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Abstract— Exploration is a crucial problem in safety of life
applications, such as search and rescue missions. Gaussian
processes constitute an interesting underlying data model that
leverages the spatial correlations of the process to be explored
to reduce the required sampling of data. Furthermore, multi-
agent approaches offer well known advantages for exploration.
Previous decentralized multi-agent exploration algorithms that
use Gaussian processes as underlying data model, have only
been validated through simulations. However, the implementa-
tion of an exploration algorithm brings difficulties that were not
tackle yet. In this work, we propose an exploration algorithm
that deals with the following challenges: (i) which information
to transmit to achieve multi-agent coordination; (ii) how to
implement a light-weight collision avoidance; (iii) how to learn
the data’s model without prior information. We validate our
algorithm with two experiments employing real robots. First,
we explore the magnetic field intensity with a ground-based
robot. Second, two quadcopters equipped with an ultrasound
sensor explore a terrain profile. We show that our algorithm
outperforms a meander and a random trajectory, as well as we
are able to learn the data’s model online while exploring.

I. INTRODUCTION

A. Motivation

Exploration is a fundamental task in a wide range of
applications, such as surveying, environmental analysis, or
search and rescue. For these scenarios, mobile robots are
often well-suited to carry sensors to relevant sampling loca-
tions. In general, it is desirable to reduce the required time
and manpower for the exploration of a given environment.
This naturally leads to parallelization by means of multiple
robots, which form a self-coordinating multi-agent system
with relatively little human supervision per robot.

Let us consider as an example a region devastated by an
earthquake. In such a situation, we must explore the area
as efficiently as possible to, for instance, obtain a usable
map of the disaster area fast and with high resolution. We
foresee the use of a swarm of intelligent agents to carry out
such exploration tasks. Here, the following questions arise: i)

1All authors are with the Institute of Communications and Navigation
of the German Aerospace Center (DLR), Oberpfaffenhofen, 82234
Wessling, Germany, alberto.viserasruiz@dlr.de,
thomas.wiedemann@dlr.de, christoph.manss@dlr.de,
lukas.magel@dlr.de, joachim.mueller@dlr.de,
dmitriy.shutin@dlr.de

2L. Merino is with School of Engineering, Pablo de Olavide University,
Crta. Utrera km 1, Seville, Spain lmercab@upo.es. His work is
partially funded by the Junta de Andalucia through the project PAIS-
MultiRobot (TIC-7390)

Fig. 1: Two quadcopters exploring an a priori unknown terrain
profile with our proposed decentralized multi-agent exploration
algorithm. They are equipped with an ultrasound sensor facing
down to measure the distance to the floor.

which information should the agents communicate to coordi-
nate themselves efficiently, and to decide where to measure;
ii) how to avoid inter-agent collisions; iii) how to learn a
model of the map’s structure without prior information and
iv) how to tackle these challenges in a decentralized manner
to increase the algorithm robustness.

In Figure 1 we show a scaled-down version of our moti-
vation statement. Here, we explore a terrain profile with two
quadcopters using our proposed algorithm.

B. Related Work

The recent advances in mobile robotics, together with
the appearance of smaller and more controllable flying
robots, have opened new frontiers for the development of
novel exploration algorithms [1]. The trend in the robotics
community points towards swarms of small robots that run
light algorithms in a distributed manner. In this direction,
Julian et al. present a coordination method for distributed
robots based on the maximum informativeness criterion [2].
Here we extend their work by exploiting spatial correlations
to accelerate the exploration performance.

These ideas have already been explored in several works.
For example, Markov random fields have been used to model
the spatial correlation of an oceanographic process with
the goal of deriving a level curve tracking algorithm [3].
We are interested in probabilistic models that could allow
us to learn the process’ model from the acquired data.
Specifically, Gaussian processes represent a powerful method
to model spatial phenomena, as well as to learn the process’
spatial structure. Singh et al. propose a procedure to define



suitable covariance functions for Gaussian process regression
in environmental surveillance applications [4]. They extend
those covariance functions to perform informative path plan-
ning. Informative path planning – also called exploration,
active sensing or informative sampling – is often combined
with Gaussian processes due to their ability to predict the
remaining uncertainty about the unobserved part of the
process. Krause et al. study what is the optimal placement
for a network of sensors in order to reduce the uncertainty
of the process under study [5]. However, in their model,
the sensor placements are fixed. Here, we are interested in
exploration with mobile robots. This allows us to cover larger
environments, requires less robots, gives us more flexibility
to monitor dynamic processes, and makes the developed
algorithm more robust against agent failures.

