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Abstract

Often within the field of tracking people within only fixed
cameras are used. This can mean that when the the illumi-
nation of the image changes or object occlusion occurs, the
tracking can fail. We propose an approach that uses three
simultaneous separate sensors. The fixed surveillance cam-
eras track objects of interest cross camera through incre-
mentally learning relationships between regions on the im-
age. Cameras and laser rangefinder sensors onboard robots
also provide an estimate of the person. Moreover, the sig-
nal strength of mobile devices carried by the person can be
used to estimate his position. The estimate from all these
sources are then combined using data fusion to provide an
increase in performance. We present results of the fixed
camera based tracking operating in real time on a large
outdoor environment of over 20 non-overlapping cameras.
Moreover, the tracking algorithms for robots and wireless
nodes are described. A decentralized data fusion algorithm
for combining all these information is presented.

1. Introduction

Surveillance cameras are increasingly being used as a
tool to monitor and deter crime. As a result, there are large
numbers of cameras which lack effective continuous moni-
toring due to the limitations of humans in managing large-
scale systems. Therefore, tools to assist and aid the opera-
tor’s decision process are essential. The approach presented
in this paper aims to automatically track objects in (intra)
and between (inter) cameras. This can be a challenging
problem using a single sensor such as fixed cameras. There-
fore a number of individually weaker sensors are used, these
are then combined with an advanced data fusion technique.

The fixed cameras are situated outside within the Uni-

versitat Politécnica de Catalunya in Barcelona. The cam-
eras have been installed for the EU Project called URUS
((Ubiquitous Networking Robotics in Urban Settings) [19],
the project aims to combine advances within the vision and
robotics fields to allows for complex guidance and evacua-
tion scenarios to be implemented. At the beginning of the
scenario a person is to be detected as waving for attention
and then must be tracked continually to allow a robot as in
Figure 1 to go and guide him. The cameras are assumed

Figure 1. An example of Guiding, interaction and transportation
of people and goods.

to be non overlapping and are all outside. This means that
an image based tracker would individually be insufficient to
track objects of interest.

Therefore, the system will consider, besides the data
from from the cameras, information from a number of other
sensors, namely cameras and laser rangefinders on board
the robot and a Wireless Sensor Network (WSN). All these
elements can communicate through wireless links, and con-
stitute what it is called a Network Robot System (NRS).
A NRS is a new concept that integrates robots, sensors,
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communications and mobile devices in a cooperative way,
which means not only a physical interconnection between
these elements, but also, for example, the development of
novel intelligent methods of cooperation for task oriented
purposes [19]. For instance, fusing all the information from
all the elements in the NRS will allow for a more accurate
tracking of a person in missions such as human guidance by
a robot in a urban environment.

This paper will first present the individual input sensor
algorithms. The fixed camera tracking algorithm learns the
relationships between the non-overlapping cameras auto-
matically. This is achieved by modelling the colour, and
temporal relationship between cameras. The two cues are
deliberately very weak as more detailed and complex cues
would not be able to work with the low resolution and real
time requirements of the system. These two cues are then
used to weight a simple appearance likelihood of the person
for inter camera racking.

Robots and the WSN also provide observations on the
person being tracked. The paper summarizes the main ideas
on the tracking from robots, and on the use of the signal
strength from wireless sensors for tracking. Finally, the re-
sults of the tracking from all sensors are used to infer the
position of the person in a global coordinate system through
a data fusion process. In order to cope with scalability, a de-
centralized data fusion system is employed to combine the
information provided by all the systems to have a consis-
tent and improved estimation of the person’s position at any
given moment. The decentralized data fusion process can
obtain the same results than a ideal centralized systems that
receives all the data at any given moment, but being more
robust under delays and communication failures and scal-
able with the size of the system.

2. Related Work
There has been many attempts to track people and other

moving objects inter camera. The early tracking algo-
rithms [4, 14, 7, 16] required both camera calibration and
overlapping fields of view. Others [15, 12] can work with
non-overlapping cameras but still require calibration. Prob-
abilistic approaches have been presented [8, 22], however
these are often limited in application due to restrictive as-
sumptions. KaewTraKulPong and Bowden [13] or Ellis et
al [9] do not require a priori correspondences to be explic-
itly stated, instead they use the observed motion over time
to establish reappearance periods. In both cases batch pro-
cessing was performed on the data which limits their appli-
cation.

