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Abstract— Robots navigating in a social way should use
some knowledge about common motion patterns of people
in the environment. Moreover, it is known that people move
intending to reach certain points of interest, and machine
learning techniques have been widely used for acquiring this
knowledge by observation. Learning algorithms such as Grow-
ing Hidden Markov Models (GHMMs) usually assume that
points of interest are located at the end of human trajectories,
but complete trajectories cannot always be observed by a mobile
robot due to occlusions and people going out of sensor range.
This paper extends GHMMs to deal with partial observed
trajectories where people’s goals are not known a priori. A
novel technique based on hypothesis testing is also used to
discover the points of interest (goals) in the environment. The
approach is validated by predicting people’s motion in three
different datasets.

I. INTRODUCTION

Nowadays, robots working in environments populated with
people are becoming commonplace. In order to show a
more social behavior, classic navigation algorithms need to
propose new objective cost functions. For instance, path
planning algorithms should drive robot avoiding common
people trajectories not to disturb them, or conversely, along
those trajectories to search for someone [1], [2]. All these
social navigation algorithms require the ability to predict
human movements in the environment.

Human motion patterns depend typically on spatial vari-
ables: people move between doors and corridors following
common trajectories, places of interest such as coffee ma-
chines are common goals, etc. Machine learning techniques
can be used to infer these models from observed people
trajectories.

Some approaches [3], [4] use occupancy grid maps that
consider dynamic objects and represent the probability of
people appearance and disappearance for each cell. In [3], a
multi-layer framework for social navigation is introduced.
Each layer has a purpose: one is used to determine the
accessible area of the environment; another one is used
to represent rates of people appearing; and the last one
represents a place-dependent reliability of the person detector
on board the robot. Authors in [5] present a system of multi-
probability grids for social mapping. Motion probability
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grids represent the potential motion of a human moving to
a particular target grid cell.

Agent-based and velocity-space reasoning are also typi-
cally used as in [6], where each pedestrian is modeled as an
agent using statistical inference techniques. Thus, the robot
is able to learn individual motion parameters for every agent
in the scene, providing a solution for a collision-free robot
navigation. In [7], clustering techniques are applied over
pedestrian motion data to extract information about the use
of the space and people’s typical behavior. Then, this is used
by a robot to predict likely behaviors in certain places and
offer services to idle people at a shopping center. In [8],
the authors describe a behavior cognition model to represent
the spatial effects in the relations between people and also
between people and the environment.

Motion patterns and people intentions are affected by
points of interest in the environment, and thus, the problem
of estimating such points is also considered in the literature
[9]. These points may not have discriminative appearance and
shape, but they affect the behavior of people in the scene,
attracting them (e.g., vending machines) or repelling them
(e.g., grass lawns).

Hidden Markov Models (HMMs) were one of the first
machine learning techniques used to estimate typical motion
patterns [10]. In particular, we focus in this paper on Growing
Hidden Markov Models (GHMMs) [11], which can learn the
spatial structure of trajectories in a specific environment by
building an Instantaneous Topological Map (ITM) that can
be viewed as a dynamic occupancy grid map. First, a learning
phase trains an HMM that is iteratively fed with observed
trajectories; then, a prediction phase takes new trajectories
and determines the probability distribution of next positions
in a time horizon, as well as the probability distribution of
future goals. GHMMs can work in an online fashion, training
the model at the same time that predictions are computed.
Moreover, not only the parameters of the HMM are trained,
but also the ITM and HMM structures evolve with new
observations.

One of the main issues with current GHMM implementa-
tions is the need for complete person trajectories (including
actual starting and ending/goal points) in the training phase.
The GHMM training algorithm does not apply any special
reasoning about where the points of interest are located,
since it is assumed that goals are the final points of the
trajectories. Tracking complete trajectories can be achieved
when the whole environment is observable at once (e.g.,
using a zenithal camera [12]), but tracking people based on
sensors on board a mobile robot could lead to a poor learning



due to occlusions that interrupt the observed trajectories. In
this paper, we propose an extension of GHMMs designed
to be used with on-board robot sensors. A first contribution
is a novel learning phase that uses partial trajectories where
it cannot be determined whether individuals have reached
their final goals or not (they may go out of the sensor range
or get occluded). We also contribute with a new hypothesis
testing method to estimate potential points of interest in the
environment (goal points of trajectories). Finally, a more
accurate modeling of the sensors has been included, since the
observation function associated with each topological node
is dynamically updated during the learning phase.

