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 Abstract – The paper presents a framework for cooperative 
fire detection by means of a fleet of heterogeneous UAVs. 
Computer vision techniques are used to detect and localize fires 
from infrared and visual images and other data provided by the 
cameras and other sensors on-board the UAVs. The paper deals 
with the techniques used to decrease the uncertainty in fire 
detection and increase the accuracy in fire localisation by 
means of the cooperation of the information provided by 
several UAVs. The presented methods have been developed in 
the COMETS multi-UAV project.  
 
 Index Terms – Cooperative perception, data fusion, infrared 
images, aerial robotic vehicles. 
 

I. INTRODUCTION 

Surveillance and monitoring activities in disaster 
scenarios requires high mobility and perception capabilities 
in natural environments. Aerial robotic vehicles can be used 
to provide such capabilities overcoming the limitations of 
ground robotic vehicles to access to the appropriate 
locations for surveillance and monitoring. The use of a fleet 
of robotic aerial vehicles improves the coverage and the 
reliability of the mission, when comparing with the 
application of a single UAV. One of the main objectives of 
the COMETS project [1]is to design and implement a 
system for cooperative activities using heterogeneous UAVs.  

The UAVs in COMETS are complementary platforms. 
Currently, both helicopters and airships have been integrated 
(see Fig. 1). Helicopters are suited to agile target tracking 
and inspection and monitoring tasks. On the other hand, 
airships, having much less manoeuvrability, can be used to 
provide global views or to act as communications relay. 
Furthermore, the COMETS UAVs are also heterogeneous in 
terms of onboard processing and sensorial capabilities. 
Then, some UAVs have infrared and visual video cameras 
while another has a still high resolution camera and a 
specialized fire sensor. 

In order to test and validate the developments, the 
project includes experiments and demonstrations in forest 
fire applications. UAVs cooperation is very valuable in such 
a very challenging context. Missions involve fire alarm 
detection, confirmation and localization, and fire 
monitoring. 

This paper presents the approach followed for 
cooperative fire detection by a fleet of heterogeneous UAVs. 
The objectives are to determine the position of potential fire 
alarms, and also to reduce the number of false alarms by  

 
Fig. 1 An autonomous airship and a helicopter monitoring a fire in the 

COMETS experiments carried out in Lousa (Portugal). 
means of cooperation. The paper deals mainly with fire 
detection algorithms using vision, alarm tracking and data 
fusion. Results from experiments with small controlled fires 
are presented (see Fig. 1).  

The paper is organized as follows. Section II presents 
the techniques for fire detection in visual and infrared 
images. Section III describes how to obtain an estimation of 
the geographical coordinates of those alarms. Section IV 
presents the probabilistic estimation framework used for data 
fusion. Section V presents the experiments and the results 
obtained. The conclusions and future trends in section VI 
complete the paper.  

II. FIRE SEGMENTATION 

Within the COMETS project, both infrared and visual 
cameras are considered as onboard sensors for the UAVs. In 
order to apply data fusion procedures, common features 
(binary images containing potential fire alarms) are extracted 
from both types of images. 

 
A. Fire segmentation in infrared images  

The aim of the processing of infrared images is to 
produce binary images containing fire alarms while 
discarding false alarms. Fire segmentation basically consists 
in thresholding since fires appear in infrared images as high 
intensity level regions. It should be noticed that although the 
temperature of fire (often over 900ºC) is much higher than 
the temperature of the image background, temperature-based 
criteria can not be used for thresholding since the measures 
of temperature are influenced by the emmissivity indices of 
the materials, which are very difficult to estimate in such an 
unstructured environment. The threshold selection method 
should take into account the particular conditions of the 
application such as the considerations to discard false 
alarms. Besides, images from miniaturized infrared cameras  
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Fig. 2 Scheme of the proposed training-based threshold selection method. 

are affected by blurs originated by the high frequency 
vibrations of the UAVs and their onboard pointing devices 
and the long exposure periods required by the still low 
sensitivity of the infrared detectors available at the current 
state of the technology. The used threshold selection method 
takes into account knowledge of the computer-vision to 
adapt to the specific conditions of the application. 