In this paper, a system that employs not only the fixed
cameras, but information from robots and wireless sensors
is used as well. There are an increasing interest in track-
ing systems that use signal strength received by mobile de-
vices [18, 3]. However, most systems are devoted to the

localization of static devices. Moreover, there are systems
for tracking persons using robots and vision [20]. One con-
tribution of this paper is the combination of these sources
for cooperative tracking.

There are many systems that employ a central server that
receives all the information to obtain a fused estimation of
the quantity to be estimated, like the person position [5].
However, these kind of systems are dependant on this cen-
tral node, are not robust under communications failures, la-
tencies or drop outs, and do not scale well with the number
of nodes. In this case, it is preferable to have a decentralized
system in which each part only employs local information
and exchange with its peers its local estimation. The main
issues and problems with decentralized information fusion
can be traced back to the work [11], where the Information
Filter (IF, dual of the Kalman Filter) is used as the main
tool for data fusion for process plant monitoring. The IF
has very nice characteristics for decentralization, and for
instance it has been used for decentralized perception with
aerial robots in [21, 17]. However, in these cases, the filters
are suboptimal, as they cannot recover the same estimation
than a central node in the case of tracking scenarios.

3. URUS System overview

Figure 2. A block description of the URUS system

The NRS developed in the URUS Project consists of
a team of mobile robots, equipped with cameras, laser
rangefinders and other sensors for localization, navigation
and perception; a fixed camera network of more than 20
cameras for environment perception; and a wireless sensor
network, that uses the signal strength of the received mes-
sages from a mobile device to determine the position of a
person carrying it. Figure 2 shows an scheme of the system
and Figure 3 two frames from one of the cameras.

From the perception point of view, in the NRS the infor-
mation obtained by the fixed camera network or the wire-
less sensor network can be shared with the information each
robot obtains about the environment to improve the percep-
tion, so that each robot obtains a better picture of the world



(a) (b)
Figure 3. (a)Frame 50 on camera 5, (b) Frame 450 on camera 5

than if it would be alone, for instance for the task of person
guiding. In this case, the tracks on the image plane obtained
by the camera network will be combined with the informa-
tion of the other systems (robots and WSN) to improve the
tracking of the person being guided. This way, it is possible
to cope with occlusions, obtain better tracking capabilities
as information of different modalities is employed, and non
covered zones, as the robots can move to cover these zones.

4. Fixed Camera Tracking
The fixed cameras cover a wide area of the experiment

site and are the basis for the fusion of the other sensors,
they are able to track objects of interest both on and across
different cameras without explicit calibration.

The approach is based on the method proposed by
Gilbert and Bowden previously [10]. Intra camera objects
of interest are identified with a Gaussian mixture model [13]
and are linked temporally with a Kalman filter to provide
movement trajectories intra camera. When the object of in-
terest enters a new camera, the transfer of the object to the
new camera is a challenge as cameras have no overlapping
fields of view, making many traditional image plane calibra-
tion techniques impossible. In addition the large number of
cameras mean traditional time consuming calibration is in-
feasible. Therefore the approach needs to learn the relation-
ships between the cameras automatically. This is achieved
by the way of two cues, modelling the colour, and move-
ment of objects inter camera. These two weak cues, are
then combined to allow the technique to determine if ob-
jects have been previously tracked on another camera or are
new object instances. The approach learns these camera re-
lationships, though unlike previous work does not require
a priori calibration or explicit training periods. Incremen-
tally learning the cues over time allows for the accuracy to
increase without any supervised input.

4.1. Forming Temporal links between Cameras

To learn the temporal links between cameras, we make use
of the key assumption that, given time, objects (such as peo-
ple) will follow similar routes inter camera and that the rep-
etition of the routes will form marked and consistent trends
in the overall data.

Initially the system is subdivided so that each camera is
a single region. It identifies temporal reappearance links
at the camera-to-camera level. After sufficient evidence has
been accumulated, the noise floor level is measured for each
link. If the maximum peak of the distribution is found to
exceed the noise floor level, this indicates a possible cor-
relation between the two blocks as shown in Figure 4). If

Figure 4. An example of a probability distribution showing a dis-
tinct link between two regions

a link is found between two regions, they are both subdi-
vided to each create four new equal sized regions providing
a higher level of detail. While regions with little or no data
are removed to maintain scalability.

