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Abstract— This paper presents a decentralized data fusion node, and, as only local communications are performed, they
approach to perform cooperative perception with data gatheed  are scalable. They allow the different agents of a multistob
from heterogeneous sensors, which can be static or carriedyb platform to work more independently without the need of

robots. Particularly, a Decentralized Delayed-State Exteded intaini . icati ith tral d
Information Filter (DDSEIF) is described, where full state maintaining in communication range with a central node

trajectories are considered to fuse the information. This ermits ~ continuously.
to obtain an estimation equal to that obtained by a centralied The main issues and problems with decentralized infor-
system, and allows delays and latency in the communications mation fusion can be traced back to the work [4], where the
The sparseness of the information matrix maintains the com- ormation Filter (IF, dual of the Kalman Filter) is used as
munications overhead at a reasonable level. The method is - . .
applied to cooperative tracking and some results in disaste the main tool for da_ta fusion for PrPCGSS plant monl_torlng.
management scenarios are shown. In this kind of scenarios¢n The IF has very nice characteristics for decentralization,
target might move in both open field and indoor areas, so fusio  and for instance it has been used for decentralized mapping
of data provided by heterogeneous sensors is beneficial. with aerial vehicles in [5], [6]. These works demonstrate
that, for the case of static states (for instance, in mapping
. INTRODUCTION applications), the decentralized implementation of the IF

Robotic application scenarios have evolved in the lagtlows to obtain locally a final estimation that is the same
decades from very simple and controlled environments f@s that obtained by a centralized node with access to all the
real-world dynamic applications. In this sense, the coaperinformation.
tion among robots and heterogeneous sensors embedded it the case of dynamic states, for instance in tracking
the environment for different tasks, like surveillance iban ~ applications, it was noticed in [7] that if only information
scenarios [1] or disaster management [2], holds as a very ifabout the current estimation is exchanged, informatioh wil
portant issue. Real scenarios involve dynamic environmerft€ missed with respect to a centralized estimation. The
and Varying conditions for perception_ The robustness arﬂj’Ob'Gm is due to the fact that there are some information
reliability of autonomous perception in these scenaries afot taken into account when performing the prediction steps
critical. In most cases, a single autonomous entity (i.e. i each fusing node.
robot or a static surveillance camera) is not able to acquire This paper considers the use of a delayed-state IF to
all the information required for the application becausthef ~solve the decentralized cooperative perception probletim wi
characteristic of the particular task or the harmful cdodis  Optimal information gain. As it will be described, the filter
(i.e. loss of visibility), and thus, the cooperation of sete considers the trajectory of the state, that is, it maintains
of these entities is relevant. information about past states. The main contribution i$ tha

Therefore, the goal would be to develop a data fusioHsing this full state trajectory (not just the latest statey
framework that allows to combine information provided by 4rodes can recover the same information as in a centralized
wide variety of heterogeneous sensors. The approach sho¥f{sion, at the cost of higher message sizes. The sparse
be scalable, robust to communication failures and delay8tructure of the information matrix is used in order to keep
under limited bandwidth. Decentralized approaches cae cofl€ communication requirements bounded.
with these requirements better than centralized ones ifi3]. | Other advantages of our proposal are the possibility to
them, each node of the network employs only local inforcope with latency in the network, as past information can be
mation and shares its estimations with its neighbors, witho fused. Also, information about the state trajectory become
knowledge of the full sensor network topology (which will quite important for the multi-target case, in which data
change dynamically if mobile robots are considered) ofsSsociation turns out to be a key issue. Since information

broadcast facilities. They eliminate the need for a centrdfom the past is maintained, this technique would allow
to cope with previous wrong associations. Once the wrong
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common information by using theovariance intersection

(CI) algorithm [8]. Furthermore, the use of delayed states . . M bel;(X?)

allows to avoid common information due to common pre- bel(X") = 11p(Xy) H p(X5) ®)
diction functions, which is not considered by the canonical =1

IF. In what is probably the closest work to this one Upyherep(X) = p(Xo) [T7Z" p(X,|X,_1). Then, if a node

the knowledge of the authors, Bailey [9] shows how usingf the network receives all the beliefs from the other nodes,

delayed information can be even used to overcome thge fusion operation consists of combining all the local

problems of rumor propagation in decentralized systemgeliefs after removing the common information they share

without the need of ClI. (the prior over the trajectory(X})). Applying this equation,
Delayed-state filters have been increasingly used by thge centralized belief can be exactly recovered.

