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Abstract— In this work we present a bioinspired visual system
sensor to estimate angular rates in unmanned aerial vehicles
(UAV) using Neural Networks. We have conceived a hardware
setup to emulate Drosophila’s ocellar system, three simple eyes
related to stabilization. This device is composed of three low
resolution cameras with a similar spatial configuration as the
ocelli. There have been previous approaches based on this
ocellar system, most of them considering assumptions such as
known light source direction or a punctual light source. In
contrast, here we present a learning approach using Artificial
Neural Networks in order to recover the system’s angular
rates indoors and outdoors without previous knowledge. A
classical computer vision based method is also derived to be
used as a benchmark for the learning approach. The method
is validated with a large dataset of images (more than half a
million samples) including synthetic and real data. The source
code of the algorithms and the datasets used in this paper have
been released in an open repository.

I. INTRODUCTION

The potential of Micro-Aerial Vehicles (MAVs, aerial
vehicles between 0.1 and 0.5 meters and 0.1-0.5 kg. in mass)
has been shown by different research results in the last years
[1], [2], and even new commercial systems, like for instance
the Skydio system1.

Given the limited payload of such vehicles, vision systems
are a preferred solution for micro-UAV perception, as cam-
eras are low-power passive sensors and can be made small.
Vision-based procedures have been proposed for odometry
[3], [4], [5], localization [6], [7], [8], mapping [9] and navi-
gation [10]. All these vision systems are typically founded on
feature-based methods and are computationally demanding,
requiring large onboard processing power, though.

On the other hand, it is very impressive the maneuverabil-
ity that flying insects like flies can achieve with their very
small payloads. This ability of flying insects is the reason
why several authors have studied bio-inspired solutions for
the development of new sensors and/or actuators for micro
aerial vehicles, like [11], [12], [13]. However, most of these
works have been devoted to the development of artificial
compound-like eyes. The ocelli system found on the forehead
of most insects is also an interesting biological inspiration
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Fig. 1. The Drosophila ocelli system. A. Scanning electron microscope
(SEM) micrograph of an adult Drosophila head. The three ocelli are located
on the dorsal head (triangle). The lateral compound eyes are pseudo-colored
(red). B: Higher magnification SEM of the dorsal head showing the ocellar
lenses. Each ocellus (one anterior and two or lateral) surveys a different
region of the space. C. Crossection through a lateral ocellus.

for vision systems. The ocelli are small, structurally simple
camera type eyes (see Fig. 1). Their large lens makes them
extremely sensitive light sensors while, by focusing beyond
the retina, blur the image. They are capable of very quick
visual processing to trigger swift stabilization reflexes [14],
[15]. And several approaches inspired on the ocellar system
have been also proposed in the literature.

In [16], the authors present a device based on the ocel-
lar system using 8 photodiode pairs. The outputs of the
photodiodes are used to obtain a reference signal for the
stabilization. In [17], the ocellar sensors are modeled as
sensors providing an estimation of time derivatives of scalar
luminance values. Then, they derive a linear relation between
the ocelli inputs and robot states. They conclude that there is
a relation between the ocellar input and roll and pitch angular
rates, as well as heave rate. This is then used to develop an
analog angular rate sensor based on photodiodes. A similar
sensing approach is followed in [18], where an ocelli-inspired
flight stabilization system has been implemented on a bee-
sized flying robot. The addition of a torque controller based
on a proportional feedback to the estimated angular velocity
has sufficed to stabilize the upright orientation of the system.

The previous ocelli-inspired approaches disregard the spa-
tial information of the ocelli simple eyes, and in some cases
some assumptions are needed with respect to the light source
direction [18]. On the contrary, in [19], linear receptive fields
are optimized from data to obtain the relation between the
sensorial input of simulated insect-like eyes and attitude
angles. We have shown in our previous work [20] that
Deep Neural Networks (DNNs), which have been used for
applications of robot estimation control [21], [22], can be
effective on estimating angular rates from low-resolution
visual inputs in a camera system emulating the ocelli.