Experimental results are provided for two public datasets
with zenithal cameras, and a dataset recorded using a robot
in an indoor office-like environment. A couple of metrics
have been used to evaluate the quality of the prediction of
people’s motion with our model.

The remainder of the paper is as follows: Section II
summarizes the concepts related to GHMMs; Section III
describes a new improved version of the original ITM algo-
rithm; Section IV presents the hypothesis testing approach
for discovering goals of trajectories; Section V explains how
to train the HMM and make future predictions; Section
VI provides experimental results; and Section VII discusses
conclusions and future work.

II. GROWING HIDDEN MARKOV MODELS

In a GHMM, there is a discrete representation of the
space, which is divided into regions. Transitions are only
allowed between neighboring regions. The learning process
consists of estimating the best space discretization, and
identifying neighboring regions and transition probabilities
from observed data. First, a topological map is built with the
ITM algorithm [13]; then, an HMM is built from the ITM,
and its transition (and prior) probabilities are trained with
the incremental Baum-Welch technique [14]. Moreover, in
GHMMs (contrary to HMMs) the number of discrete states
and transitions are not constant, i.e, the structure of the model
changes as more input observations are processed.

The general steps of the complete algorithm for learning
a GHMM are summarized in the following subsections.
Further details about how to train a GHMM and make
predictions with it can be seen in [11].

A. Updating the topological map

A topological map is a discrete representation of the
space in the form of a graph where nodes represent regions
(each node has associated the centroid of the region) and
edges connect nodes related to adjacent regions. The ITM
algorithm [13] updates iteratively a topological map given
the observed data. Each observation Ot consists of a 2D
position Op of a detected person at a given time step t;
and a trajectory O1:T is a sequence of observations of the
same person along T time steps. As new observations arrive,
nodes and edges may be created (or moved) or deleted in the
topological map.

B. Updating the HMM structure

A GHMM consists of an ITM and an underlying HMM,
where the states and transitions of the HMM correspond to
the nodes and edges of the ITM (each edge corresponds to
two transitions, since the ITM graph is undirected but the
HMM graph is directed). During the ITM update, nodes and
edges may be added or deleted, and those changes in the
topological map must be translated to the HMM structure.
Thus, for each new node in the ITM, a new state is added in
the HMM with a default prior probability and a self-transition
probability; for each removed node, the corresponding state
is removed. Moreover, for each new edge in the ITM, two
transitions are added in the HMM with default probabilities;
for each removed edge, the corresponding transitions are
removed. Then, all priors and transition probabilities are
normalized.

It is assumed that people move intending to reach a
particular goal. Thus, each node i in the ITM (or HMM state)
contains 4-dimensional spatial information (xi, yi, g

x
i , g

y
i ),

where (xi, yi) is the centroid ci of the current region and
(gxi , g

y
i ) is the intended goal related to that node. Also,

for every node/state i, an associated Gaussian distribution
G(ci,Σ) is stored representing the likelihood of observations
for that state P (Op|i). The covariance Σ is considered to be
fixed and the same for all nodes.

C. Updating the HMM probabilities

In a GHMM, the prior and transition probabilities of the
states in the HMM are learnt from data (the observed people
trajectories). This step to update the unknown parameters of
the HMM can take place once per complete observed trajec-
tory O1:T , after all the discrete observations Ot contained in
the trajectory have been processed to update the ITM and
the HMM structures. An incremental version of the Baum-
Welch algorithm [14] is used to re-estimate the probabilities
of the HMM. Moreover, as the observations do not have
information about the goals of the people, before this update,
each observation Ot of a complete observed trajectory O1:T

is extended by assigning as goal coordinates the last position
of the trajectory OT .

D. Predicting motion

Once the underlying HMM is learnt, that model can be
used to filter and predict future positions of people by
using inference. Given an initial estimation of the person
position, after every new observation of the person position,
the current belief on the person position and his/her goal are
re-estimated by applying Bayes recursion. Predictions can be
performed by propagating this estimation a number of time
steps ahead into the future.

III. IMPROVED INSTANTANEOUS TOPOLOGICAL MAP

One of the main assumptions in the original GHMM is
that the goals of people are given by the last positions of
the observed trajectories, and hence, complete trajectories
between origins and goals are required. Here we modify
the ITM to include information about the flux of people,



which will allow us to automatically discover goals (points
of interest) considering only partial (incomplete) observed
trajectories. This novel procedure to build the ITM is de-
scribed in Algorithm 1.

