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Abstract— This paper presents a decentralized data fusion
approach to perform cooperative perception with data gathered
from heterogeneous sensors, which can be static or carried by
robots. Particularly, a Decentralized Delayed-State Extended
Information Filter (DDSEIF) is described, where full state
trajectories are considered to fuse the information. This permits
to obtain an estimation equal to that obtained by a centralized
system, and allows delays and latency in the communications.
The sparseness of the information matrix maintains the com-
munications overhead at a reasonable level. The method is
applied to cooperative tracking and some results in disaster
management scenarios are shown. In this kind of scenarios the
target might move in both open field and indoor areas, so fusion
of data provided by heterogeneous sensors is beneficial.

I. INTRODUCTION

Robotic application scenarios have evolved in the last
decades from very simple and controlled environments to
real-world dynamic applications. In this sense, the coopera-
tion among robots and heterogeneous sensors embedded in
the environment for different tasks, like surveillance in urban
scenarios [1] or disaster management [2], holds as a very im-
portant issue. Real scenarios involve dynamic environments
and varying conditions for perception. The robustness and
reliability of autonomous perception in these scenarios are
critical. In most cases, a single autonomous entity (i.e. a
robot or a static surveillance camera) is not able to acquire
all the information required for the application because ofthe
characteristic of the particular task or the harmful conditions
(i.e. loss of visibility), and thus, the cooperation of several
of these entities is relevant.

Therefore, the goal would be to develop a data fusion
framework that allows to combine information provided by a
wide variety of heterogeneous sensors. The approach should
be scalable, robust to communication failures and delays,
under limited bandwidth. Decentralized approaches can cope
with these requirements better than centralized ones [3]. In
them, each node of the network employs only local infor-
mation and shares its estimations with its neighbors, without
knowledge of the full sensor network topology (which will
change dynamically if mobile robots are considered) or
broadcast facilities. They eliminate the need for a central
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node, and, as only local communications are performed, they
are scalable. They allow the different agents of a multi-robot
platform to work more independently without the need of
maintaining in communication range with a central node
continuously.

The main issues and problems with decentralized infor-
mation fusion can be traced back to the work [4], where the
Information Filter (IF, dual of the Kalman Filter) is used as
the main tool for data fusion for process plant monitoring.
The IF has very nice characteristics for decentralization,
and for instance it has been used for decentralized mapping
with aerial vehicles in [5], [6]. These works demonstrate
that, for the case of static states (for instance, in mapping
applications), the decentralized implementation of the IF
allows to obtain locally a final estimation that is the same
as that obtained by a centralized node with access to all the
information.

In the case of dynamic states, for instance in tracking
applications, it was noticed in [7] that if only information
about the current estimation is exchanged, information will
be missed with respect to a centralized estimation. The
problem is due to the fact that there are some information
not taken into account when performing the prediction steps
in each fusing node.

This paper considers the use of a delayed-state IF to
solve the decentralized cooperative perception problem with
optimal information gain. As it will be described, the filter
considers the trajectory of the state, that is, it maintains
information about past states. The main contribution is that
using this full state trajectory (not just the latest state)the
nodes can recover the same information as in a centralized
version, at the cost of higher message sizes. The sparse
structure of the information matrix is used in order to keep
the communication requirements bounded.

Other advantages of our proposal are the possibility to
cope with latency in the network, as past information can be
fused. Also, information about the state trajectory becomes
quite important for the multi-target case, in which data
association turns out to be a key issue. Since information
from the past is maintained, this technique would allow
to cope with previous wrong associations. Once the wrong
association is detected in a past time, the trajectory couldbe
recalculated forward from them.

Decentralized information fusion raises the problem of
rumor propagation (or double counting of common infor-
mation), which can lead to non-consistent estimations (due
to the lost of independence in the sources) [4], [5]. Gaussian
filters provide analytical solutions for fusion under unknown



common information by using thecovariance intersection
(CI) algorithm [8]. Furthermore, the use of delayed states
allows to avoid common information due to common pre-
diction functions, which is not considered by the canonical
IF. In what is probably the closest work to this one up
the knowledge of the authors, Bailey [9] shows how using
delayed information can be even used to overcome the
problems of rumor propagation in decentralized systems
without the need of CI.