The paper contributes by presenting a method for the



Fig. 2. Representation of the ocelli as a multi-camera system where L, R,
and F stand for left, right and front photoreceptors respectively.

estimation of angular rates from visual inputs with ap-
plication to UAVs. A preliminary study of the feasibility
of such approach was presented in [20], where different
architectures and input structures were tested in a limited
scenario. The paper departs from that work by considering
a completely network structure (CNNBiGRU), that includes
temporal information and that clearly improves the accuracy
of its predecessor. This method allows direct estimation
of the angle rates using very low resolution images (10x8
pixels). Furthermore, in order to evaluate the generalization
of the method, a much larger dataset, including simulated and
real-images under different scenarios and lighting conditions
is considered. Additionally, a second direct method based
on perspective geometry and non-linear optimization is also
presented to benchmark the proposed DNN approach in
similar circumstances. The paper also includes experiments
to validate the use of the proposed method to estimate the
random BIAS present in gyroscopes without the use of
accelerometers and magnetometers. Finally, the source code
and the datasets used for validation have been released to
the public.

The paper is organized as follows. Next section describes a
hardware setup based on cameras inspired by the ocelli mor-
phology in Drosophila. Next, in Section III-B we describe the
CNNBiGRU proposed architecture. A new algorithm based
on projective geometry is presented in Section IV, which will
be used for benchmarking the proposed learning approach.
After that, in Section V data recorded from simulation and
real environments is explained. Section VI describe the
learning results using both indoor and outdoor scenarios.
There is also a comparative with the geometry-based model
proposed on [18] and with the geometry-based approach
explained in Section IV. The paper ends with a discussion
and lines for future work.

II. A COMPUTER VISION PERSPECTIVE ON
OCELLI

From a computer vision perspective, the ocelli structure
can be seen as a multi-camera system in which the visual
information of the photoreceptors (image pixels) is used

to estimate the rotation the rigid-body undergoes. Figure 2
shows a simplified scheme of the ocellar system. The mission
of this system is to compute the transformation T21 based
on the visual information gathered by the photoreceptors,
emulated using three cameras in our case. We can see
how such transformation can be easily computed up to a
scale factor from the optical flow computed between the
images captured by each camera. While this is a conventional
procedure in computer vision, the limited resolution of the
sensors (in this research work will be assumed as 10 × 8
pixels) reduces the solutions to be applied.

This paper focuses on the estimation of the angular rates
based on the information provided by the visual sensors
and the use of Artificial Neural Networks to process such
information. Notice that the ocelli system might be rotated
and translated, but we focus in the rotation estimation and
translation rejection. Future work will analyze the possibility
of also estimating ocelli translation. Additionally, a second
method based on non-linear optimization will be also derived
and used to benchmark the output of the proposed network
together with one state of the art method.

In order to get real data to test the proposed approaches, a
hardware setup to emulate Drosophila’s ocellar system as
a computer vision sensor has been conceived. The setup
consists of three small fisheye cameras with 320 × 240
resolution spatially distributed according to the geometry
of Drosophila’s ocelli. To emulate the biological system,
the optics were chosen to have a 20% overlap between
the images and a wide field of view (approximately 110◦),
in contrast with the narrower FoV (60◦) used in previous
work [20]. To reproduce Drosophila’s vision through ocelli,
images recorded are downsampled and blurred to 10 × 8
pixel images. It is worth to mention that cameras’ frame rate
is fixed at 30Hz. Although this is not relevant for smooth
rotations, this rate limits the maximum rotation rate the
cameras can notice.

To complete the basic system, an Inertial Measurement
Unit (IMU) has been attached to the device’s base in order
to have a ground-truth of the angle rate on three axis. This
sensor integrates a three-axis gyroscope, accelerometer and
magnetometer. The three images and the three ground-truth
angle rates constitute the pair inputs-labels used to train and
test the approaches proposed in this paper.

III. LEARNING TO ESTIMATE ANGULAR RATES USING
ARTIFICIAL NEURAL NETWORK

We present a learning, model-free approach, in which we
estimate a mapping between image inputs and angular rate
outputs by using a neural network.