4.2. Modelling Colour Variations

The colour quantisation descriptor used to form tempo-
ral reappearance links in the previous section, assumes a
similar colour response between cameras. However this is
seldom the case. Therefore, a colour calibration of these
cameras is proposed that can be learnt incrementally simul-
taneously with the temporal relationships discussed in the
section above. People tracked inter camera are automati-
cally used as the calibration objects, and a transformation
matrix is formed incrementally to model the colour changes
between specific cameras.

The transformation matrices for the cameras are ini-
tialised as identity matrices assuming a uniform prior of
colour variation between camera. When a person is tracked
inter camera and is identified as the same object, the differ-
ence between the two colour descriptors, is modelled by a
transform matrix . The matrix is calculated by computing
the transformation that maps the person’s descriptor from
the previous camera to the person’s current descriptor. This
transformation is computed via SVD. The matrix is then av-
eraged with the appropriate camera transformation matrix,
and repeated with other tracked people to gradually build a
colour transformation between cameras.



4.3. Calculating Posterior Appearance Distribu-
tions

With the weak cues learnt, when an object which leaves
a in region y we can model its reappearance probability over
time as;

P (Ot|Oy) =
∑
∀x

wxP (Ox,t|Oy) (1)

where the weight wx at time t is given as

wx =

∑T
i=0 f

x|y
φ∑

∀y
∑T
i=0 f

x|y
φ

(2)

This probability is then used to weight the observation
likelihood obtained through colour similarity to obtain a
posterior probability of a match. Tracking objects is then
achieved by maximising the posterior probability within a
set time window.

5. Robot Cameras Tracking

(a) (b) (c)
Figure 5. People tracking from robot camera for guiding

The robots used carry on board cameras that are used for
person guiding. The algorithms employed for this are based
on a combination of person detection and tracking. The
tracking algorithm is based on the mean shift technique [2].
In parallel, a face detection algorithm is applied to the im-
age [24], the results from the tracking and the detection ap-
plications are combined, so that the robot employs the face
detector when the tracker is lost to recover the track. Some
improvements can be applied to the features in order to cope
with illuminations changes [23]. As a result, the robots can
obtain estimations of the pose of the person face on the im-
age plane (see Fig. 5).

6. Wireless Sensor Network
In the NRS, a network of wireless Mica2 sensor nodes

are used. These Mica2 nodes are able to sense different
quantities, like pressure, temperature, humidity, etc. More-
over, they have wireless communication devices, and are
able to form networks and relay the information they gather
to a gateway. In addition the signal strength received by
the set of static nodes (Received Signal Strength Indicator,
RSSI) can be used to infer the position of a mobile object
or a person carrying one of the nodes.

Figure 6. The signal received by a set of static nodes can be used to
infer the position of the node. Particles (red) are used to represent
person hypotheses.

The algorithm to estimate the node position is based on
particle filtering. In the particle filter, the current belief
about the position of the mobile node is represented by a
set of particles that represent hypotheses about the actual
position of the person that carries the node (see Fig. 6).

In each iteration of the filter, kinematic models of the
motion of the person and map information are used to pre-
dict the future position of the particles. The addition of the
map information identify and discard impossible motions.

When new messages are received by the network of
static nodes, the weight of the different particles is updated
by considering the RSSI indicator. By considering radio
propagation models, it is possible to determine the likeli-
hood of receiving a certain signal power by considering the
distance from the particle to the receiving node [3]. Each
transmission restricts the position of the particles to a annu-
lar shaped area around the receiving node (see Fig. 6).

As a result, the filter can provide estimations on the 3D
position of the mobile node with a one metre accuracy. Fig-
ure 7 shows the evolution of the particles for a particular
guiding experiment at the Barcelona fixed camera experi-
ment site. Figure 8 shows the estimated position of the per-
son estimated by the WSN, compared to that of the guiding
robot (that is some metres ahead).

Figure 8. Estimated position of the person by the WSN (green) and
position of the guiding robot (blue) estimated by using GPS.



(a) (b) (c) (d)
Figure 7. A sequence of the particles employed in the filter for this experiment

7. Decentralized Data Fusion for Person
Tracking

Using the trackers described above, the camera network
and the robots will be able to obtain local estimations of
the position of the persons on the image plane. These esti-
mations, characterized as Gaussian distributions (mean and
covariance matrix) and the ones provided by the WSN, can
be fused in order to obtain an accurate estimation of the 3D
position of the person.

One potential solution is to have a central node that
implements a centralized Extended Kalman Filter (EKF).
However this filter have must access to all the estimations
zt = [ztT1 , . . . , ztTM ]T at any moment. However, a central-
ized system presents some drawbacks already commented.

