signal
among the robots and coordinate the plan execution.

The idea is similar to that proposed in [11], [12], where a
distinction between cooperative and coordinated information-
theoretic approaches is made, proposing the latter to control
fleets of robots. In a coordinated approach, the members of
the team have no knowledge about the others’ models or
control actions, but they exchange some information that may
influence implicitly other members’ subsequent decisions.



Hence, sharing fused perception information or the impact
of others’ control actions over a certain objective function,
and acting locally, a coordinated behavior can be obtained.
However, these approaches consider mainly greedy control
algorithms that try to obtain the next suitable action and do
not reason on long-term goals.

The paper is structured as follows: Sections II and III give
some theoretical background about POMDPs and MOMDPs;
Section IV describes the communication and data fusion pro-
cess to coordinate the robots; Section V details a coordinated
tracking application for multiple robots to illustrate the ideas;
and Sections VI and VII explain the experimental results and
conclusions respectively.

II. POMDP MODEL

Formally, a POMDP is defined by the tuple
〈S,A,Z, T,O,R, h, γ〉. The state space is the finite
set of possible states s ∈ S; the action space, the finite
set of possible actions a ∈ A; and the observation space
consists of the finite set of possible observations z ∈ Z. At
every step, an action is taken, an observation made and a
reward given. Thus, after performing an action a, the state
transition is modeled by the conditional probability function
T (s′, a, s) = p(s′|a, s), and the posterior observation by the
conditional probability function O(z, a, s′) = p(z|a, s′). The
reward obtained at each step is R(s, a), and the objective
is to maximize the total expected reward earned during h
time steps. To ensure that this sum is finite when h → ∞,
rewards are weighted by a discount factor γ ∈ [0, 1).

Given that it is not directly observable, the actual state
cannot be known by the system. Instead, a probability density
function b(s) over the state space is maintained. This is
called the belief state and, due to the Markov assumption,
it can be updated with a Bayesian filter for every action-
observation pair:

b′(s′) = ηO(z, a, s′)
∑
s∈S

T (s′, a, s)b(s) (1)

where η acts as a normalizing constant such that b remains
a probability distribution.

The objective of a POMDP is to find a policy that maps
beliefs to actions in the form π(b) −→ a, so that the
total expected reward is maximized. This expected reward
gathered by following π starting from belief b is called the
value function:

V π(b) = E

[
h∑
t=0

γtr(bt, π(bt))|b0 = b

]
(2)

where r(bt, π(bt)) =
∑
s∈S R(s, π(bt))bt(s). Therefore, the

optimal policy π∗ is the one that maximizes that value
function: π∗(b) = arg max

π
V π(b).

III. MOMDP MODEL

Even for a finite set of |S| states, π is defined over a
(|S| − 1)-dimensional continuous belief space. The key in
MOMDPs is to gain computational efficiency by solving

a number of lower-dimensional POMDPs instead of the
original one. Thus, all operations work on lower-dimensional
belief spaces, which can lead to a relevant improvement in
the performance.

The MOMDP [9] is represented as a factored POMDP
where the state vector is composed of two different parts.
Component x is the fully observable part of the original state
s and y is another vector representing the partially observable
part. Thus, the state is specified by s = (x, y), and the state
space is S = X × Y , where X is the set with all possible
values for x and Y all possible values for y.

Formally, the MOMDP is defined by the tuple
〈X,Y,A,Z, Tx, Ty, O,R, h, γ〉. The components are the
same as in the POMDP case, but the transition function
T is now decomposed into Tx and Ty . Tx(x′, a, x, y) =
p(x′|a, x, y) gives the probability that fully observable state
component has value x′ if the robot takes action a in
state (x, y). Ty(y′, x′, a, x, y) = p(y′|x′, a, x, y) gives the
probability that the partially observable state component has
value y′ if the robot takes action a in state (x, y) and the
fully observable state component has value x′.

In a MOMDP, since it can be observed, there is no need
to maintain a belief over x. Therefore, it can be excluded in
order to just maintain a belief by(y), which is a probability
distribution over y. Any belief b ∈ B on the complete system
state s = (x, y) is then represented as (x, by), where by ∈
By . Furthermore, for each value x of the fully observable
state component, a belief space By(x) = {(x, by)|by ∈ By}
is associated. Here, every By(x) is a subspace in B, and B
is the union of these subspaces B =

⋃
x∈X By(x).