In the literature, single mobile robots have been consid-
ered for different exploration applications using Gaussian
processes as models, such as SLAM [6] or environmental
monitoring [7]. Online estimation of a radio signal source
has been studied in the Gaussian processes context as well
to model the signal propagated by the radio signal source [8].
These works only focus on exploration with a single agent.
We, however, argue that the appropriate cooperation within a
swarm of multiple agents could increase the performance and
robustness of our exploration algorithms, as we will show in
this work.

The problem of multi-robot exploration was tackled by
Singh et al. to optimally plan the trajectories of multiple
robots to explore a process [9]. This process is modeled as
a pre-learned Gaussian process and the optimal exploration
problem is solved in a centralized manner. Decentralization
brings advantages in terms of the algorithm’s robustness
respect to agent failures. Chen et al. propose the use of
Gaussian processes to monitor online traffic with multiple
robots in a decentralized manner [10]. In [11], we proposed
a decentralized multi-agent strategy to explore a magnetic
field intensity in an indoor environment. We evaluated the
algorithm’s performance with respect to several covariance
functions and proved its convergence and scalability with
simulations. However, both of the aforementioned works
assume the model’s hyperparameters to be known. Ouyang
et al. go one step further and propose an algorithm that also
learns these as the process’ structure [12]. They use this
to actively sense an environmental phenomenon, which is
modeled as a non-stationary Dirichlet process mixture of
Gaussian processes. However, they validated the algorithm
in simulations and did not tackle the challenges that ap-
pear in an experiment. Similar to [5], in [13] the authors
propose a decentralized algorithm with mobile robots that
act as elements of a sensor network to monitor a physical
phenomenon in a lab environment. However, they focus on
the spatio-temporal monitoring; i.e. the sensor placements
are fixed and the robots must decide where to move next
in order to monitor the process. The main difference with
our work lies on the fact that we consider all the positions
in the environment as possible sensor placements. Then, we
only aim to measure in some of the locations to reconstruct

the physical process of the complete environment with a
high resolution. In addition, we concentrate on the online-
learning of the hyperparameters and show the experimental
performance of the learning process.

The aforementioned works for a decentralized multi-agent
exploration algorithm are solely validated through simula-
tions. However, the inclusion of several robots in-the-loop
brings difficulties that were not yet shown in the literature. In
this work, we propose an algorithm that addresses the follow-
ing three questions: i) which information should the robots
transmit to allow a decentralized multi-agent coordination;
ii) how to implement a light-weight collision avoidance
mechanism and iii) how to learn the hyperparameters online,
while exploring.

The remainder of the paper is organized as follows. Sec-
tion II states formally the problem. Section III summarizes
the Gaussian process model used to represent the physical
phenomena to be explored. We describe in Section IV
the multi-agent exploration algorithm. Section V presents
the experiments performed, and is then followed by the
conclusions.

II. PROBLEM STATEMENT

We wish to explore an a priori unknown physical process
as accurately as possible, in the sense of minimizing the
difference between estimate and ground truth, and do so
efficiently, i.e. consuming as little as possible of the limited
resources such as time, energy, or communication capacity.

In this work, we assume the following:
• The borders that define the environment are a priori

known.
• The physical process is time-invariant, such as magnetic

field intensity, or terrain profile.
• The agent’s position is known exactly and noise-free.
• The agents network is fully connected and the

communication between agents is perfect.

We employ a swarm of N agents to explore the physical
process under study. The position of the ith agent is xi;
with xi ∈ X ⊂ R3, and i = 1, 2, ..., N , and X is the
environment in which the robot can operate. The physical
process in position xi ∈ X is given by the variable yxi ∈ Y ,
with Y ⊂ R. We assume a sensor model that is described as
zxi

= yxi
+ ε, where zxi

is the measurement of the physical
process taken by robot i at position xi and ε is a noise factor
that is distributed according to ε ∼ N (0, σ2

n).