Delayed-state filters have been increasingly used by the
SLAM community, as in [10], [11], but mainly due to the
sparseness characteristics of the IF for Markov processes
with high dimensional states. Here, the easy decentralization
of the filter is exploited, and the sparseness characteristics
are used to limit the communication overhead. In [12], the
authors take into account both advantages at the same time
for decentralized mapping of sensor nodes based on signal
strength.

The paper is organized as follows; Section II describes
the overall decentralized data fusion framework and details
the use of state trajectory in the fusion process. Section III is
devoted to present some experimental results. Finally, section
IV gives some conclusions and future work.

II. DECENTRALIZED DATA FUSION APPROACH

A. State Trajectory Filter and Decentralized Data Fusion

The objective is to estimate the environment (defined by
the stateX) by using all the measurements gathered by the
sensors on theM robots of a fleet1, zt = [ztT1 , . . . , ztTM ]T .
Assuming that the data gathered by the different robots at any
time instantt are conditionally independentgiven the state
at that instantXt, and the usual Markovian assumptions, the
Bayes filter to compute the belief statebel(Xt) for the state
trajectory (from time 0 up to timet) is given by:

p(Xt|zt) = η
′

p(X0)
τ=t
∏

τ=1

[

M(τ)
∏

j=1

p(zj,τ |Xτ )
]

p(Xτ |Xτ−1)

(1)
with p(X0) the prior, M(τ) the number of observations
obtained at timeτ , andη

′

a normalization constant. In this
filter, accessing to all the information provided by the team
at any moment is required. In a decentralized approach,
however, each robot employs only its local datazti and then
sharesits belief with its neighbors. The received information
from other teammates is locally fused in order to improve
the local perception of the world. The belief state over the
full trajectory beli(Xt) for robot i is:

beli(X
t) = η

′′

p(X0)

τ=t
∏

τ=1

p(zi,τ |Xτ )p(Xτ |Xτ−1) (2)

Comparing this expression to eq. (1), it is possible to
obtain the global belief from the local ones:

1Capital letters indicate random quantities, and lower caseletters realiza-
tions of these quantities. A subindex indicates information at timet, while
a superindex indicate up to timet

bel(Xt) = ηp(Xt
0)

M
∏

i=1

beli(X
t)

p(Xt
0)

(3)

wherep(Xt
0) = p(X0)

∏τ=t

τ=1 p(Xτ |Xτ−1). Then, if a node
of the network receives all the beliefs from the other nodes,
the fusion operation consists of combining all the local
beliefs after removing the common information they share
(the prior over the trajectoryp(Xt

0)). Applying this equation,
the centralized belief can be exactly recovered.

In the case of a decentralized system, not only does each
robot receives from its neighbors, but also sends information
to them. In this case, the fusion equation is slightly different.
If robot i received information fromj, its belief would be
updated as it follows:

beli(X
t)← η

beli(X
t)belj(X

t)

belij(Xt)
(4)

wherebelij(Xt) represents the common information between
the robots (i.e., the common prior mentioned above but also
information previously exchanged between the robots). This
common information can be maintained by a separate filter
called channel filter [13]. If there are loops in the information
channels, the problem of double counting should be taken
into account as well.

However, considering just marginal distributions at time
t, it can be seen that it is not possible to obtain exactly the
centralized marginalbel(Xt) from the local beliefsbeli(Xt)
unless these local beliefs are sent every time new information
is gathered by a particular robot (or the state is static) [7],
[13], [14]. The problem is due to the fact that there are some
information not taken into account when performing the local
prediction steps in each node. This difference will increase
mainly with the number of predictions steps carried out in
the local nodes between communication steps [13].

Another advantage of using delayed states is that the
belief states can be received asynchronously. Each robot can
accumulate evidence, and send it whenever it is possible.
However, as the state grows over time, the size of the
message needed to communicate its belief also does. For
the normal operation of the robots, only the state trajectory
over a time interval is needed, so these belief trajectoriescan
be bounded. Note that the trajectories should be longer than
the maximum expected delay in the network in order not to
miss any measurements information.

B. Delayed-State Information Filter

In the particular case of Gaussian distributions, it can be
seen that the overhead associated to maintaining (part of)
the state trajectory can be controlled. In this case, the Infor-
mation Filter is the natural way for decentralized estimation.
The IF corresponds to the dual implementation of the Kalman
Filter (KF). The constraints for the application of both filters
are the same [15]: Markovian processes, linear prediction and
measurement functions, Gaussian noises and initial Gaussian
priors. While the KF represents the distribution using its first



µ and secondΣ order moments, the IF employs the so-
called canonical representation. The fundamental elements
are theinformation vectorξ = Σ−1µ and theinformation
matrix Ω = Σ−1. Prediction and updating equations for
the (standard) IF can also be derived from the usual KF. In
the case of non-linear prediction or measurement, first order
linearization leads to the Extended Information Filter (EIF).
For more details, see [15], [14].