At each node i, a tuple (in, iin, iout, is) is stored. in
represents the number of different people that are observed
in that node, while iin is the number of people that appear at
that node and iout the number of people that disappear. We
say that a person appears at the node where it is registered
the first observation for that person. On the other hand, we
say that a person disappears at the node where the algorithm
gets the last observation for that person. The last observation
is determined if there are no more observations of that person
after a tout period. Finally, is is the mean time that the people
detected stand at that particular node.

In addition, instead of using a fixed Gaussian as likelihood
function P (Op|i), we extend the ITM to store and update a
specific covariance matrix for each node, so the observation
model can adapt to the characteristics of the different parts
of the scenario. The centroids are also updated in a different
manner as in the original ITM [13], and each centroid is
computed as the mean of its associated observations.

Algorithm 1 Improved ITM Algorithm
Require: Person identifier id, observed position Op, inser-

tion threshold τ , timeout tout.
1: Matching: Find the nearest node j and the second-

nearest node k with respect to the observed position Op

in terms of Euclidean distance.
2: Edge adaptation: (i) Create an edge connecting j and
k if it does not already exist. (ii) For each node m
in the neighborhood of j (neighbors are those 1-hop-
connected), check if the centroid of k lies inside the
Thales sphere through the centroids of j and m. If that
is the case, remove the edge connecting j and m. When
deleting an edge, check m for emanating edges; if there
are none, remove that node as well.

3: Node adaptation: If Op lies outside the Thales sphere
through the centroids of j and k, and outside a sphere
around the centroid of j with a given radius τ , create
a new node i with in = 0, iin = 0, iout = 0, is = 0.
Connect nodes i and j. If the centroids of j and k are
closer than 0.5 ∗ τ , remove k. Select a node r to be
adapted as r = i if i was created, and r = j otherwise.

4: Gaussian distribution adaptation: Adapt the centroid
and covariance matrix associated with node r according
to the method explained in Section III-A.

5: In/out people adaptation: rn = rn + 1. If it is the first
time observing the person id, then rin = rin+1, and set
to 0 a time counter associated with id. When the time
counter is greater than tout, rout = rout + 1 and remove
the time counter.

6: Standing time adaptation: When the person abandons
the node, update rs = rs+ ∆t−rs

rn
, with ∆t the total time

the person was observed at the same node.

A. Gaussian distribution adaptation

Each node i stores a bivariate Gaussian G(ci,Σi) as its
observation likelihood P (Op|i), with:

Σi =

[
σ2
x ρσxσy

ρσxσy σ2
y

]
i

For each new observed position Op = (x, y), Algorithm 1
updates the parameters of the Gaussian distribution as fol-
lows:

c′i = ci = (cx, cy)i

ci = (cx +
x− cx
in

, cy +
y − cy
in

)

ρ = ρ+
(x− cx)(y − cy)− ρ

in

sx = sx + (x− c′x)(x− cx)

sy = sy + (y − c′y)(y − cy)

σx =

√
sx

in − 1

σy =

√
sy

in − 1

where sx and sy are initialized to 0 at the first iteration.
Basically, the Gaussian of each node comes from computing
the average and standard deviation of all observed positions
at that node.

IV. DISCOVERING GOALS

When there are partial observed trajectories, people’s start-
ing points and goals are not known a priori, so a procedure to
discover them is needed. It cannot be assumed that a person
who disappears at a node has arrived to his/her goal. He/she
could be out of the range of the sensors or occluded. In the
same way, a person that appears at a node is not necessarily
a new person, because he or she could just be back after
being out of range or occluded.

If people are detected and tracked with the sensors on
board a mobile robot, it could be assumed that the number
of people appearing/disappearing at actual entry/goal points
(e.g., doors) should be significantly higher in the long
term than the number of people appearing/disappearing at
false entry/goal points produced by occlusions or losses of
tracking. Moreover, goals are not only areas where people
exit the environment; goals can also be considered as points
of interest where people spend more time than normal, for
instance, standing in front of a coffee machine. Therefore, it
can be assumed that the time spent in this type of goals
should be significantly higher in the long term than the
average time in other nodes.