III. SPATIAL GAUSSIAN PROCESS MODEL

Consider, for example, the task of measuring a terrain
profile of an unknown environment, or the magnetic field
intensity in an indoor environment as the process at hand.
If we could model the spatial correlation of this process,
we could fill spatial gaps between measurements with pre-
dictions [14]. The stronger the correlations and the better
they are represented in a model, the fewer measurements
are needed to achieve a certain accuracy. Gaussian processes
represent a method to model physical phenomena with strong



spatial variations, like ozone concentration [7], magnetic field
intensity [15], etc.

A Gaussian process [16] is a collection of random vari-
ables, any finite number of which have a multivariate Gaus-
sian distribution. As such, it is fully specified by a mean
function m(x) and a covariance function k(x,x′) for any
given positions x and x′.

We define the following vectors for the ith robot: 1) Xi

is a matrix that contains all locations where the ith robot
has measured Xi =

[
x
[1]
i ,x

[2]
i , · · · ,x

[p]
i

]T
; 2) zi are the

measurements taken at locations Xi according to the sensor

model from section II; 3) Xi∗ =
[
x
[1]
i∗ ,x

[2]
i∗ , · · · ,x

[n]
i∗

]T
is a

matrix composed by all positions where we aim to predict
the physical process’ values.

Gaussian processes are commonly used as priors in a
Bayesian setting. Given zi and Xi, we can predict the
target values yi∗ for the corresponding Xi∗. The elements
in yi∗ are distributed according to: p(yi∗|Xi∗,Xi, zi) =
N (µi∗,Σi∗). The mean vector µi∗ and the covariance matrix
Σi∗ of the predictive distribution are calculated as:

µi∗ = m(Xi∗) + KT
∗K−1(zi −m(Xi)),

Σi∗ = K∗∗ −KT
∗K−1K∗,

(1)

with K,K∗,K∗∗ the following matrices defined from the
covariance function as:

K =


k(x

[1]
i ,x

[1]
i ) · · · k(x

[1]
i ,x

[p]
i )

...
. . .

...
k(x

[p]
i ,x

[1]
i ) · · · k(x

[p]
i ,x

[p]
i )

 ,

K∗ =


k(x[1],x

[1]
i∗ ) · · · k(x[1],x

[n]
i∗ )

...
. . .

...
k(x[p],x

[1]
i∗ ) · · · k(x[p],x

[n]
i∗ )

 ,

K∗∗ =


k(x

[1]
i∗ ,x

[1]
i∗ ) · · · k(x

[1]
i∗ ,x

[n]
i∗ )

...
. . .

...
k(x

[n]
i∗ ,x

[1]
i∗ ) · · · k(x

[n]
i∗ ,x

[n]
i∗ )

 .

(2)

The definition of the covariance function assumes the notion
of similarity, which means that we expect that closer points
are more likely to be similar. We focus our interest in
stationary and isotropic covariance functions. In this work,
we employ the squared exponential covariance function (3)
because of its ability to model smooth processes, as the ones
we aim to explore.

k(x,x′) = σ2
f · exp

[
−(x− x′)2

2l2

]
+ σ2

nδxx′ , (3)

where δxx′ = 1 iff x = x′ is the Kronecker’s delta.
Let us define the hyper-parameters θ = [σ2

f , l, σ
2
n]

T as a
set of parameters that completely define the process’ model.
Gaussian processes represent a powerful method to learn this
model from the data. Given the training data, we can compute
the hyperparameters θi∗ that best fit our measurements. This

can be done by maximizing the log-marginal likelihood
(LML) with respect to the hyper-parameters θ,

θi∗ = argmax
θ

{
1

2
zTi K−1zi +

1

2
log|K|

}
, (4)

where K is a function of the hyperparameters θ according
to (2) . We employ conjugate gradients for the optimization.

IV. DECENTRALIZED MULTI-AGENT
EXPLORATION

We aim to explore an a priori unknown process. That
means we should learn the process’ model while exploring
in order to sample at those locations that better exploit
the current model. First, we present the algorithm for the
single-agent exploration. Second, we extend it to allow the
exploration with multiple robots in a decentralized manner.