SLAM community, as in [10], [11], but mainly due to the |n the case of a decentralized system, not only does each

sparseness characteristics of the IF for Markov processgshot receives from its neighbors, but also sends informnati

with high dimensional states. Here, the easy decentraizat o them. In this case, the fusion equation is slightly défetr

of the filter is exploited, and the sparseness charac@sistif ropot ; received information frony, its belief would be
are used to limit the communication overhead. In [12], thgpgated as it follows:

authors take into account both advantages at the same time
for decentralized mapping of sensor nodes based on signal
strength.

The paper is organized as follows; Section Il describes
the overall decentralized data fusion framework and detaiwherebel;;(X") represents the common information between
the use of state trajectory in the fusion process. Sectids Il the robots (i.e., the common prior mentioned above but also

devoted to present some experimental results. Finallfiosec information previously exchanged between the robots)s Thi
\V gives some conclusions and future work. common information can be maintained by a Separate filter

called channel filter [13]. If there are loops in the inforioat
Il. DECENTRALIZED DATA FUSION APPROACH channels, the problem of double counting should be taken
A. State Trajectory Filter and Decentralized Data Fusion into account as well.

The objective is to estimate the environment (defined by However, considering just marginal distributions at time

the stateX) by using all the measurements gathered by thé it can be seen that it is not possible to obtain exactly the
sensors on thé/ robots of a fleét z* = [z47,...,2z{7]7. centralized marginalel(X;) from the local beliefdel;(X:)
Assuming that the data gathered by the different robotsyat akinless these local beliefs are sent every time new infoonati
time instantt are conditionally independergiven the state is gathered by a particular robot (or the state is static) [7]
at that instaniX, and the usual Markovian assumptions, thé13], [14]. The problem is due to the fact that there are some

Bayes filter to compute the belief statel(X?) for the state information not taken into account when performing the loca

beli (Xt )belj (Xt)

bel;(X") «n bel, (X1)
ij

(4)

trajectory (from time O up to time) is given by: prediction steps in each node. This difference will inceeas
mainly with the number of predictions steps carried out in
r—t M(7) the local nodes between communication steps [13].
p(X|z") = n'p(Xo) (2. 1X)] p(Xr | Xr_1) Another advantage of using delayed states is that the
El [ j[[l ! } belief states can be received asynchronously. Each robot ca

(1) accumulate evidence, and send it whenever it is possible.
with p(Xy) the prior, M(7) the number of observations However, as the state grows over time, the size of the
obtained at timer, and7’ a normalization constant. In this message needed to communicate its belief also does. For
filter, accessing to all the information provided by the teanthe normal operation of the robots, only the state trajgctor
at any moment is required. In a decentralized approacbyer a time interval is needed, so these belief traject@aes
however, each robot employs only its local dafeand then be bounded. Note that the trajectories should be longer than
sharesits belief with its neighbors. The received informationthe maximum expected delay in the network in order not to
from other teammates is locally fused in order to improveniss any measurements information.
the local perception of the world. The belief state over the
full trajectory bell(Xt) for roboti is: B. Delayed-State Information Filter

In the particular case of Gaussian distributions, it can be

. . T=t seen that the overhead associated to maintaining (part of)
bel;(X') =" p(Xo) [ [ p(2i-1X-)p(X-X7-1)  (2) the state trajectory can be controlled. In this case, therinf

=1 mation Filter is the natural way for decentralized estiorti
Comparing this expression to eq. (1), it is possible tahe IF corresponds to the dual implementation of the Kalman
obtain the global belief from the local ones: Filter (KF). The constraints for the application of bothefii

T . o , are the same [15]: Markovian processes, linear prediction a

Capital letters indicate random quantities, and lower ¢etters realiza- tf ti G . . d initial .
tions of these quantities. A subindex indicates infornragd timet, while m_easurem_en unctions, aussian nQISQS an ni '_a GH_ u_SSI
a superindex indicate up to time priors. While the KF represents the distribution using itstfi



p and second® order moments, the IF employs the so-Algorithm 1 (¢, Q') «Information Filter¢’~*, Q' z,)

called canonical representationThe fundamental elements

I

are theinformation vector§ = 2_1,u and theinformation 1 O — Add_M( Q)+ <AtT) Rt_l (I *At) o”

matrix @ = X~!. Prediction and updating equations for
the (standard) IF can also be derived from the usual KF. In