The idea is to implement a decentralized estimation sys-
tem, in that each node only employs local information (data
only from local sensors, for instance, a camera subnet, or
the sensors on board the robot), and then shares this infor-
mation with other nodes (see Fig. 2). The Information Filter
(IF), which corresponds to the dual implementation of the
Kalman Filter (KF), is very suitable for a decentralized es-
timation. While the KF represents the distribution using its
first µ and second Σ order moments, the IF employs the so-
called canonical representation. The fundamental elements
are the information vector ξ = Σ−1µ and the information
matrix Ω = Σ−1. Prediction and updating equations for
the (standard) IF can also be derived from the standard KF
[6]. In the case of non-linear prediction or measurement,
first order linearisation leads to the Extended Information
Filter (EIF).

Let us consider the system:

xt = Atxt−1 + νt (3)
zt = gt(xt) + εt (4)

where xt is the person’s position and velocity at time t and
zt represents the estimations obtained by the camera net-
work, robots and WSN at time t, and gt is the measurement
function (for instance, the pin-hole model of the cameras).
Knowing the information matrix and vector for the person

Algorithm 1 (ξt, Ωt)←Information Filter(ξt−1, Ωt−1, zt)

1: Ω̄t = Add M( Ωt−1)+

( I
−AT

t

)
R−1
t

(
I −At

)
0T

0 0


2: ξ̄t = Add Row(ξt−1)

3: Ωt = Ω̄t +
∑
j

(
MT

j,tS
−1
j,tMj,t 0T

0 0

)
4: ξt = ξ̄t +

∑
j

(
MT

j,tS
−1
j,t (zj,t − gt(µ̄t) + Mtµ̄t)

0

)

trajectory up to time t − 1, Ωt−1 and ξt−1, the EIF for up-
date the estimated trajectory of the person in a centralized
system is given by Algorithm 1, where Mt = ∇gt(µ̄t),
Rt is the covariance of the additive noise for the prediction
model (3) and St is the covariance matrix of the estima-
tions. Add M adds a block row and a block column of ze-
ros to the previous information matrix and Add Row adds a
block row of zeros to the previous information vector. The
filter is initialized with an initial estimation of the person
position.

7.1. Decentralized Information Filter

The main interest of the IF is that it can be easily de-
centralized. In a decentralized approach, each node i of the
network employs only its local data zti to obtain a local es-
timation of the person trajectory (given by ξi,t and Ωi,t)
and then shares its belief with its neighbours. The received
information from other nodes is locally fused in order to
improve the local perception of the world. The decentral-
ized fusion rule should, produce the same result locally that
obtained by a central node employing a centralized EIF.

Therefore, each node will run Algorithm 1 using only
its local information. When a node i is within communica-
tion range with other node j, they can share their beliefs,
represented by their information vectors ξi,t and ξj,t, and
matrices Ωi,t and Ωj,t. It can be seen [6] that the fusion
rule is:



Ωi,t ← Ωi,t + Ωj,t −Ωij,t (5)

ξi,t ← ξi,t + ξj,t − ξij,t (6)

The equations mean that each node must sum up the
information received from other nodes. This can be de-
rived from the updating steps 3 and 4 of Algorithm 1, as
each node computes part of the updating that a central node
would compute (which is a sum for all the information re-
ceived). The additional term Ωij,t and ξij,t represents the
common information between the nodes. This common
information is due to previous communications between
nodes, and should be removed to avoid double counting of
information (known as rumour propagation). This common
information can be maintained by a a separated EIF called
channel filter [1] to maintain Ωij,t and ξij,t. This com-
mon information can be locally estimated assuming a tree-
shaped network topology (no cycles or duplicated paths of
information).

It is important to remark that, using this fusion equation
and considering trajectories (delayed states), the local es-
timator can obtain an estimation that is equal to that ob-
tained by a centralized system [6]. Another advantage of
using delayed states is that the belief states can be received
asynchronously. Each node in the NRS can accumulate ev-
idence, and send it whenever it is possible. However, as
the state grows over time, the size of the message needed to
communicate its belief also does. For the normal operation
of the system, only the state trajectory over a time inter-
val is needed, so these belief trajectories can be bounded.
Note that the trajectories should be longer than the maxi-
mum expected delay in the network in order not to miss any
measurements information.