The IF presents some advantages and drawbacks when
compared to the KF. One of the advantages of the canonical
representation for the IF is that it can consider complete
uncertainty seamlessly in the filter, by settingΩt = 0. The
prediction and updating steps are dual in the KF and IF, in the
sense that the prediction is more complicated in the IF than
in the KF, but, on the other hand, the update steps are easier.
Moreover, the additive nature of its updating step is what
makes the IF interesting for multiple-system applications.

The information form also presents an interesting property
when the full state trajectorybel(Xt) is considered. If the
assumptions for the IF hold, it can be seen that the joint
distribution over the full state is also Gaussian. The EIF
considering delayed states can be derived from the general
equation (2). The following system is considered:

Xt = ft(Xt−1) + νt (5)

Zt = gt(Xt) + εt (6)

where νt and εt are additive noises. In a general case,
ft and gt could be non-linear functions, so a linearization
would be required. Defining the matricesAt and Mt as
At = ∇ft(µt−1) and Mt = ∇gt(µ̄t), and knowing the
information matrix and vector up to timet − 1, Ωt−1 and
ξ
t−1, the prediction steps are:

Ω̄
t
=







0 0T 0T

0 Ω(t−1)(t−1) . . .

0
...

. . .






+

+





R−1
t −R−1

t At 0T

−AT
t R

−1
t AT

t R
−1
t At 0T

0 0 0





(7)

ξ̄
t
=





0

ξt−1

ξt−2



+





R−1
t (ft(µt−1)−Atµt−1)

−AT
t R

−1
t (ft(µt−1)−Atµt−1)

0



 (8)

And, if one measurement is received, the updating equa-
tions are:

Ωt = Ω̄
t
+





MT
t S

−1
t Mt 0T 0T

0 0 0T

0 0 0



 (9)

ξt = ξ̄
t
+

(

MT
t S

−1
t (zt − gt(µ̄t) +Mtµ̄t)

0

)

(10)

where Rt, St are the corresponding covariances of the
additive noises for the prediction and measurement models

Algorithm 1 (ξt,Ωt)←Information Filter(ξt−1,Ωt−1, zt)

1: Ω̄
t
= Add M ( Ωt−1)+





(

I

−AT
t

)

R−1
t

(

I −At

)

0T

0 0





2: ξ̄
t = Add V(ξt−1)+





R−1
t (ft(µt−1)−Atµt−1)

−AT
t R

−1
t (ft(µt−1)−Atµt−1)

0





3: Ωt = Ω̄
t
+

(

MT
t S

−1
t Mt 0T

0 0

)

4: ξt = ξ̄t +

(

MT
t S

−1
t (zt − gt(µ̄t) +Mtµ̄t)

0

)

Fig. 1. Structure of the information matrix for the full trajectory. The
information matrix is a block tridiagonal symmetric matrix, due to the
Markov structure of the process.

(5) and (6) respectively. Further details can be seen in [14].
The delayed-state IF is summarized in Algorithm 1, where
Add M adds a block row and a block column to the previous
information matrix andAdd V adds a block row to the
previous information vector.

Evidently, the state grows along time. In the general case
of an information matrix, for aN -dimensional state, the
storage required isO(N2). However, in this case, as it can be
seen from the prediction and updating equations, the matrix
structure is block tridiagonal and symmetric (see Fig. 1) at
any time, and thus the storage required isO(N) (where
N is the number of time steps). Also, the computational
complexity of the algorithm itself isO(1), as the prediction
and updating computations at each time instant only involve
the previous block.

C. State Reduction

In certain situations, the length of the trajectory estimated
should be limited, for instance due to storage or bandwidth
restrictions. Therefore, a method for reducing the state when-
ever the size of the trajectory grows over a given threshold
is required.

In order to do this, the removed part of the trajectory
should be marginalized out. The marginal of a multivariate



Fig. 2. Marginalization of the removed point of the trajectory. Due to the
structure of the information matrix, the marginalization only involves local
block operations.