Note that while B has |X||Y | dimensions, each By(x) has
only |Y | dimensions. Therefore, the objective of representing
a high-dimensional space as a union of lower-dimensional
subspaces is achieved. Moreover, when |Y | is small, a re-
markable computational improvement can be reached, since
operations to solve the MOMDP are performed over the
subspaces By(x).

Now, since every belief is represented by (x, by), [9] prove
that the value function can be rewritten as:

V (x, by) = max
α∈Γy(x)

α · by (3)

where for each x, Γy(x) is a set of α-vectors defined over
By(x). Therefore, the value function is now a collection
of sets of |Y |-dimensional vectors, and the value of the
observable component x determines which Γy(x) is selected.
Then, the maximum over Γy(x) is calculated. Now, since the
vectors have |Y | dimensions instead of |X||Y |, the execution
of the policy is also faster for a MOMDP.

A. Point-Based MOMDP Solvers

Once MOMDPs have been introduced, the question is
how to solve them. Fortunately, with some modifications,
the same point-based algorithms for POMDPs are valid now.
Since the value function consists of a set of α-vectors for
every x ∈ X , the idea is to run an independent value iteration



for each of them separately. In [9], for instance, the point-
based solver SARSOP for POMDPs is modified in order
to cope with MOMDPs. Here, Symbolic Perseus [6] has
been also extended to cope with mixed observability poli-
cies. The resulting algorithm has been named MO-Symbolic
Perseus and it allows a useful comparison with SARSOP for
MOMDP users. Moreover, recalling that Symbolic Perseus
exploits the factored representation of POMDPs and the
ADD structures in order to optimize the original Perseus,
MO-Symbolic Perseus can be of great interest in certain
domains where the variables are not very coupled.

The two main steps to adapt point-based POMDP solvers
to deal with MOMDPs are the belief update and the backup
operation. In a POMDP, the belief update was determined
by (1). However, since by(y) = b(s) when s = (x, y) in a
MOMDP, the equation can be transformed:

b′y(y′) =ηO(z, a, x′, y′)∑
y∈Y

Ty(y′, x′, a, x, y)Tx(x′, a, x, y)by(y) (4)

When the belief is updated, the values of the observable
states before (x) and after (x′) taking an action are known.
Hence, (4) is particularized for specific values of those
variables.

The other major modification in MOMDP solvers is the
backup operation. Based on all the considerations made for
MOMDPs, [9] show how the backup operation included in
the original Perseus can be rewritten for MOMDPs:

backup(by) = arg max
a∈A

by · αa , where (5)

αa(y) =Rxa + γ
∑
z∈Z

∑
x′∈X

∑
y′∈Y

(Tx(x′, a, x, y)

Ty(y′, x′, a, x, y)O(z, a, x′, y′)αa,x′,z(y′))

(6)

Finally, note that:

αa,x′,z(y′) = arg max
α∈Γy,n−1(x′)

α(y′) · bza,y(y′) (7)

In this case, unlike (4), all the possible x′ must be taken
into account. Even though x′ and z are concrete values, they
cannot be known beforehand like x, so all their values must
be considered and weighted by their probabilities.

Apart from the steps mentioned above, MO-Symbolic
Perseus also needs some modifications when initializing.
First, a different set of beliefs By(x) over the component
y must be sampled for every value of x. In case y is
probabilistically independent of x, the same set of beliefs
over y could be used for every x. Moreover, all the value
functions Γy(x) are initialized separately with the same
values as in the original Symbolic Perseus.

IV. COORDINATION THROUGH DECENTRALIZED DATA
FUSION

Given a multi-robot planning problem, the first option is
to solve the above MOMDP for the whole team, considering
all the potential joint actions and observations, but this
approach ultimately does not scale with the number of robots.
Hence, for a team of N robots, a decentralized scheme
is proposed, where each robot i solves its own MOMDP
without considering the other robots actions. However, if the
robots solve independent MOMDPs, and use only their local
information (action and observations), no coordination or
cooperation is achieved. On the other hand, if communication
is allowed among the robots and the same belief state can
be recovered locally, this would represent a coordination
signal that summarizes all the information gathered by the
fleet. This way, the execution of the policies of the different
robots will be coordinated. The solution should be of lower
quality than a fully cooperative centralized solution, but it
can represent a tradeoff between quality and complexity.