A. The temporal nature of the problem

In order to recover angular rates from sequenced images, it
is necessary to supply the network with temporal information
about input data. The images from the three cameras are first
stacked into a single 30×8 image, as follows: first left camera
image, then frontal camera image and finally right camera



Fig. 3. Scheme of the CNNBiGRU proposed.

image. Then, the input to the network is this stacked gray-
scale image with two channels: the first channel is the image
at time t and the second channel is the image at time t-1.

Besides this temporal information, the network must be
able to learn the natural evolution of a sequence of angular
rates in a rotational movement. In order to avoid abrupt
changes in the prediction of our ANN, the network incor-
porates a layer that works as a sequence processor. Thus,
we organize the input data as temporal sequences of five
elements, each one containing a 30 × 8 image with two
channels. This layer works as a temporal filter over the
sequence, being able to smooth the predicted angular rates.

Henceforth, in order to clarify the data format,
the notation [samples, seq_length, channels,
height, width] is used, where the first dimension is
the number of samples, the second refers to the length of
the temporal sequence, and the other three refers to channels
and image’s dimensions.

B. Convolutional-BiGRU Neural Network

Determining the best architecture and internal parameters
of an ANN (number of layers, number of units per layer,
activation function, etc) is a great challenge. In our previous
work [20], we studied three different internal structures to
analyze the influence of network’s depth and width. Here we
present a network with few layers and simple architecture in
concordance with this previous study (see Fig. 3).

In this work we use a Convolutional Neural Network
with a Bidirectional GRU layer (CNNBiGRU). The goal of
the network’s convolutional layers is to extract spatial and
temporal features (recall that the input contains images at
two time instants). The BiGRU layer processes the temporal
evolution of these features, acting like a smoothing filter.
We make use of Gated Recurrent Units (GRU) as they have
shown to perform similar to LSTM networks [23] with less
internal parameters and avoiding vanishing gradient problem.

At the top, the network is composed of two convolutional
layers with 3 × 3 and 2 × 2 kernel size respectively. The
first layer has 40 filters that are applied with zero padding
and a stride of 1 unit in the horizontal direction and 2 in the
vertical direction. Second layer has 20 filters without zero
padding and a stride of 2 in both directions. A MaxPooling
layer separates both layers, with a pool size 2 × 2. All
layers, except the output layer, use the ReLu function [24]
as activation function. After the convolutional part it follows
the fully-connected block, composed of three layers with
100, 50 and 20 units respectively. The network is fed with a
temporal sequence of length 5 (recall that each element of the

sequence contains images of two consecutive time instants as
two channels). First layers apply independently to each of the
elements of the temporal sequence. Once the spatio-temporal
information has been extracted and processed, a Bidirectional
GRU layer with 40 units works on the full sequence. To
finish, the output is a fully-connected layer with three units
and linear activation function. A 20% Dropout layer [25]
is used after every other layer, except the output, to avoid
overfitting.

IV. PERSPECTIVE GEOMETRY APPROXIMATION
FOR OCELLI

As baseline, in this section we summarize a perspective
geometry approximation of the ocelli rotations purely based
on the whole visual information provided by the image
sensors. This section proposes a direct method to estimate
the rotation of the ocelli system based on the minimization
of the photometric error in all the cameras at once.

Thus, if a camera undergoes pure rotations, a full ho-
mography can model the pixel transform between sequenced
images in both 2D and 3D scenes [26]. In this case we can
model the image transforms between previous and current
image frames of the ocelli using three homographies, one
for each visual sensor (left, right and front). Also under
pure rotation assumption, a homography matrix H can be
decomposed according to the following expression H =
ARA−1, where A stands for the intrinsic camera calibration
matrix and R is the rotation that the camera suffered between
images.