0 0
Rt_l(ft(”’tfl) —Aipq)

the case of non-linear prediction or measurement, firstrorde,,. 5 — Add_V(¢"™ 1)+ —AtTRt_l(ft(Nt D = Apty_y)

linearization leads to the Extended Information FilterHEI

For more details, see [15], [14]. , MZS~ M, o7 0
The IF presents some advantages and drawbacks whe# Q=0 + K (’; ! 0)
compared to the KF. One of the advantages of the canonical Tq-1 7 -
representation for the IF is that it can consider complete4: g=¢+ (Mt S 7%(“’5) +Mt'ut))
uncertainty seamlessly in the filter, by settify = 0. The
prediction and updating steps are dual in the KF and IF, in the
sense that the prediction is more complicated in the IF than & Qo | Qor
in the KF, but, on the other hand, the update steps are easier.—— I
Moreover, the additive nature of its updating step is what E £ho | S | o L
makes the IF interesting for multiple-system applications & Q| QO | O
The information form also presents an interesting property
when the full state trajectoryel(X?) is considered. If the & ol L
assumptions for the IF hold, it can be seen that the joint &, Quy | Qus | Qus
distribution over the full state is also Gaussian. The EIF ] ]
considering delayed states can be derived from the general &s il i
equation (2). The following system is considered:
Xy =£(Xi-1) + vy 5)
Z; = gu(Xy) + & (6) £ ‘ ‘ ’ ‘ ‘ ‘
where v; and e, are additive noises. In a general case, '
f; and g; could be non-linear functions, so a ”nearizatiorFiQ. 1. Structure of the information matrix for the full teatory. The

would be required. Defining the matrice’s; and M; as information matrix is a block tridiagonal symmetric majridue to the
A, = Vft(lit—1) and M, = Vgt(ﬁt), and knowing the Markov structure of the process.

information matrix and vector up to time— 1, Q"' and
¢!, the prediction steps are:

(5) and (6) respectively. Further details can be seen in [14]
The delayed-state IF is summarized in Algorithm 1, where

T .
0 Add_M adds a block row and a block column to the previous
0 Q(t 1)(t DA + information matrix andAdd_V adds a block row to the
. . previous information vector.
1 1 T @ Evidently, the state grows along time. In the general case
Rt R A 0 of an information matrix, for aN-dimensional state, the
—~ATR;! ATR;'A, 07 N ’ Y L
¢ ¢t storage required i©(N?). However, in this case, as it can be
0 0 0 L . . .
seen from the prediction and updating equations, the matrix
0 ¢ A structure is block tridiagonal and symmetric (see Fig. 1) at
ot AT (t("f” 1) = titfl) 8 any time, and thus the storage required($N) (where
£ = 5%:5 - Rt (1) = Aspea) | (8) N is the number of time steps). Also, the computational
complexity of the algorithm itself i , as the prediction
3 0 plexity of the algorithm itself i©)(1), as the predict
And, if one measurement is received, the updating equand updating computations at each time instant only involve
tions are: the previous block.
B M!S 'M; oT oT C. State Reduction
Q' =Q + 0 0 o7 9)

0 0 O

In certain situations, the length of the trajectory estedat
should be limited, for instance due to storage or bandwidth

S ~ ~ restrictions. Therefore, a method for reducing the staterwh
=g+ <Mt S (2 — () + Mt“t)> (10) ever the size of the trajectory grows over a given threshold

0

is required.

where R;, S; are the corresponding covariances of the In order to do this, the removed part of the trajectory
additive noises for the prediction and measurement modedhould be marginalized out. The marginal of a multivariate



Q| 9, of adding several times the same information. Another optio
e, q is to employ a conservative fusion rule, which ensures that
a,|a, a, _ % % ‘ ‘n“‘ the sysFem d0<_es not b_ecome overconfident even in presence

of duplicated information. As commented above, for the
L case of the IF, there is an analytic solution for this, given
s by the covariance intersection algorithm [8]. Therefores t
conservative rule to combine the local belief of a robot
with that received from another robgtis given by:

]

Q|05 | 2y

Q

Q,

Fig. 2. Marginalization of the removed point of the trajegtdDue to the
structure of the information matrix, the marginalizationlyoinvolves local
block operations.