A. Single Agent Exploration

We propose an algorithm that is based on four steps:
Sense, Learn, Predict and Move (see Algorithm 1). It takes
as an input the set of locations X over which the explored
process is defined, and a stopping criterion. This stopping
criterion could be defined by the user (e.g. time, battery life)
or could be determined from the data (e.g. measure of re-
maining uncertainty). We initialize the ith robot’s position as
x
[1]
i , and the vector of measurements zi and their respective

positions Xi as empty (line 1). Then we run the algorithm
until it fulfills the stopping criterion.

Algorithm 1 SingleAgentExploration(X , StopCriterion)

1: i = 1;xi ← x
[1]
i ; zi ← NULL;Xi ← NULL

2:
3: while ! StopCriterion do
4: zxi ← Sense(xi)
5: zi ← [zi; zxi ]

6: Xi ← [Xi;x
T
i ]

7: θi∗ ← LearnHyp(zi,Xi)
8: Xi∗ ← CalcNeighbors(X ,xi)
9: µi∗,Σi∗ ← PredictGP(zi,Xi,Xi∗,θi∗)

10: xnext ← argmax
x∈Xi∗

(σ2
i∗)

11: xi ← MoveTo(xnext)

First, we take several measurements at position xi and
filter them to obtain zxi (line 4). This filtering step allows
us to mitigate the sensor noise and to reject possible outliers.

Second, we incorporate the new measurement and its
location into our measurements’ vector and positions’ vector
(lines 5,6). We use those measurements to learn the model’s
parameters that best represent our data (line 7). The better
the model, the better we will be able to predict the most
interesting areas to explore next. In our Gaussian process
model, learning the model is equivalent to learning the
optimal hyperparameters that characterize the covariance
function. This can be done with equation (4).

Next, we select the set of positions where the agent can
move in the current iteration (line 8). Since we are interested
in learning the local correlation between measurements,
we consider a greedy approach to select the agent’s next



position. Therefore, the matrix of possible next positions Xi∗
corresponds to those located within a sphere Br(xi)

1, of
radius r equal to the desired measurements’ resolution2 and
centered at the agent’s position xi:

Xi∗ = {x ∈ X | x ∈ Br(xi)} . (5)

We predict the process’ vector of means µi∗ and covari-
ance matrix Σi∗ in the positions Xi∗ using the Gaussian
process model learned in line 7. These vectors of means and
variances are calculated according to equation (1), where the
inputs are the vector of measurements zi and their respective
locations Xi (line 9). In [11], we showed that the locality of
the predictions does not affect the algorithm’s performance.
Therefore, here we just perform the prediction in a local
area centered at the agent’s position in order to preserve the
scalability with respect to the number of measurements.

The predicted variance is a measure of the process en-
tropy [17]. We aim to sample where the entropy is highest;
i.e. at the most informative location. Therefore, we move
to the position xnext ∈ Xi∗ with the highest predicted
uncertainty/variance (line 10). The variance is given by
vector σ2

i∗ that is composed of the elements of the main
diagonal of matrix Σi∗. Each of the elements of vector σ2

i∗
represents the variance at positions x

[j]
i ∈ Xi∗.

The robot continues running the algorithm by moving
towards positions with high uncertainty. Once the algorithm
stops, the collected measurements are used to predict the
process value at any possible location in X . This also
suppresses the measurement noise. The prediction gives us
the mean and variance of the distribution at all positions
x ∈ X . We select the mean of each of the distributions as
our exploration result of the physical process under study.

B. Multi-Agent Exploration

Now, we extend the single-agent exploration algorithm
to handle multiple robots (see Algorithm 2). The proposed
algorithm is able to coordinate the robots while avoiding
inter-agent collisions. This algorithm runs in a decentralized
manner, such that each of the agents does its own decisions
based on the current information. This information consists
of the single measurements taken by the agents, together
with their respective locations and the positions where the
agents are heading to. They correspond to an exchange of
ten scalar values per agent in a 3-dimensional environment,
which makes the information exchange feasible from the
communication perspective. Multi-agent coordination by ex-
changing a small amount of data is possible due to the fact
that agents share the same data model; i.e. they all employ
the same mean function and covariance function for the
Gaussian processes regression and learning. In the following,
we explain the algorithm in detail.