In order to determine the significance level of each node to
be considered a goal point, three hypothesis tests (t-tests) are



applied. Nodes with a p-value less than a threshold parameter
in one or more of the hypothesis tests are considered goal
points (entry points are also considered as goals, since they
may be exit points for other people in the future). The p-
values for all the nodes are re-calculated after each iteration
of the ITM algorithm. Thus, existent goals could be also
removed.

A. Discovering entry/exit points

For each node i, the mean of the relative frequency of
people appearing µin = iin

in
is computed. The associated

standard deviation is computed too:

σin =

√
iin(1− µin)2 + (in − iin)µ2

in

in − 1

Then, the next hypothesis test is formulated to check
whether the node is an entry point:

• H0: µin is less than or equal to pin
• H1: µin is greater than pin

The value pin is a parameter of the algorithm. The idea
is that the relative frequency of people appearing at an entry
node should be clearly higher than that of a node where
people pass by (with pin ≈ 0.5). The hypothesis test to
determine whether a node is an exit point is analogous to
the one used for entry points, but using iout instead of iin.

B. Discovering standing points

During the tracking process, each node i stores and
updates its average standing time is, i.e, the average time
people stand in the area corresponding to that node. Its
associated standard deviation is also calculated. Thus, the
next hypothesis test can be formulated to check whether a
node i is a standing point:

• H0: is is less than or equal to Ts seconds.
• H1: is is greater than Ts seconds.

The value of Ts seconds is a parameter of the algorithm.

V. HMM LEARNING AND PREDICTION

Once the ITM and the goal points have been updated,
the underlying HMM can also be updated accordingly. The
(hidden) states in the HMM are all the possible combinations
(n, p), where n is a node of the ITM and p is a discovered
goal. Therefore, the number of states in the HMM is N ∗G,
where N is the number of nodes in the topological map and
G is the number of discovered goals.

The transition probability to go from a state S = (n, p) to
a state S′ = (m, q) is zero if S 6= S′ and there is no edge
connecting n and m in the ITM. Therefore, the number of
possible non-zero transitions in the HMM are (2E+N)G2,
where E is the number of edges in the ITM.

A. Updating the HMM structure

The HMM structure is updated following the next rules:
• For each new node n in the ITM, create all possible

states (n, p), where p is contained in the list of dis-
covered goals. Assign a default initial prior probability
to each created state and initiate all the associated
transition probabilities to a default value if there exists
the corresponding edge in the ITM.

• For each removed node n in the ITM, remove all the
states (n, p) and assign a zero value to all the associated
prior and transition probabilities.

• For each new goal p, create all possible states (n, p),
where n is one of the nodes in the ITM. Assign a default
initial prior probability to each new state and initiate
all the associated transition probabilities with a default
initial value if there exists the corresponding edge in
the ITM.

• For each removed goal p, remove all the states (n, p)
and assign a zero value to all the associated prior and
transition probabilities.

• For each new edge (n,m) in the ITM, assign a default
initial value to all possible associated transition proba-
bilities.

• For each removed edge (n,m) in the ITM, assign a zero
value to all the associated transition probabilities.

All the probabilities will be normalized in the next step.

B. Updating the HMM probabilities

After each partial observed trajectory, the HMM state prior
and transition probabilities can be re-estimated following the
incremental Baum-Welch algorithm, as it is done in [11].
However, we consider observations with information about
the position and velocity of the person Ot = (Op, Ov).
The observation probability for a given state P (Ot =
(x, y, vx, vy)|St = (n, p)), which is needed to calculate
the forward and backward probabilities in the Baum-Welch
algorithm, can be defined as:

P ((x, y, vx, vy)|(n, p)) = P (vx, vy|x, y, n, p)P (x, y|n, p)

The second probability does not depend on the goal p, and
is given by the Gaussian distribution corresponding to node
n in the ITM (see Section III-A):

P (x, y|n, p) = P (x, y|n) = G(cn,Σn)

For the first probability we assume that the velocity vector
of the person should point to the goal of the trajectory. In this
sense, a Gaussian bivariate distribution G(µv,Σv) is used,
where:

µv = (
px − x√

(px − x)2 + (py − y)2
,

py − y√
(px − x)2 + (py − y)2

)

Σv =

[
σ
′2
x 0

0 σ
′2
y

]



Note that (px, py) is the position of the goal point p, while
σ′x and σ′y are estimated depending on the distance to the
goal.