The proposed thresholding method assumes that the 
intensity values of the pixels of the objects are similar within 
a certain region in the histogram, which will be called 
histogram mode. The method (depicted in Fig. 2) performs a 
coarse-to-fine selection of the mode or modes corresponding 
to the object of interest. It identifies the modes of interest by 
using multiresolution descriptions of the histogram at several 
levels of resolution. 
 Mode Selection at level l decomposes the histogram 
description at level l in histogram modes and selects the 
modes that are likely to correspond to the object of interest 
according to the knowledge of the application. The modes 
selected at level l are analyzed at the immediate finer level 
of resolution (level l-1). This analysis is repeated until the 
finest level (level 0). Finally, threshold computation is 
carried out by taking simple considerations on the selected 
histogram regions at level l=0. The knowledge of the 
application, which is used for the supervision of Mode 
Selection, is extracted from a set of training images and their 
corresponding desired threshold values, and incorporated in 
a fuzzy system by applying the ANFIS algorithm [2]. Further 
information of the training-based method for threshold 
selection can be found in [3]. 

The adaptation to this application was carried out by 
selecting training infrared images with different illumination 
conditions, different image backgrounds and different 
objects including fires and false alarms such as heat emitting 
sources (i.e. car engines). The algorithm was trained to 
detect the fires and discard the false alarms. Image blurs are 
assumed in the training due the selection of blurred training 
images. Once trained, object segmentation is carried out by a 
threshold-based region growing method. Fig. 3 shows an 
infrared image of a fire and the corresponding thresholded 
image. 

Some heuristic simple rules are applied to discard false 
alarms that can not be eliminated by threshold-based 
segmentation. For instance, the average intensity level 
originated by heated objects (such as engines and chimneys 
which are not burning) is lower that the one produced by 
fires. Thus, the local contrast in case of heated objects is 
lower than in case of fire. 

B. Fire segmentation in visual images 
 The processing of the images provided by the visual 
camera will also produce binary images containing potential  

  
Fig. 3 Infrared fire segmentation algorithm results. Left, original image, 

right segmented objects. 

fire alarms. The algorithm is based on the fact that visual 
color images of fire have high absolute values in the red 
component of the RGB coordinates. This property permits 
threshold-based criteria on the red component of the color 
images to segment fire images in natural scenarios. 
 However, not only fire gives large values in the red 
component. Another characteristic of fire is the ratio 
between the red component and the blue and green 
components. 
 Let r(u,v), g(u,v) and b(u,v) be respectively the red, 
green and blue components in the pixel (u,v) of an image. 
Thus, the algorithm consists of two stages. First, the pixels 
m=[u,v]T belonging to the region of the RGB space defined 
by  
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are selected as candidates. kg and kb are parameters that 
define the RGB region. For the pixels selected, a threshold 
selection based on an analysis of the histogram of the red 
field is used to compute the thresholds for segmenting fire. 
The experiments revealed that the iterative thresholding 
algorithm described in [4] applied over the red field 
provides good flame segmentation for most visual images. 
Fig. 4 shows some results of the algorithm. 

C. Characterization of the algorithms. 
 The elimination of false alarms is a main issue in fire 
detection. The vehicles of the fleet will cooperate to reduce 
the number of false alarms by means of data fusion. Thus, 
the probabilistic characterization of the above detection 
techniques is required in order to determine the fire 
detection capabilities of each vehicle. 
 Both algorithms have been analyzed with a large set of 
images. The algorithms are characterized by the probabilities 
PD of detection and PF of false positive outputs. These 
probabilities have been computed as follows:  

o PD is the ratio between the alarms correctly 
detected and the total number of fire alarms 
presented in the set of images. 

o PF  is the ratio between the number of images 
where the algorithm detected fire incorrectly and 
the total number of images of the sequence.  

  
Fig. 4 Visual fire segmentation algorithm results. Left, original image, right 

segmented objects 

threshold 

Mode Selection 
at level N 

Threshold 
computation Preprocessing 

image 

application knowledge 

Mode Selection
at level N-1 

Mode Selection 
at level 0 

1897



TABLE I 
ALGORITHMS CHARACTERISTICS 

 IR Visual 
PD 100% 90% 
PF 10% 3% 

 These ratios will be used to obtain a prior belief on that 
the object detected is a fire; and to update this belief when 
new measurements from the same object are obtained. 
 Table 1 shows the values for the algorithms used for fire 
segmentation in visual and infrared images (for a sequence 
of images different than that used during the training phase 
for the infrared algorithm). Actually, both algorithms can be 
tuned, thus leading to operating curves that relate PD and PF. 
Depending on the requirements of the mission, it could be 
preferred a higher detection probability or a lower false 
alarm ratio (for example, for alarm confirmation purposes). 