Q0 w4 (1 — w)Q (14)

Gaussian in the canonical form can be computed in closed £ wE™ + (1 - w)g™ (15)

form [11]. Moreover, due to the structure of the informatioror ,, ¢ [01]. It can be seen that the estimation is consistent
matrix for this case, the computations required only in@olv (in the sense that no overconfident estimations are done)
local block matrix operations (see Fig. 2). In addition sthi g, any w. The value ofw can be selected following some
marginalization operation maintains the block tridiagonagriteria, such as maximizing the obtained determinars2of
structure of the matrix. In general, if the information ané (minimizing the entropy of the final distribution). The ogti

t is eliminated, the only blocks affected are those linked t@ppgen by the authors is to useas a fixed weight that

it (that is, ¢t — 1 andt + 1), following: shows the system confidence in its own estimation and the
neighbor’s ones.
Q1 — Qo — QL 0710, Although employing the CI formula avoids the need to

T _1 maintain an estimation of the common information trans-
Som1 & — X R & mitted to the neighbor systems, as these fusion rules are

Qiriert ¢ Qerrerr — Qe QY (11)  conservative, some information is lost with respect to the
€1 =E&p1 — QtT+1tQt_tl€t purely centr_aliz_ed case. _ _

Synchronization of the trajectorieSpecial care has to be
taken considering synchronization issues when combining
. ) . trajectories. The trajectory is represented at discrete ti
D. Decentralized Information Filter intervals. The combination formula will work provided that

The proposed IF can be easily extended to the multthe differences in these intervals are bounded. Therefore,
robot case, considering a decentralized approach. In thigjectories should be adjusted so that the state space is th
case, each robot will run locally Algorithm 1, updating itssame in both cases. Fig. 3 depicts an example of the method.
full trajectory state with the information obtained frons it  In our implementation, first, newest time steps are pre-
sensors. When a robéis within communication range with dicted (eq. 7 and 8), and oldest ones are marginalized out
other robotj, they can share their beliefs, represented b{eq. 11) until trajectories are adjusted. Thus, in the examp
their information vectorg®* and¢’!, and matrice€2"! and 7}, must be removed an@; predicted. Then, each time step
Q’*. For Gaussian distributions, equation (4) leads to a quiie matched with the closest one of the other trajectory. Fur-
simple fusion rule: thermore, matchings are just allowed if the time differeisce

lower than a certain threshold. No matched time steps must
it it L it be also marginalized out before fusing, (in the example).
L e Lt (12) Finally, notice that the algorithm cannot allow crossed
Sy Sty oy R (13) matchings such as the one labeledMBONGIn Fig. 3 This

) . ] o kind of wrong matchings could result in fatal errors in the
which only requires using a separate EIF to main@ity estimations.

and ¢* (which represent the common information ex-

changed between and j in the past). It is important to . EXPERIMENTAL RESULTS

remark that, using this fusion equation and considering In order to test the decentralized perception scheme
delayed states, the local estimator can obtain an estimatipresented above, a tracking application is considered in
that is equal to that obtained by a centralized system. Thikis Section. Experimental results obtained during redd fie
common information can be locally estimated assumingxperiments integrating three sources of information (two
a tree-shaped network topology (no cycles or duplicatechmeras and a wireless sensor network) will be presented.
paths of information). However, this fixed network topologyThe information provided by these sensors have been used
is a constraint too strong on the potential communicatioto track the position of a person moving into the experiments
links among the (mobile) robots. If there is no assumptionarea by means of the decentralized data fusion approach.
about the network topology, prior to combining the beliefs, The cameras were used to detect the person into the field
unknown common information should be removed. If notof view, providing bearing-only information of the posiio
non-consistent estimations could be obtained due to tte fad8oth cameras were fixed, with known intrinsic and extrinsic
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Fig. 3. Example of the method to synchronize two trajectorie
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calibration parameters. In addition, the person carried a time (s)

wireless sensor node that was used by the sensor network to . Y CAV-1 estmation

provide positioning information based on the received aign A

strength information (RSSI) by means of an approach similar »l I !m.,,-»,‘ o e

to [12]. This information allows to initialize the track.