Let’s consider N robots for the exploration, with each
robot i starting at a different position x

[1]
i . The vectors of

1In our particular experimental setup, where the agents move in a two-
dimensonal space, the sphere Br corresponds to a circle of radius r.

2The measurements’ resolution corresponds to the resolution with which
we aim to reconstruct the physical process under study.

Algorithm 2 MultiAgentExploration(X , StopCriterion)

1: {xi}Ni=1 ← x
[1]
i ; {zi}Ni=1 ← NULL; {Xi}Ni=1 ← NULL

2:
3: for agent i = 1, ..., N do
4: while ! StopCriterion do
5: zothLast,XothLast,XothNext ← ReceiveInfo(∀j ∈ N)
6: zxi ← Sense(xi)
7: zi ← [zi; zothLast; zxi ]

8: Xi ← [Xi;XothLast;xi
T ]

9: θi∗ ← LearnHyp(zi,Xi)
10: Xi∗ ← CalcNeighborsMA(X ,XothLast,XothNext,xi)
11: µi∗,Σi∗ ← PredictGP(zi,Xi,Xi∗,θi∗)
12: xnext ← argmax

x∈Xi∗
(σ2

i∗)

13: BroadcastInfo(zxi ,xi,xnext)
14: xi ← MoveTo(xnext)

measurements and measurements’ positions of each of the
robots are initialized as an empty set (line 1). Then, each
individual robot runs its own algorithm and communicates
with the other robots until the stopping criterion is fulfilled.
It is important to remark that the for-loop runs in parallel
in each of the agents. However, the instructions contained
in the while-loop run sequentially for each of the N agents.
We assume as well that the agents are timely synchronized.

In a first step, we receive the information broadcasted by
the other agents (line 5). It consists of the last measurement
taken by each of the other agents (zothLast); as well as the
positions where those measurements were taken (XothLast),
and the next positions where the agents are heading to
(XothNext)3. This information is sufficient to achieve the
inter-agent coordination. On the one hand, the knowledge
about the other agents’ current position and next positions
allows us to implement a collision avoidance mechanism.
On the other hand, the set of measurements provided by
the other agents act as an indirect mechanism to coordinate
the exploration efforts. Since all agents share the same data
model, each of them can reproduce what the other agents’
uncertainties look like. This leads to an implicit coordination
that avoids, for example, that two agents measure at the same
position if it is not strictly necessary. It is important to notice
that the reception works as a process in parallel, capturing
all the broadcasted information during one iteration of the
algorithm.

In a second step, the robot incorporates the new mea-
surements to its own vector of measurements (lines 6-8)
and computes its next position as explained in the previous
section. However, we must consider the possible inter-agent
collisions to calculate the set of next positions Xi∗ (line
10). Here, we add a new constraint to calculate Xi∗ that
forbids agents to be closer than a safety distance dsafe to
each other. We must guarantee this distance respect to the
other agents’ positions XothLast, as well as to the positions
XothNext where the other agents are heading to. Now the

3Vector zothLast has dimensions (N − 1, 1). Matrices XothLast and
XothNext have dimensions (N − 1, 3).



set of possible next positions is reduced to:

Xi∗ =

x ∈ X

∣∣∣∣∣∣
x ∈ Br(xi),
min(||x−XothLast||2) > dsafe,
min(||x−XothNext||2) > dsafe,


(6)

where min(||x−X||2) is the minimum euclidean distance
between x and any of the rows in vector X.

Once the agent has calculated its next position, it broad-
casts its current measurement and its next position to visit.
The agents explore the physical process until they reach their
stopping criteria. Then each of them is able to reconstruct
the physical process as we described it for the single-agent
exploration case.

V. EXPERIMENTS AND DISCUSSION OF RESULTS
We validate our algorithm for the exploration of two

different physical processes with two different types of
robotic platforms (ground-based and flying robots). In
both cases, and without loss of generality, we assume a
two-dimensional environment X ⊂ R2. For the second
experiment, each of the quadcopters move in a 2-dimensional
space at a constant height. We employ a commercial motion
capture system (Vicon) to provide ground truth information
of the robot’s position. Our particular setup consists of 16
infrared sensitive cameras and infrared strobes.