D. Measurements obtained from the image processing 
stage. 
 As a result of the previous algorithms, the infrared and 
visual data are reduced to a common format: binary images 
containing potential fire alarms. The different objects 
presented on the image are labeled. Therefore, from each 
image, a set of possible alarms on the image plane is 
extracted, each alarm characterized by [ma,Cma,PD,PF], 
where ma is the position in pixel coordinates of the object 
and Cma is an estimation of the covariance matrix of the 
error in this position due to quantization errors. PD and PF 
are the values associated to the algorithm employed for the 
detection of the alarm. 

III. GEOLOCATION 

 The sensors onboard the different UAVs (see Fig. 5) are 
used to compute, in a global and common coordinate frame, 
the position and orientation of the UAV itself and also that 
of the cameras that carries onboard (that will be denoted by 
xcam). Also, an estimation of the covariance matrix Ccam of 
the errors of these quantities is available. Thus, all the 
images gathered are labeled with these data. 
 If the cameras are calibrated, knowing a digital 
elevation map, denoted by D, it is possible to obtain the 
position x of an alarm in the common global coordinate 
frame, from its position on the image plane, ma. The position 
x is a function of the position and orientation of the camera 
and also depends on D: 
 

),,( Dcama xmfx =  (2) 
 
 The function f encompasses the pin-hole model of the 
camera. Clearly, the function f is non-linear, and in the 
general case the dependence on the map D cannot be 
expressed analytically. 
 The errors on the position and orientation of the camera 
and those of the position of the alarm on the image plane 
will translate into uncertainties in the final position x (see 
scheme of Fig. 6). It is very interesting to have and maintain 
an estimation of the uncertainty in the position of the alarms. 
Thus, the uncertainties are propagated to obtain an 
estimation of the covariance matrix of the errors in x by 
using the so-called Unscented Transform [5][6]. 

 

 
Fig. 5 Each UAV carries a electronic box and sensors to compute the 
position and orientation of the onboard cameras. 
 The unscented transform is chosen because allows 
considering a more general class of functions than the usual 
first order expansion (in this case the dependency of f in (2) 
respect to D cannot be expressed analytically). Also the 
estimated covariance matrix is more accurate than that 
obtained by means of a Taylor expansion [5]. 
 Then, each UAV will compute the position of the 
detected alarms on the image plane by means of this 
geolocation procedure. As a result, each UAV will provide 
measures of the form [xm,Cm,PD,PF], where xm is the 
measured position of the alarm in the common coordinate 
frame and Cm the estimated covariance of the errors on this 
position. 

IV. COOPERATIVE ALARM DETECTION AND LOCALIZATION 

 The objective of the system is, from the measurements 
provided by the vehicles of the fleet, to cooperatively 
estimate the geographical position of potential fire alarms 
while trying to reduce the number of false alarms. Thus, the 
state of an alarm i is defined by a continuous random 
variable xai (the position of the alarm) and a Bernoulli binary 
random variable { }1,0∈ih  (hi=1 means that the alarm is a 
fire). 
 Then, at time k the current information about the set of 
potential fire alarms is defined by 

[ ]{ })(,,1,)(),(),()( kLikpkkkA iaiai l== Cx , where 

)(kaix is the estimated position for alarm i at time k, Cai(k) is 
the estimated covariance matrix of the errors in xai and pi(k) 
is the estimated probability for this alarm to be a fire (hi=1). 
 