C. Prediction of people motion and trajectory goals

In the HMM, a belief over the state at each time step is
maintained. After a partial observed trajectory, that belief is
re-estimated (η is a normalizing constant):

P (St|O1:t) =
1

η
P (Ot|St)

∑
St−1

P (St|St−1)P (St−1|O1:t−1)

The belief over the current area (node) where the person
is located can also be defined:

P (nt|O1:t) =
1

η

∑
p

P (St = (n, p)|O1:t)

Similarly, the belief over the distribution of possible goals
would be:

P (pt|O1:t) =
1

η

∑
n

P (St = (n, p)|O1:t)

Then, predictions over the future positions of the people in
the scenario can be performed by propagating the estimation
H time steps ahead into the future:

P (St+H |O1:t) =
∑

St+H−1

P (St+H |St+H−1)P (St+H−1|O1:t)

and computing again the beliefs over the current area and
possible goal of the observed trajectory.

VI. EXPERIMENTAL RESULTS

We implemented our approach in C++ under the Robot
Operating System (ROS) framework, and we run experiments
with three different datasets: two of them public (Edinburgh
Informatics Forum Pedestrian Dataset [12] and the BIWI
Walking Pedestrian Dataset [15]); and another one gathered
by the TERESA robot [16] at the Pablo de Olavide Univer-
sity.

A. Edinburgh Informatics Forum Pedestrian Dataset

This dataset consists of people walking through the Infor-
matics Forum, the main building of the School of Informatics
at the University of Edinburgh, recorded at 9 fps. The dataset
is composed by the images and the people’s positions with
unique ids, allowing easy person tracking and goal detection
for trajectories.

In order to train our models, we used 2,000 trajectories
obtaining a topological map of 375 nodes, 962 edges and 9
discovered goals, which is shown at Fig. 1. The associated
HMM contains 3,375 states and 159,219 non-zero transition
probabilities.

Fig. 1. Topological map (blue) and discovered goals (red) for the Edinburgh
dataset.

B. BIWI Walking Pedestrian Dataset

This dataset was recorded from the top of the ETH main
building (Zurich) at 2.5 frames per second. As before, the
dataset provides people’s positions with unique ids, allowing
easy trajectory computation. We used 160 trajectories to train
an ITM of 223 nodes, 517 edges and 5 discovered goals. The
HMM contains 1,115 states and 26,965 non-zero transitions.

C. Pablo de Olavide University

The coffee machine area in the building 45 of the Pablo
de Olavide University (UPO) (Fig. 2) is an area of 4.30 ×
11.80 meters with an entry point from two corridors and
several points of interest: three coffee and snack machines,
three toilette doors, a water font and a rest area with chairs
and bar-style tables.

In this experiment, a robot [16] was static in front of the
toilette doors as shown in Fig. 2. Only an onboard laser-
scanner was used for person detection and tracking based
on [17] and a Kalman filtering for temporal tracking and
velocity estimation. A total of 20 trajectories were recorded
in a dataset and used to train our models, generating an
ITM with 37 nodes, 151 edges and 5 discovered goals
(Fig. 3). The discovered goals correspond to (1) the entry
point, (2) the water font, (3) the man’s toilette door, (4) the
coffee/snack machines and, (5) the rest area. The related
HMM contains 185 states and 2,725 non-zero transition
probabilities.

D. Validation results

The objective of this section is to provide a quantitative
criteria to assess the accuracy of the predictions based on the
models learnt previously. The two first datasets were used
for this. They incorporate the final goal of every person,
which was used as ground-truth to evaluate predictions.
Nonetheless, this information was not used to build the ITM
nor the HMM.

A subset of the trajectories were not used in the training
phase and are used here to evaluate the prediction phase.
Particularly, 200 trajectories for Edinburgh and 159 for
BIWI. Two are the main factors we can evaluate with these
test datasets: (1) how accurately the method discovers the



(a)

(b)

Fig. 2. Coffee machine area at UPO.

Fig. 3. Topological map (blue) and discovered goals (red) for the coffee
machine area at UPO.

position of the different goals in the models and (2) the
accuracy of the goal prediction during a person trajectory.

Regarding the automatic goal discovery rate, in the BIWI
dataset, the 58% of the total goals were automatically de-
tected in the training phase. Moreover, the 64% of the total
goals were detected for the Edinburgh dataset. Even though
the computed models fail for unusual patterns, they are able
to represent the main and more repeated trajectories. Larger
datasets would probably achieve a better goal discovery rate.