Then, once the policies have been calculated, the coor-
dination is achieved during the execution phase by sharing
a common belief state bcen(y) that considers information
from all the robots. If aJ = 〈a1, · · · , aN 〉 is the joint action
and zJ = 〈z1, · · · , zN 〉 the joint measurement, a centralized
node with access to all the information would update the
belief according to (4):

b′cen(y′) = ηp(zJ |aJ , x′, y′)
∑
y∈Y

p(x′, y′|aJ , x, y)bcen(y)

(8)
The question is how to recover this centralized belief in a

decentralized manner. Assuming that the data gathered by the
different robots at any time instant are conditionally indepen-
dent given the state at that instant s′, i.e. p(zJ |aJ , x′, y′) =∏
i p(z

i|ai, x′, y′), and the prediction does not depend on
the robot actions (or the robot actions are known when
predicting), it is possible to combine locally the received
belief from other robots with the local one of robot i, b′i(y

′),
to recover the centralized belief [13], [14]:

b′cen(y′) ∝ b′i(y′)
∏
j 6=i

b′j(y
′)

b′ij(y
′)

(9)

where b′ij(y
′) represents the common information between

the robots i and j (i.e. information previously exchanged
between the robots). This common information can be main-
tained by a separate filter called channel filter [15]. If there
are loops in the information channels, the problem of double-
counting should be taken into account as well. The authors
have shown previously [14] that it is possible, by including
delayed states in the belief, to obtain locally the same belief
as in a centralized node with access to all the information
available.

V. MOMDP FOR TARGET TRACKING

In order to illustrate the proposed approach, an applica-
tion for tracking a target by means of multiple robots is



considered here. In this problem there is a moving target
and a team of N robots which are the pursuers. Each of
these robots carries a sensor which determines whether the
target is visible or not within its field of view (FOV). Then,
the objective is to find the target in the environment and
localize it as well as possible.

The state is composed of the position of the target and
the position and heading (north, west, south or east) of the
pursuer robots. The state space is discretized into a cell grid,
and a map of the scenario is assumed to be known. At
each time step, each robot can choose among four possible
actions: stay, turn right, turn left or go forward. stay means
doing nothing; when turning, the robot changes its heading
90o degrees; and when going forward, it moves to the cell
ahead. Nonetheless, noisy transition functions for the states
of the robots are considered. Besides, the target is assumed
to move randomly. Therefore, the transition function for its
position indicates that, from one time step to the next, the
target can move to any of its 8-connected cells with the same
probability (only non-obstacle cells are considered in order
to calculate that probability).

In addition, every sensor provides a boolean measurement:
detected or non-detected. These sensors proceed as it follows,
if the target is out of its FOV, the sensor produces a non-
detected measurement. However, when the target is within
its FOV, it can be detected with a probability pD. The robots
are heterogeneous in the sense that the sensor’s FOV and pD
could vary from one robot to another.

Finally, the design of the reward function so that the
target is tracked by the team of robots is crucial. Since
some cooperation is desirable within the heterogeneous
team, a different behavior is assigned to each robot.
Thus, the reward function also depends on the specific
robot: {R1(x, y, a), R2(x, y, a), · · · , RN (x, y, a)}. For all
the members of the team, no cost is assigned to the action
stay, whereas a cost of 1 is associated to the other actions.

This application is a fair example of how MOMDPs can
help to reduce the belief space dimensionality. Here, even
though robots and target locations are considered within
the state, the one involving a greater uncertainty is the
latter. Here, the locations of the robots are assumed to be
observable (they could be obtained accurately enough by
means of the on-board sensors and the available map, at
least for the cell resolution), remaining as non-observable
the target’s position. Thus, the non-observable part of the
state consists of the target location, y = tl, whereas the
fully observable part consists of all the robots locations
and headings, x = (r1

l , r
1
h, · · · , rNl , rNh ). In this case, for a

10x10-cell grid, there would be 400 possible states for each
pursuer and 100 for the target, which means, for a single
robot, to reduce a POMDP with a 40,000-dimensional belief
space to a union of 400 disjoint 100-dimensional subspaces.

Then, the proposed coordinated approach will be applied.
That means that each robot i solves its own MOMDP without
considering the other robots. That MOMDP has states xi =
(ril , r

i
h) and yi = tl, and reward Ri(x, y, a), being possible

to specify a different strategy for each robot.