Gaussian in the canonical form can be computed in closed
form [11]. Moreover, due to the structure of the information
matrix for this case, the computations required only involve
local block matrix operations (see Fig. 2). In addition, this
marginalization operation maintains the block tridiagonal
structure of the matrix. In general, if the information at time
t is eliminated, the only blocks affected are those linked to
it (that is, t− 1 and t+ 1), following:

Ωt−1t−1 ← Ωt−1t−1 −ΩT
tt−1Ω

−1
tt Ωtt−1

ξt−1 ← ξt−1 −ΩT
tt−1Ω

−1
tt ξt

Ωt+1t+1 ← Ωt+1t+1 −Ωt+1tΩ
−1
tt ΩT

t+1t

ξt+1 = ξt+1 −ΩT
t+1tΩ

−1
tt ξt

Ωt+1t−1 ← −Ωt+1tΩ
−1
tt Ωtt−1

(11)

D. Decentralized Information Filter

The proposed IF can be easily extended to the multi-
robot case, considering a decentralized approach. In this
case, each robot will run locally Algorithm 1, updating its
full trajectory state with the information obtained from its
sensors. When a roboti is within communication range with
other robotj, they can share their beliefs, represented by
their information vectorsξi,t andξj,t, and matricesΩi,t and
Ωj,t. For Gaussian distributions, equation (4) leads to a quite
simple fusion rule:

Ωi,t ← Ωi,t +Ωj,t −Ωij,t (12)

ξi,t ← ξi,t + ξj,t − ξij,t (13)

which only requires using a separate EIF to maintainΩij,t

and ξij,t (which represent the common information ex-
changed betweeni and j in the past). It is important to
remark that, using this fusion equation and considering
delayed states, the local estimator can obtain an estimation
that is equal to that obtained by a centralized system. This
common information can be locally estimated assuming
a tree-shaped network topology (no cycles or duplicated
paths of information). However, this fixed network topology
is a constraint too strong on the potential communication
links among the (mobile) robots. If there is no assumptions
about the network topology, prior to combining the beliefs,
unknown common information should be removed. If not,
non-consistent estimations could be obtained due to the fact

of adding several times the same information. Another option
is to employ a conservative fusion rule, which ensures that
the system does not become overconfident even in presence
of duplicated information. As commented above, for the
case of the IF, there is an analytic solution for this, given
by the covariance intersection algorithm [8]. Therefore, the
conservative rule to combine the local belief of a roboti

with that received from another robotj is given by:

Ωi,t ← ωΩi,t + (1 − ω)Ωj,t (14)

ξi,t ← ωξi,t + (1− ω)ξj,t (15)

for ω ∈ [0 1]. It can be seen that the estimation is consistent
(in the sense that no overconfident estimations are done)
for any ω. The value ofω can be selected following some
criteria, such as maximizing the obtained determinant ofΩi,t

(minimizing the entropy of the final distribution). The option
chosen by the authors is to useω as a fixed weight that
shows the system confidence in its own estimation and the
neighbor’s ones.

Although employing the CI formula avoids the need to
maintain an estimation of the common information trans-
mitted to the neighbor systems, as these fusion rules are
conservative, some information is lost with respect to the
purely centralized case.

Synchronization of the trajectories:Special care has to be
taken considering synchronization issues when combining
trajectories. The trajectory is represented at discrete time
intervals. The combination formula will work provided that
the differences in these intervals are bounded. Therefore,
trajectories should be adjusted so that the state space is the
same in both cases. Fig. 3 depicts an example of the method.

In our implementation, first, newest time steps are pre-
dicted (eq. 7 and 8), and oldest ones are marginalized out
(eq. 11) until trajectories are adjusted. Thus, in the example,
T ′

0 must be removed andT ′

4 predicted. Then, each time step
is matched with the closest one of the other trajectory. Fur-
thermore, matchings are just allowed if the time differenceis
lower than a certain threshold. No matched time steps must
be also marginalized out before fusing (T2 in the example).

Finally, notice that the algorithm cannot allow crossed
matchings such as the one labeled asWRONGin Fig. 3 This
kind of wrong matchings could result in fatal errors in the
estimations.

III. EXPERIMENTAL RESULTS

In order to test the decentralized perception scheme
presented above, a tracking application is considered in
this Section. Experimental results obtained during real field
experiments integrating three sources of information (two
cameras and a wireless sensor network) will be presented.
The information provided by these sensors have been used
to track the position of a person moving into the experiments
area by means of the decentralized data fusion approach.