8. Experimental Results
A series of experiments were performed on the fixed

camera system described in section 3.
To illustrate the incrementally learnt cross camera cali-

bration, the inter camera relationships were learnt for a total
of 5 days. The number of tracked objects of interest on each
camera was 200 per day. This is relatively low and made the
region subdivision unsuitable after the second level of sub-
division. Figure 9 shows resultant temporal likelihoods for
a number of inter camera links at a single subdivision level.

The black vertical line indicates a reappearance of zero
seconds, it can be seen that there is strong links between
cameras 3 and 4 and between 3 and 5. While there is no
visible link between 3 and 6 and between 3 and 14. This is
due to the increased distance and people will rarely reappear
on cameras 6 and 14 after they were tracked on camera 3.

Table 1 shows the accuracy results of tracking people in-
ter camera. The inter camera links were formed over up to

Figure 9. Inter camera temporal likelihoods

Table 1.
Data Amount (days)

Method 0 1 2 5
1 Subdiv 34% 38% 56% 78%
2 Subdiv 34% 10% 60% 83%

5 days and the test sequence consists of a 1 hour sequence
on the cameras, with a total of 50 people tracked inter cam-
era. A 1 subdivision is a region per camera, 2 subdivision
is the where any linked regions are subdivided as described
in section 4.1. All people that moved inter camera were
groundtruthed and a true positive occurred when a person
was assigned the same ID as that they were assigned on a
previous camera.

The column for 0 days indicates performance without
learning the camera time and colour relationships. It is poor
generally due to large colour variations inter camera due to
shadow and lighting changes. The 2 level subdivision ini-
tially performs poorly as it requires greater data to build
relationships. However by 5 days significant improvement
is shown for both one and two levels of region subdivision.
Little performance is gained from the additional subdivision
on this system due to the lower levels of traffic and low level
of routes between the cameras due to their closeness. How-
ever for a more distributed system the additional detail of
the region relationships would aid the tracking performance
greater. Figure 10 gives example frames of tracking inter
camera for two separate people.



(a) (b) (c) (d)
Figure 10. Cross camera Tracking(a) Person 11000001 on camera 11, (b) Person 11000001 correctly identified on camera 12 (c) Person
13000027 on camera 13 (d) Person 13000027 correctly identified on camera 12.

8.1. Data fusion

In order to illustrate the benefits from the data fusion pro-
cess, a simple setup is presented here. This setup consists of
two fixed cameras and a WSN. The objective was to track
one person cooperatively. In the experiment, the person is
not always in the field of view of the cameras, appearing
and disappearing from the image plane several times.

Figure 11. Estimated trajectory by the three elements of the NRS,
cameras and WSN, compared to a centralized estimation. The ele-
ments converge to a very similar estimation, even if for some time
the cameras are not seeing the person.

Three instances of the decentralized algorithm are
launched, processing each camera’s data and the WSN esti-
mations. They communicate to exchange estimated trajec-
tories, as described in section 7.1. The received data is fused
into the local estimations, leading to a decentralized track-
ing of the person. Figure 11 shows the estimated trajectory
of the person for the different elements, and the trajectory
estimated by a centralized node with access to all informa-
tion for comparison.

Figure 12 shows the X and Y estimations compared with
the centralized estimation. One important benefit from the
system is that, if the communications channels are active,
the different elements have nearly the same information.
That way, one robot or camera, even not seeing the person,
can know where it is. Also, the uncertainty is decreased due
to the redundancies in the system.

Figure 12. Estimated X and Y by the camera (red) compared to the
centralized estimation (black), with the 3-sigma bound. The esti-
mations are nearly the same, except during times when no com-
munications occur.

9. Conclusion

The combination of robots and ambient intelligence (like
embedded sensors and camera networks) seems a clear
trend in the near future. This paper has presented a data fu-
sion method that aims to use multiple sensors to accurately
track people within a surveillance context. The algorithms
are real time and operate on realistic outdoor environments.
The fixed camera tracking provides high accuracy by incre-
mentally learning the colour and temporal relationships be-
tween regions on non overlapping cameras. Moreover, the
signal strength of mobile devices is employed to estimate
the position of the person by using particle filtering. The
combination of all this information with that obtained by



robots allows accurate person tracking in more challenging
situations. In the short future, the authors will test the sys-
tem in more complex scenarios, involving several robots, 20
fixed cameras and a net of 30 wireless sensors in the mis-
sions of person guiding and surveillance.
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