A C++ implementation of the decentralized data fusion
scheme called Perception Subsystem (PSS) has been uset
to locally process the data gathered by each sensor. This
process will incorporate the local information obtainedtsy
sensors as well as the information provided by other PSSs
(neighbours’ beliefs), cooperating among them in order to
achieve common objectives. Then, three PSSs were launched
during the experiment: camera 1, camera 2 and wireless
sensor network. 0 10 200 300 460 500 600 700 800

The state estimated and shared between PSSs consisted o. mee

the 3D position and velocity of the person to track, both IrIEig. 4. Position estimation of the person using the deckredh approach

the global coordinate system: presented in this paper (red solid line) in camera 1. Thenesitin provided
by a centralized filter is also presented (black dotted litteyan be seen
X, = (X Y Z V, V, VZ)T (16) how the estimation is always inside tBe confident interval (blue dashed
line)

The results of the proposed algorithm are compared with
the results obtained by a centralized implementation de-
scribed in [16]. In that version, all the measurements were
processed offline by a centralized EKF without considering
communication issues or delays. The centralized filter has
access to all the information provided by all the sensors in-
stantly, a very important advantage with respect decendal 41213}
approach. Unfortunately, only the X and Y estimations are
shown in the paper due to space constraints.

Thus, Fig. 4 shows the estimated X and Y position of the _ 412131
target provided by the software instance attached to camera

6 Estimation: Path 2
4121310

41213

)
o

= 41213 B
1. It can be seen how the error with respect the centralized 2 .
estimation is, in mean, about one meter. In addition, the sy
estimated standard deviation from the filter is coherenf wit 41213 — oam
the errors and always inside tl3e confident interval. A : T e
An important aspect in decentralized approaches is to
verify that the estimation carried out by the different seite 123 5067 25168 25169 2517 25171

. . . . . . UTM s
instances converge to a single solution. This is shown in Fig xmm x10

5, where the estimated XY trajectory provided by camer o . :

irel K lot t thﬁli. 5. XY estimation provided by the two cameras and theleaiesensor
1,. camera 2 an(_j wireless sensor network are plot togethggdhwork, and centralized estimation. A sensor network wemayed into
with the centralized estimation. It can be seen how botite experiments area, pink squares denote the positionchfsmsor node.
estimations converge to the same solution with errors in the

order of one meter.
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Future works will consider exploiting the information
provided by the trajectory. Techniques such as mutual infor
mation could be very useful in order to cope with the track-
to-track association problem. Moreover, extending thatkwo
to the multi-target case, new algorithms could be developed
in order to deal with wrong associations made in the past by
using the trajectories. Finally, to demonstrate the sdiéthab
of the approach, we plan to apply it to a bigger, network
involving several robots, a fixed camera network of around
20 cameras and a Wireless Sensor Network.
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(red solid line) versus standard deviation computed by éreralized filter
(black dashed line)

1

Fig. 6 presents the estimated standard deviation compute[d]
by the decentralized approach and the estimated by the
centralized filter. As expected, the decentralized apgroacy,
presents more conservative estimations than the cemaliz
filter produced by communications issues, ttwvariance
intersectionalgorithm, and the fact that the decentralized
approach cannot access to all the information at the same
time as the centralized filter does. However, it is worth tol4]
mention the closeness of both estimations which differs in
no more than half a meter. This fact remarks the consistencg]
and benefits of the proposed approach.

Thus, the experiments showed that the proposed decen-
tralized approach is able to provide estimations with smalis]
errors (about one meter) with respect centralized filtes an
very similar standard deviations estimation (about half a7
meter difference), but with the advantage of processing the
information in a fully decentralized manner, which badical
improves the fault tolerance and scalability of the system.

IV. CONCLUSIONS AND FUTURE WORKS

The paper presented a decentralized data fusion schenifd
valid to perform cooperative perception tasks using a set
of heterogeneous sensors. An extension of the usual EIF
considering delayed states was proposed, which allows to
obtain locally the same estimate than a centralized filted, a (10]
permits to overcome the usual delays and latency in inter-
process communications.

In addition, methods to match trajectories from different!1]
agents and to fuse the information in a conservative way were
explained. This is particularly important in decentratize [12]
architectures in order to face double counting information

The decentralized data fusion approach has been imple-
mented in C++ and tested with real information, three datas3]
sources has been integrated in those tests. The expdrientia
results shown that the proposed approach is able to track the
position of a moving object in a fully decentralized mannef14]
with small errors with respect a centralized filter, obtagi
similar results in mean (about one meter error) and standard
deviation (about half a meter difference).

(31

(8]

Estimated standard deviation using the decengdliapproach sensing.
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