 
Fig. 6 Scheme of the uncertainties propagation during the geolocation 

process. The errors on the estimated camera position and orientation and 
those on the estimated position of the alarm on the image plane propagate 

through the projection model into errors in the final estimated geographical 
position of the alarms. 
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As it will be seen, this probability pi(k) will be calculated 
and updated from the probabilities PD and PF associated to 
the fire detection algorithms. L(k) is the number of alarms at 
time k. The objective is to iteratively re-estimate the state of 
the alarms as new measurements arrive from the different 
UAVs. 
 Fig. 7 illustrates the procedure that consists of the 
following stages: 
 
A. Prediction stage  
 At time k+1, the state for the alarms can be predicted by 
using a motion model. Through this paper, the position of 
the alarms are assumed to be static. This is realistic for the 
considered scenario, and also allows the measurements to be 
fused with arbitrary latency [7]. More complicated models 
can be considered for other kind of alarms, although the 
synchronization issues have to be taken into account. 

B. Data association  
 At time k+1 the different UAVs provide a set of 
measurements, 

[ ]{
})1(,,1

,,),1(),1()1(
+=

++=+

kNj
PPkkkM FjDjmjmj

h

Cx , (3) 

where N(k+1) is the total number of measurements provided 
by the UAVs at time k+1.These measurements should be 
associated to the current set of alarms (see Fig. 7, center). A 
gated nearest neighbor technique is used [8]. The 
measurement j is associated with alarm i if  

 
dd mjaiij

T
mjaiij ≤−−= − )()( 1 xxSxx , (4) 

 
where Sij=Cai+Cmj and d is chosen from the 2χ  distribution 
[8][9]. 
 Additional constraints are applied. For the 
measurements given by one UAV, if there are some that 
accomplish (4), then the nearest (that of minimum dij) is 
chosen as the correct association. Of course, different 
measurements from different UAVs can be associated to the 
same alarm. 
 
 
 
 

C. Update stage  
 Assume that the measurements {j=1,…,Mi} have been 
associated to alarm i. Then, the estimated position )(kaix  and 
covariance matrix Cai(k) are updated following equations  
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that corresponds to the information from the Kalman filter 
[7]. This leads to a reduction on the uncertainties on the 
position of the alarm, as is illustrated in Fig. 7, right. 
 The probability pi(k) of being a fire alarm is updated 
following the Bayes rule: 
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D. Insertion of new alarms. 
 If a measure j has not been associated with any of the 
alarms, then a new track is initialized (see Fig. 7, right).  
 The prior belief of this new track pnew(0) is computed 
as: 

FjDj

Dj
new PP

P
p

+
=)0( , (8) 

 
that supposes an initial probability 0.5 of having fire in this 
position. 
 
E. Not detected alarms. 
 Finally, it is checked if the alarms are in the field of 
view of the UAVs that have not provide any measurement 
for them. If so, for each UAV with fire detection capabilities 
defined by PD and PF  that does not provide measures the 
probability is updated by using (9): 
 

[ ])(1)1()()1(
)()1()1(

kpPkpP
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Fig. 7 Alarms tracking scheme. Left: previous detected alarms and their uncertainties (presented as ellipses). Center: The UAVs gather new measurements. 

These measurements are associated to the current tracks. Right: the update stage reduces the uncertainties of the tracks with new measurements. New 
tracks are added. 
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V.  EXPERIMENTAL RESULTS 

A.  Description of the experiments 
 One of the key issues of the COMETS project is the 
demonstration. The project will be demonstrated in fire 
detection and monitoring activities, and also for terrain 
mapping missions. 
 Several experiments with controlled small fires have 
been carried out at Lousa, Portugal during the years 2003 
and 2004 for integration and testing purposes. In this 
section, a brief explanation of the experiments is presented. 
 In the experiments three vehicles are considered (one 
autonomous helicopter, one autonomous blimp and a 
teleoperated helicopter).  As it was mentioned in section III, 
the UAVs are equipped with sensors and hardware to obtain 
the position and orientation of their onboard cameras. A 
common coordinate frame is set based on the coordinates 
given by the GPS (all UAVs have one GPS on board). 
 For geolocation purposes, a digital elevation map of the 
zone is available.   
 The Lousa airfield is also a training site for firemen in 
the region of Coimbra, in Portugal. The fire brigades are in 
charge of organizing small controlled fires that are being 
used for fire detection and monitoring demonstration 
purposes. 
 The controlled fires used in the fire detection tests are 
originated by the burning of small shrubs (see Fig. 8). 
 