According to Fig. 2, the rotations that the different image
sensors experiment are actually linked each other because
they are fixed to the same rigid body. Thus, if the ocelli
system undergoes a pure rotation R21, we can establish the
following constraint for each camera:

HL
21 = AL(RL)TR21R

L(AL)−1

HR
21 = AR(RR)TR21R

R(AR)−1 (1)
HF

21 = AL(RF )TR21R
F (AF )−1

where AL, AR and AF are the intrinsic calibration matrix
of each sensor and RL, RR and RF are the rotations that
align the sensors to the ocelli system reference. Calibrations
and rotations are known parameters that can be estimated
beforehand.

Given the images of the sensor in the current time step
IL2 , IR2 and IF2 , and the images in the previous time step IL1 ,
IR1 and IF1 , we propose minimizing the photometric error of
the re-projected images according to the following non-linear
optimization problem:
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where we optimize the values of R21 and
f = [bL, sL, bR, sR, bF , sF ]

t subject to the re-projection
error for all the pixels x in each image pair. The scalars b
and s correspond to a bias and scaling factor in the image,
they are computed for each image separately. We can see
how the expression compares the every pixel x from image
I1 with the corresponding pixel into image I2 according
to the homography that relates both images H21(x). The
values of HL

21, HR
21 and HF

21 in (2) are computed from the
current rotation solution according to (1).

This optimization problem is solved using a Levenberg-
Marquardt solver. The rotation R21 is parametrized into the
optimization problem as a quaternion q21. Together with the
bias and scaling factors, the total number of parameters to be
solved is small, just ten. Additionally, using all image sensors
at once allows better constraining the problem; if a rotation
is poorly observed by one of the cameras, it might be better
observed by another sensor with a different orientation.

As mentioned, this method considers two main assump-
tions. A pure rotation of the system between two consecutive
time instants, and the cameras sharing the optical centre. The
first one is a good approximation for consecutive images in
our datasets, while the latter is validated by the calibration
of our system.

V. PUBLIC DATASETS FOR OCELLI VALIDATION

When training a Deep Neural Network, data acquisition
is one of the limiting factors. Real experiments are time
consuming and expensive, and sometimes it is not possible
to gather the amount needed. To avoid this limitation, one
solution consists on using a simulator to train the network
and after that, fine tune or retrain the network with real data.
This way most parameters are trained with simulated data
and the network only need few real experiments to adjust to
real case. In this work we use AirSim [27], a novel open-
source simulator built over the Unreal Engine, to reproduce
the physical hardware presented in Section II and simulate
an environment to capture data. As in real case, we gather
sequences of three images with resolution 320×240 and the
corresponding three angular rates.

Using AirSim, we created 131 simulated datasets in two
main scenarios and changing light conditions: 35 sets in an
outdoor scenario with a fixed light source (the Sun) from 11
different directions; 30 sets in an indoor scenario with 11
simultaneous light sources and 20 indoor sets with 6 light
sources; and 35 sets in an indoor scenario with windows (a
porch) changing the external light direction (see Fig. 4). Each
dataset was recorded in different parts of the scenarios. All
simulated datasets contain pure rotation movements along the
three axis. Regarding real data, the physical device provides,
at time t, three gray-scale images with resolution 320× 240
pixels. At each instant we also have the three angular rates
recorded by the IMU attached to the base of the device.
We captured 24 sets in indoor and outdoor scenarios with
different light conditions (see Fig. 4). In real data we have
pure rotational and translation sets. All real experiments are

recorded by hand, thus, we have to expect some noise in the
output signal together with small translations.

Altogether we have 414929 simulated and 127692 real-
data samples, each of them with one compound image
from the three cameras information at two consecutive time
instants, and three angular rates, one per axis, coming from
the IMU.

A. Data preprocessing

In order to use data recorded with both simulated and
real device to train the proposed network, it is necessary to
undergo some pre-processing computations. For more details
about this processing, please visit the the following web2.