Fig. 1: Histograms of the average rewards obtained during
500 simulations for the different approaches.

Fig. 2: a) Simulated environment and field of view (white
cells) for each robot. If the target is in one of the cells with
crosses, a high reward is obtained. The path of the target is
also shown. b) Image of the experiments in the real CONET
testbed.

With this decentralized approach based on MOMDPs,
coordination arises implicitly due to the fused belief, and
there is no need to solve a MOMDP for the whole team nor a
POMDP, whose complexities grow exponentially with N . Of
course, the policy is not optimal, as the robots do not reason
about the other robot actions, but, as it will be seen, through
proper design of the rewards and the communication between
robots, it can be obtained a helpful coordinated behavior for
many applications.

VI. EXPERIMENTS

A. Simple scenario

A simple target tracking scenario was simulated in order
to highlight the differences between the proposed approach
and a fully cooperative centralized solution. The model is
the one explained above particularized for a map with 11
available cells. Then, two pursuer robots are considered with
equal FOVs, composed by a single cell in front of them and
pD = 0.9. Each robot gets a high reward (+100) when the
target is in the cell of its FOV, otherwise the reward is zero.

A MOMDP for a single robot without considering the
other and a fully cooperative MOMDP considering both
robots were solved. The reward for the latter model was
simply the sum of the independent rewards for each robot.
Moreover, both policies were calculated with SARSOP in a
computer with an Intel Core 2 Duo processor @2.47GHz and
2.9GB, being the former computed for 0.2 seconds and the
latter for 4677. Then, three different approaches were tested:



Coordinated Not coordinated
MO-Symbolic Perseus 246.13± 3.33 209.38± 3.17

SARSOP 279.64± 4.67 197.76± 3.10

TABLE I: Rewards (with 95% confidence interval) obtained
with and without coordination (DDF) during the simulations.

(i) the fully cooperative policy; (ii) independent policies for
each robot but using DDF; (iii) independent policies for
each robot without sharing any information. Fig. 1 depicts
histograms for the average rewards obtained during 500
simulations of 150 steps each one.

In this case, with much less computation time, the quality
of the proposed coordinated approach was quite close to
the fully cooperative. Actually, computing the single-robot
policy for 20 seconds the proposed approach outperformed
the centralized. In general, the reward is usually higher when
sharing information compared to no data fusion. Nonetheless,
due to the small size of the map, differences were not very
substantial in this example.

B. Simulations

Additional simulations for more complex environments
were conducted in order to show the advantages of intro-
ducing mixed observability and coordination through DDF.
A simulation environment was created from the original
testbed of the Cooperating Objects Network of Excellence
(CONET)1. The map of the real testbed was discretized
into 2x2-meter cells and resulted in the occupancy grid of
12x10 dimensions shown in Fig. 2, where cells representing
obstacles are in yellow.

Again, a team with two robots is considered. Nevertheless,
their perception capabilities are different. The first robot
carries a more accurate sensor (pD = 0.9) but its FOV is
smaller, whereas the second has a wider FOV but is less
accurate (pD = 0.8) (see Fig. 2). That is reasonable, because
many vision-based detectors work more accurately when the
FOV of the scene is more restricted. Therefore, the role of
the robot with the wider FOV would be to survey a big
area from a distant position whereas the robot with the more
accurate sensor would try to get closer to confirm the target
detection. Hence, the first robot gets a high reward (+100)
when the target is in one of the closest cells of its FOV, but
the second robot gets a high reward (+100) when the target is
in one of the central cells of its FOV (see Fig. 2); otherwise
the reward is zero.

First, the decentralized approach with independent
MOMDPs proposed in Section V was tested for this scenario.
Independent policies were calculated for each robot with
SARSOP and MO-Symbolic Perseus. Then, 500 simulations
of 150 steps each one were performed with the robots starting
at random positions and the target following the fixed path
depicted in Fig. 2. In order to include some uncertainty in
its behavior, at every time step, the target could (with equal
probability) either stay in the same cell or follow the path.

1http://www.cooperating-objects.org

Fig. 3: Software architecture of the real robots.