The cameras were used to detect the person into the field
of view, providing bearing-only information of the position.
Both cameras were fixed, with known intrinsic and extrinsic



Fig. 3. Example of the method to synchronize two trajectories.

calibration parameters. In addition, the person carried a
wireless sensor node that was used by the sensor network to
provide positioning information based on the received signal
strength information (RSSI) by means of an approach similar
to [12]. This information allows to initialize the track.

A C++ implementation of the decentralized data fusion
scheme called Perception Subsystem (PSS) has been used
to locally process the data gathered by each sensor. This
process will incorporate the local information obtained byits
sensors as well as the information provided by other PSSs
(neighbours’ beliefs), cooperating among them in order to
achieve common objectives. Then, three PSSs were launched
during the experiment: camera 1, camera 2 and wireless
sensor network.

The state estimated and shared between PSSs consisted of
the 3D position and velocity of the person to track, both in
the global coordinate system:

Xt =
(

X Y Z Vx Vy Vz

)T
(16)

The results of the proposed algorithm are compared with
the results obtained by a centralized implementation de-
scribed in [16]. In that version, all the measurements were
processed offline by a centralized EKF without considering
communication issues or delays. The centralized filter has
access to all the information provided by all the sensors in-
stantly, a very important advantage with respect decentralized
approach. Unfortunately, only the X and Y estimations are
shown in the paper due to space constraints.

Thus, Fig. 4 shows the estimated X and Y position of the
target provided by the software instance attached to camera
1. It can be seen how the error with respect the centralized
estimation is, in mean, about one meter. In addition, the
estimated standard deviation from the filter is coherent with
the errors and always inside the3σ confident interval.

An important aspect in decentralized approaches is to
verify that the estimation carried out by the different software
instances converge to a single solution. This is shown in Fig.
5, where the estimated XY trajectory provided by camera
1, camera 2 and wireless sensor network are plot together
with the centralized estimation. It can be seen how both
estimations converge to the same solution with errors in the
order of one meter.
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Fig. 4. Position estimation of the person using the decentralized approach
presented in this paper (red solid line) in camera 1. The estimation provided
by a centralized filter is also presented (black dotted line). It can be seen
how the estimation is always inside the3σ confident interval (blue dashed
line)
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Fig. 6. Estimated standard deviation using the decentralized approach
(red solid line) versus standard deviation computed by the centralized filter
(black dashed line)

Fig. 6 presents the estimated standard deviation computed
by the decentralized approach and the estimated by the
centralized filter. As expected, the decentralized approach
presents more conservative estimations than the centralized
filter produced by communications issues, thecovariance
intersectionalgorithm, and the fact that the decentralized
approach cannot access to all the information at the same
time as the centralized filter does. However, it is worth to
mention the closeness of both estimations which differs in
no more than half a meter. This fact remarks the consistency
and benefits of the proposed approach.

Thus, the experiments showed that the proposed decen-
tralized approach is able to provide estimations with small
errors (about one meter) with respect centralized filters and
very similar standard deviations estimation (about half a
meter difference), but with the advantage of processing the
information in a fully decentralized manner, which basically
improves the fault tolerance and scalability of the system.

IV. CONCLUSIONS AND FUTURE WORKS

The paper presented a decentralized data fusion scheme
valid to perform cooperative perception tasks using a set
of heterogeneous sensors. An extension of the usual EIF
considering delayed states was proposed, which allows to
obtain locally the same estimate than a centralized filter, and
permits to overcome the usual delays and latency in inter-
process communications.

In addition, methods to match trajectories from different
agents and to fuse the information in a conservative way were
explained. This is particularly important in decentralized
architectures in order to face double counting information.

The decentralized data fusion approach has been imple-
mented in C++ and tested with real information, three data
sources has been integrated in those tests. The experiential
results shown that the proposed approach is able to track the
position of a moving object in a fully decentralized manner
with small errors with respect a centralized filter, obtaining
similar results in mean (about one meter error) and standard
deviation (about half a meter difference).

Future works will consider exploiting the information
provided by the trajectory. Techniques such as mutual infor-
mation could be very useful in order to cope with the track-
to-track association problem. Moreover, extending that work
to the multi-target case, new algorithms could be developed
in order to deal with wrong associations made in the past by
using the trajectories. Finally, to demonstrate the scalability
of the approach, we plan to apply it to a bigger, network
involving several robots, a fixed camera network of around
20 cameras and a Wireless Sensor Network.
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