VI. EXPERIMENTAL RESULTS AND
BENCHMARKING

In this section we present the results of the network’s
learning process. We implement the network using Python
and Keras API [28]. All computations are performed
on Ubuntu 16.04 with GPU NVIDIA TESLA K40. The
CNNBiGRU learning process is divided in two main steps:
first the network is trained only with data from simulation
and then, once the model is trained and parameters are
learned, we compute a fine-tune training process with real
data. The first network training is compute with 122 of
133 datasets from simulation, all of them containing pure
rotation movements in different scenarios. Thus, the network
is trained with 387136 samples and the 9 resting sets
(27793 samples) are earmarked to test the trained model (3
outdoor sets, 3 indoor sets and 3 porch sets). The learning
algorithm used to train the network is the Adaptative Moment
Estimation (Adam), that has shown to be more effective on
CNN networks over other stochastic first-order methods [29].

Once the network is trained with simulation data, we
perform a fine-tuning process in order to sightly retrain the
parameters of the network to adapt to real data. In this case
the re-learning process is compute with 22 (99380 samples)
of the the 24 sets. The remaining sets are reserved for testing
purposes. In contrast with training process, in fine-tuning
process we include some sets of real translations data. The
proposed approach is able to estimate angular rates with pure
rotational movements but real data is not ideal and there
are some translations movements among rotations. To let
the network deal with those cases, we fine-tune the model
with pure translations sets. Thus, the network can reduce
the error between real and predicted output in these regions.
CNNBiGRU is also fine-tuned with Adam algorithm but with
a low learning rate (lr = 0.000001), while in learning phase
was 0.0001. This way, we let the parameters to update and
adapt to real data in a small interval, assuming their values
are already near an optimum thanks to training process with
simulated data.

Both learning and fine-tuning processes take 400 epochs
with a batch size of 100 samples per epoch. We compute
the mean squared error (henceforth MSE) between network’s

2https://github.com/robotics-upo/
OCELLIMAV-Project/tree/master/data

https://github.com/robotics-upo/OCELLIMAV-Project/tree/master/data
https://github.com/robotics-upo/OCELLIMAV-Project/tree/master/data


Fig. 4. (From left up to right: simulated scenarios) (1) Outdoor; (2) Outdoor with different light direction; (3) Indoor with 11 light sources; (4) Indoor
with 6 light sources; (5) Indoor with windows; (6) and (7) Indoor with windows and different light direction. (From left down to right: real scenarios) (8),
(9), (10) and (13) Outdoor scenarios; (11) and (12) Indoor scenarios.

TABLE I
TESTING RESULTS FOR BOTH SIMULATED AND REAL DATA IN

DIFFERENT SCENARIOS.

MSE (SEM) (radˆ2/sˆ2)
Simulation Testing Real Testing

Outdoor 0.034 (0.003) 0.171 (0.005)
Indoor 0.044 (0.004) 0.228 (0.008)
Porch 0.044 (0.004) -

predictions (outputs) and ground-truth labels as loss function.
In addition, after every epoch the network is evaluated over
the last 20% of the training data, without compromising
testing process.

A. CNNBiGRU learning results

a) Training from scratch: As mentioned before, the
network is first trained only with data from AirSim simulator.
In order to properly evaluate the predicted angular rates, we
analyze the response of the network with different testing
sets: one per scenario considered in training data (see Table
I). The code used to train and test the network are available3.

b) Fine-tuning the model: Once the network is trained
and internal parameters are learned, the resulting model is
fine-tuned with real data. We evaluate the network’s output
both in indoor and outdoor scenarios. In first case the
experiment was recorded in a building’s hall, with chairs
and coffee machines, with lights all over the ceiling. About
second testing set, the experiment was perform with open sky
at 5 PM in an outdoor scenario with sun behind a tree top,
roads, cars, etc. Fine-tuning results over these two testing sets
are shown in Table I. In Fig.5 temporal evolution of ground-
truth and predicted angular rates for the outdoor scenario is
shown, along its corresponding error histogram.