B. Experimental results. 
 This section presents the results obtained during a fire 
detection test. Two UAVs are involved: one carries a visual 
video camera and the other an infrared camera. 
 The algorithms of section II are used for fire 
segmentation. The probabilities PD and PF of Table I apply. 
 In the system currently implemented, the measurements 
obtained by the different UAVs are received in a central 
processing node where the data association and tracking is 
carried out. 
 
 Fig. 9 shows a typical snapshot of the alarm tracking 
procedure. Two alarms (labeled by 0 and 3) of the current 
list of tracked fire alarms can be seen. In this case, two new 
measurements from different UAVs are received. These  
 

 
Fig. 8 Image from on UAV of one of the fire detection experiments. 
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Fig. 9 A snapshot of the tracking process during the experiments. Two 

alarms 0 and 3 are being tracked. Two new measurements arrive ( labeled 
as 11) and are associated to alarm 3 (uncertainties magnified). 

measurements are associated to alarm 3, and lead to a 
reduction in the uncertainties on the position of the alarm, 
and also on the belief of being an actual fire alarm. On the 
other hand, alarm 0 is a false alarm that is in the field of 
view one of the UAVs but it has not been detected.  
 Fig. 10 shows the evolution on the standard deviation 
for the position of the alarms 0 (dashed) and 3 (dotted). The 
initial values depends on the accuracy of the position 
estimation capabilities of the particular UAV, and also 
strongly on the orientation of the camera due to the non-
linearity of the projection. The initial estimation of the 
covariance of the errors on the sensors is quite conservative. 
As new measurements arrive the uncertainty is reduced. 
 Fig. 11 shows also the evolution on the probability p of 
being fire for each alarm. This probability evolves following 
(7), (8) and (9). It can be observed that  alarm 0 (dashed 
plot) is detected at time 20, and also at time 21 (in this case 
by the same UAV), increasing the probability p. However, 
this alarm is later not detected being in the field of view of 
the sensor of the other UAV. As a result, its probability of 
being a fire alarm is decreased (in fact, this was a false 
alarm). On the other hand, the dotted plot shows the 
evolution of the probability for alarm 3, an actual fire alarm. 
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Fig. 10 Evolution of the standard deviation of the error in X and Y 

coordinates for the detected alarms. 
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Fig. 11 Evolution of the belief on being a fire alarm. 
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Fig. 12 Trajectories and final position of the detected alarms. Axes in 

meters. 
 
 
 As ground truth, the position of the fire alarms were 
recorded by using a GPS. Fig. 12 shows the trajectories of 
the UAVs and the position of the detected alarms. The 
accuracy on the estimated absolute position is within 5 
meters in coordinates X and Y.   

VI. CONCLUSIONS AND FUTURE TRENDS 

A. Conclusions. 
 The paper has presented the multi-UAV framework 
used in the COMETS project for cooperative fire detection. 
It considers cameras of different modalities. Algorithms for 
fire detection in infrared and visual cameras have been 
presented.  
 The measures resulting of applying these fire detection 
algorithms are integrated into a cooperative state estimation 
procedure, in which the position of the fire alarms and the 
nature of the alarm (false alarm or real fire) are iteratively 
re-estimated as new measurements come from the different 
vehicles.  

 Experimental results of actual flights with small 
controlled fires are presented. 
 
B. Future trends. 
 Data association is a key problem. Here a simple nearest 
neighbor strategy is considered. However, in complex 
scenario, this can lead to bad association. Thus, more 
complex techniques such as multiple hypothesis tracking 
[10] will be considered. 
 In the paper, although of different modalities, only 
vision related results have been presented.  However, one of 
the UAVs of the fleet will carry in the close future a 
different kind of sensor that will be integrated in the fire 
detection system. The sensor consists of a photo detector 
that responses to a UV radiation characteristic of fire, and 
thus, the sensor is able to detect the presence of fire within 
its field of view. The sensor gives a scalar measure, but it is 
not possible to discriminate if one measure corresponds to a 
close small fire or to a farther and bigger fire. 
 For this kind of sensor, a grid-based localization 
technique is more suitable for fire localization. The objective 
will be to fuse the data gathered by this sensor with the data 
obtained from the images to increase the reliability. 
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