Regarding trajectories with ground-truth (actual goals), we
want to evaluate how accurately our approach predicts the
person’s goal based on his/her trajectory. For this purpose,
people’s trajectories were divided into segments of 25%,
50%, 75% and 100% of their length. The predictions of our
algorithm were evaluated at these points and compared to
the ground-truth. Two metrics were computed to assess this
prediction phase:
• Metric 1:

∑
g∈G P (g|O1:t)kg

• Metric 2:
∑

g∈G P (g|O1:t)dg

where:
• G is the set of possible goals.
• P (g|O1:t) is the probability of goal g to be the goal of

the trajectory O1:T based on the belief at time t.
• kg is 1 if g is the actual goal of the trajectory O1:T , 0

otherwise.
• dg is the Euclidean distance of the centroid of g to the

centroid of the goal of O1:T .
Metric 1 evaluates how accurately the approach predicts

the correct goal (regarding the ground-truth), providing the
probability of sampling the right goal conditioned to all the
previous observations. The closer to 1 the result of Metric
1 is, the better. Metric 2 tries to assess the accuracy of the
position of the predicted goals, that means, if the predicted
goal is close or far from the actual goal. We use the Euclidean
distance in meters for Metric 2, and the smaller the value,
the better.

Tables I and II show the outcome of these metrics for our
experiments. The tables depict average values and standard
deviations of each metric after running all the test trajecto-
ries. It can be seen how the prediction is clearly improved
with the length of the trajectories for the Edinburgh dataset,
while the prediction in the BIWI dataset is very good for
all cases. It can also be seen how the standard deviations of
the metrics also decrease with the length of the segment, as
expected.

In addition, a hypothesis test (t-test) was run for Metric
1, contrasting the obtained average values with the uniform
distribution:
• H0: The average value of Metric 1 is less than or equal

to 1/9 in the case of the Edinburgh dataset or 1/5 in
the case of the BIWI dataset.

• H1: The average value of Metric 1 is greater than 1/9
in the case of the Edinburgh dataset or 1/5 in the case
of the BIWI dataset.

The p-values are shown in the last column of Tables I and
II. It can be seen how the value is very small (insignificant)



for all the cases.

Metric 1 Metric 2
Trajectory mean σ mean σ p-value

25% 0.4774 0.4259 3.4465 3.6886 < 2.2 ∗ 10−16

50% 0.5857 0.4264 2.3300 2.9505 < 2.2 ∗ 10−16

75% 0.8381 0.3223 0.8850 2.2087 < 2.2 ∗ 10−16

100% 0.9937 0.0511 0.0647 0.5335 < 2.2 ∗ 10−16

TABLE I
EDINBURGH DATASET EXPERIMENTS.

Metric 1 Metric 2
Trajectory mean σ mean σ p-value

25% 0.8983 0.2351 1.1276 2.8390 < 2.2 ∗ 10−16

50% 0.9247 0.2112 0.7643 2.6173 < 2.2 ∗ 10−16

75% 0.9425 0.1898 0.7641 3.0416 < 2.2 ∗ 10−16

100% 0.9802 0.1095 0.3381 1.8972 < 2.2 ∗ 10−16

TABLE II
BIWI DATASET EXPERIMENTS.

VII. CONCLUSIONS

This paper has presented a system for person trajectory
prediction. The system extends GHMMs to deal with partial
observed trajectories when training the model and making
predictions. Indeed, partial trajectories are usual when only
local sensing on board a robot is used for person detection
and tracking. Thus, this approach makes GHMMs more
robust against occlusions and miss-detections. Moreover,
partial trajectories may not include final people’s goals,
which are automatically detected by the system. Those goal
points are typically points of interest in the environment
(vending machines, doors, etc.), and are considered within
the model, since they affect the people motion.

The method has been benchmarked using different public
datasets, showing the results that a good number of goals
are automatically detected. The results also showed that goal
prediction based on person trajectory is consistent, and more
accurate as the partial trajectories get closer to the complete
one. Besides, the method has been evaluated qualitatively
using data from a robot in an indoor scenario.

As future work, the model will be integrated with the
person tracker itself, so it can be used in the prediction phase,
leading to more robust trackers. Furthermore, this model
for people motion will be the base for human-aware path
planning and task planning under uncertainties in missions
involving human and robots.

REFERENCES

[1] G. D. Tipaldi and K. O. Arras, “Planning problems for social
robots,” in Proc. International Conference on Automated Planning and
Scheduling (ICAPS’11), Freiburg, Germany, 2011.
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