Although the network is able to recover the general dy-
namic with real data, the error is higher than with simulation
data. We think they are produced by a combination of the
following effects: first of all, simulations are not affected by
translations while real data do. Also, the simulated artificial
ocelli is not ideal, and there might exist differences between
the simulated and real system such as cameras’ orientation
and radial distortion. Finally, the training angular rates in

3https://github.com/robotics-upo/
OCELLIMAV-Project/tree/master/scripts

simulation data were constrained between 2.5 and −2.5 rad
s ,

approximately. Thus, there are some extreme angular rates
the network is not able to recover with real data.

B. Gyroscope random BIAS estimation

While the estimations of the presented system cannot be
as accurate as a gyroscope for rate estimation, the network
estimation has the advantage of being BIAS free, unlike
MEMs gyroscopes. IMUs need of accelerometers and mag-
netometers to estimate and correct the random BIAS present
in the gyroscopes.

The BIAS free nature of the network prediction gives
the opportunity of estimating the gyroscope BIAS without
accelerometers and magnetometers, just the low resolution
image information. Thus, a simple Kalman Filter can be
implemented for each axis. The filter estimates the angle
rate and the BIAS, and receives as measurement the angle
rate provided by the gyroscope (with BIAS) and the noisy
ocelli estimation (BIAS free). The prediction is modelled as a
random walk, adding noise to both rate and BIAS to account
for the dynamics of each variable.

In order to evaluate this approach, an experiment was
conceived. One of the real sets for testing has been used
to test the proposed filter. Known BIAS values (unknown
for the filter) from −1.5 to 1.5rad/s has been added to
the gyroscope and applied to the filter together with the
ocelli estimation. In total, 600 initial configurations have
been tested and the summary of the evaluation of the error
in the BIAS estimation is shown in Fig. 6. We can see that
the errors are high at the beginning of the estimation, and
how the filter reduces such errors thanks to the integration
of the BIAS free estimation provided by the ocelli system.

C. Benchmarking

In this section we compare our learning approach to two
alternative methods: the geometric approach described in
Section IV and the method presented in [18]. The recovery
of angular rates in Fuller’s method is computed from the
temporal derivative of the signal emitted by a set of 2 or
more non-coplanar phototransistors. Considering a rigid solid
and a punctual and well-known direction light source they
are able to recover ωx (roll) and ωy (pitch). Because of the
method, it is not possible to recover the angular rate on the

https://github.com/robotics-upo/OCELLIMAV-Project/tree/master/scripts
https://github.com/robotics-upo/OCELLIMAV-Project/tree/master/scripts


Fig. 5. (Left) Temporal evolution of angular rates, ground-trugh (red) and predicted (blue), of a real testing set on outdoor scenario. (Right) Error histogram
between ground-truth and predicted angular rates of the same testing set.

Fig. 6. Computed BIAS error in the estimation using the proposed Kalman
Filter. We can see how errors are reduced as the filter integrates information
provided by the gyroscopes and ocellar system.

axis the light source direction lies on (yaw angular rate in
[18]).

In order to implement this model we define the director
vectors of our three cameras in our reference system (see
Fig.2). Left and right cameras are elevated 45◦ over x-axis,
while frontal camera is raised 50◦ over y-axis. Thus, vectors
are ~L = [

√
2
2 ,−

√
2
2 , 0], ~F = [0, cos 0.87,− sin 0.87] and ~R =

[−
√
2
2 ,−

√
2
2 , 0] for left, frontal and right camera respectively.

We consider a source light relying on y-axis, thus, wy cannot
be predicted.

Regarding the geometry-based approach presented in Sec-
tion IV, this method can, as our network, recover the three
angular rates. The method has been coded in C and it is
publicly available4.

A benchmarking analysis is shown in Fig.7, where the
three methods’ predictions over the real testing indoor set
are compared. Fuller’s method does not work properly with
the outdoor testing set because of light dispersion (the
experiment was recorder with the sun behind a tree top).
Our learning approach presents the lowest errors on each
axis. Although the estimation is still worse than CNNBi-
GRU prediction (see Fig.7), geometric approach prediction

4https://github.com/robotics-upo/
OCELLIMAV-Project/tree/master/geometry_approach

Fig. 7. Root mean squared error over a real testing data set on indoor
scenario. Comparative between methods.

is better than Fuller’s response on z-axis. We suspect that the
low resolution of the images has a negative influence in the
estimation of the image gradients required for the computa-
tion of the iterative solution in the non-linear optimization
problem.