Map size Model Time (s) Precision Reward

12 cells MOMDP 0.18 21.97 125.87± 6.19
POMDP 1517 21.99 88.74± 8.90

80 cells MOMDP 1054 54.89 64.12± 8.61
POMDP 3169 54.80 44.49± 8.70

120 cells MOMDP 3071 57.42 42.58± 5.84
POMDP 3081 47.30 40.24± 7.18

TABLE II: Evaluation of POMDP and MOMDP policies for
a single robot (rewards with their 95% confidence interval).

Table I shows the average rewards obtained with and
without coordination (DDF). It can be seen how, for both
solvers, the use of DDF produces an increase of the average
reward. It is also crucial to remark that a comparison with the
fully coordinated MOMDP is not included here due to the
complexity of the domain. Both solvers run out of memory
(with the same computer mentioned in the previous section)
trying to compute a fully coordinated policy.

Finally, to show the advantage of introducing the mixed
observability in the model, some simulations (100 runs of
150 steps) with a single pursuer robot were carried out
varying the size of the scenario and comparing with a
standard POMDP solution. The results of the average rewards
for both, POMDP and MOMDP policies, are summarized
in Table II. All the policies were calculated with the same
solver (SARSOP) and the same computer (the one men-
tioned above), and their precision measured, this meaning
the distance between the upper and lower bounds of the
value function [8]. For the smallest and medium scenarios,
it can be seen that the MOMDP policy can achieve better
average rewards with much less computation time. The
biggest scenario tries to show how the results are better for
the MOMDP after similar computation time.

C. Real experiments

In order to show the applicability of the approach, some
real experiments were conducted. In these experiments, two
robots were used to follow a target represented by a third
robot (see Fig. 2). The models and scenario considered were
the same as in the simulation described above.

Figure 3 shows the software modules used by the robots.
Player [16] was used to control the robots, which were able to
localize themselves within the map. Besides, a path planning
algorithm was used to obtain the path to the high level goals
provided by the MOMDP controller (next cell to move),
whereas a local navigation algorithm was used to safely



(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 4: Screenshots of a real experiment using coordinated robots. The color scale of the cells represents the (fused) belief
from the blue robot. In yellow the target. The FOVs of the robots are also represented. Yellow cells cannot be reached.

Fig. 5: Paths of the target (black) and robots. Left: no
coordination. Right: coordination. In the first case the robots
lost the target in part of the scenario.

navigate the given path. Each robot had an estimation filter
implementing the DDF scheme of Section IV and a MOMDP
controller that executed the obtained policies.

Results of the experiment with coordinated execution2

are summarized in Fig. 4. The localization of the target is
improved, as it can be seen in screenshot 4a, where the
belief state of the blue robot is narrow even though the
target is not in its FOV. Moreover, a certain coordination
arises between the robots. For instance, in screenshots 4c,
4d, 4e, the target escapes and the blue robot goes through
its lowest cost path while the red robot keeps observing the
place, as there is a certain probability of the target coming
back and it has a larger FOV. When most of the probability
mass is in the lower left room (4f), both robots eventually
move to that direction (4g), and the blue robot moves inside
the room while the red awaits observing from afar (4h).
Fig. 5 compares the trajectories of the robots and target in
two different experiments, with and without coordination.

VII. CONCLUSIONS

The scalability of POMDP models is a concern for their
application to multi-robot planning. This paper addresses

2See http://grvc.us.es/staff/jescap/expCONET3.mp4

decentralized data fusion as a manner to coordinate indepen-
dent plans computed by local MOMDPs. Since each robot
does not reason about the others’ actions, this approach is
scalable. The main drawback is that sub-optimal policies
are obtained, and no intentional cooperation is considered.
However, a proper design of the local rewards allow to cope
with different applications with a coordinated team. Thus,
the paper mainly contributes showing through simulations
the advantages of introducing MOMDPs and a coordinated
decentralized solution versus a fully cooperative solution.
Real experiments are used to demonstrate the applicability
of the approach. Moreover, a modification of the algorithm
Symbolic Perseus to deal with mixed observability is pro-
posed and compared.

Future work includes demonstration with fleets of more
robots. A guideline to design the reward functions to achieve
a desired coordination would be of interest as well. Certainly,
better plans could be obtained if the actions of several robots
were considered during the planning phase. Thus, another
direction is to include other robots’ actions in the planning
phase, but trying to maintain locality (that is, to consider
only the actions of potential neighbor robots, no the whole
fleet). This should lead to better policies, but maintaining the
scalability of the approach.
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