VII. CONCLUSIONS AND FUTURE WORK

In this work we have presented a direct method able to
recover angular rates using machine learning and computer
vision. This approach is computationally efficient and can
work with low resolution cameras to estimate attitude in both
indoor and outdoor scenarios.

The method has been successfully trained and tested
with synthetic and real images, and benchmarked against
two different methods. Additionally, a public dataset with
simulated and real data is released to help the research
community to develop new Machine Learning approaches
for attitude estimation.

Future work will analyze the posibility of estimating the
system translation (even scaled) in order to better constraint
the rotation estimation. The use of numeric methods similar
to the geometry approach presented in this paper with larger
resolution images will be also explored. The network’s
estimations would be used to get a good solution near the
optimal to reduce computational impact due to resolution
augmentation.

https://github.com/robotics-upo/OCELLIMAV-Project/tree/master/geometry_approach
https://github.com/robotics-upo/OCELLIMAV-Project/tree/master/geometry_approach
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[23] J. Chung, aglar Gülehre, K. Cho, and Y. Bengio, “Empirical evaluation
of gated recurrent neural networks on sequence modeling,” CoRR, vol.
abs/1412.3555, 2014.

[24] V. Nair and G. E. Hinton, “Rectified linear units improve restricted
boltzmann machines.” in ICML, J. Frnkranz and T. Joachims, Eds.
Omnipress, 2010, pp. 807–814.

[25] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhut-
dinov, “Dropout: A simple way to prevent neural networks from
overfitting,” J. Mach. Learn. Res., vol. 15, no. 1, pp. 1929–1958, Jan.
2014.

[26] R. I. Hartley and A. Zisserman, Multiple View Geometry in Computer
Vision, 2nd ed. Cambridge University Press, ISBN: 0521540518,
2004.

[27] S. Shah, D. Dey, C. Lovett, and A. Kapoor, “Airsim: High-
fidelity visual and physical simulation for autonomous vehicles,”
in Field and Service Robotics, 2017. [Online]. Available: https:
//arxiv.org/abs/1705.05065

[28] F. Chollet, “Keras,” https://github.com/fchollet/keras, 2015.
[29] D. P. Kingma and J. Ba, “Adam: A method for stochastic

optimization,” CoRR, vol. abs/1412.6980, 2014. [Online]. Available:
http://arxiv.org/abs/1412.6980

http://dx.doi.org/10.1177/0278364912455954
http://dx.doi.org/10.1177/0278364913481251
http://stacks.iop.org/1748-3190/9/i=3/a=036003
http://www.pnas.org/content/110/23/9267.abstract
http://www.pnas.org/content/110/23/9267.abstract
http://www.sciencedirect.com/science/article/pii/004269899400192O
http://www.sciencedirect.com/science/article/pii/004269899400192O
http://dx.doi.org/10.1007/s00422-014-0610-x
http://rsif.royalsocietypublishing.org/content/11/97/20140281
https://arxiv.org/abs/1705.05065
https://arxiv.org/abs/1705.05065
https://github.com/fchollet/keras
http://arxiv.org/abs/1412.6980

	INTRODUCTION
	A COMPUTER VISION PERSPECTIVE ON OCELLI
	Learning to estimate angular rates using Artificial Neural Network
	The temporal nature of the problem
	Convolutional-BiGRU Neural Network

	PERSPECTIVE GEOMETRY APPROXIMATION FOR OCELLI
	PUBLIC DATASETS FOR OCELLI VALIDATION
	Data preprocessing

	EXPERIMENTAL RESULTS AND BENCHMARKING
	CNNBiGRU learning results
	Gyroscope random BIAS estimation
	Benchmarking

	CONCLUSIONS AND FUTURE WORK
	References