(a) Quadcopter. (b) Slider.

Fig. 2: Left: a quadcopter equipped with an ultrasound sensor
facing down to measure the range to the floor. Right: a holonomic
ground-based robot measuring the magnetic field intensity with a
magnetometer.

A. Experiment 1: Magnetic Field Intensity

1) Experimental Setup: We explore the magnetic field
intensity on the floor in an indoor environment using a
ground-based holonomic robot equipped with a magnetome-
ter (see Figure 2b). We aim to reconstruct this magnetic field
intensity with a resolution of 10 cm in an environment that
measures 7.5 m × 3 m. The robot is a modified version of
the commercially available Slider platform by Commonplace
Robotics. The magnetic field sensor module used in the
reported experiments is part of a commercial integrated
sensor package (Xsens MTx). The complete algorithm runs
on a laptop mounted on top of the robot.

We measured the complete magnetic field intensity in the
exploration environment with a resolution of 10 cm and we
took these measurements as ground truth. This is a valid
assumption, considering that the magnetometer is considered
as almost noise-free according to its specifications.

2) Experimental Results: In this first experiment, we are
interested in testing the proposed exploration strategy for
the single-robot case. Therefore, we test the algorithm per-
formance assuming we know a priori the data model; i.e. we
know the model’s hyperparameters a priori. Figure 3 shows
the evolution of the root-mean-square error (RMSE) as a
function of exploration time for three different trajectories: a
meander like trajectory, a random trajectory where the target
positions are selected according to a uniform distribution
from the set of positions in the environment, and finally our
algorithm’s trajectory. We predict the magnetic field values
in the non-measured positions using Gaussian processes
regression with the optimal hyperparameters learned from
the ground truth data. We observe that the RMSE with our
algorithm is close to zero, while we have just measured a
40% of the environment.

Fig. 3: Root mean squared error of the estimated magnetic field in-
tensity with respect to the ground truth for three different algorithms
during a 23 minutes exploration.

B. Experiment 2: Terrain Profile

1) Experimental Setup: We validate our algorithm in a
second experiment with two quadcopters to explore a height
profile. In this case, the environment measures 8 m× 3 m,
and the built height profile measures approx. 60 cm from top
to bottom. We intend to explore it with a lateral resolution of
20 cm. Each of the quadcopters flies at a different constant
height above the floor of 1 m and 1.5 m to avoid the risk
of collisions, although they are not aware of it. They are
each equipped with a commercial ultrasound sensor from
MaxBotix facing down to measure the range to the floor
(see Figure 2a). The sensors each have a nominal range of
approx. 7.5 m with opening angles of 45◦ in the near field
and a cylindrical measurement profile for ranges greater than
1.5 m. The profile’s height is calculated as the difference
between the robot’s actual height, which is known and noise-
free, and the range between the quadcopter and the height
profile. This range is measured with the ultrasound sensor.
It is important to remark that the measured terrain’s height
is independent of the quadcopter’s z component.

In order to consider valid measurements for the explo-
ration task, we carry out a pre-filtering step. This is needed
due to the characteristics of the ultrasound sensor. Its work-
ing principle is based on sending an impulse and waiting
for the echo to calculate the distance to the closest object
within the sensor’s footprint. It could happen that reflections



in the environment and oscillations of the quadcopter’s pose
could lead to missing measurements (the echo does not return
to the ultrasound sensor) or not-plausible measurements (the
impulse gets affected by multiple reflections and the resulting
measurement is inconsistent considering the environment
structure). Therefore, multiple measurements need to be
taken to mitigate such effects. We solve this problem by
averaging over 10 valid measurements taken at the position
of interest; i.e. we discard those measurements that are not
plausible, such as negative heights and heights that are above
the quadcopter actual z position. In case we obtain no valid
measurements during an interval of 30 seconds, we average
over the last 10 valid measurements, which are stored in a
buffer. This approximation is possible due to the notion of
similarity that assumes that closer points in space are more
likely to be similar.

The algorithm uses the robot operating system (ROS) [18],
and utilizes WiFi for the communication between agents. It
is important to notice that, although the algorithm itself is de-
centralized, only parts of it run on the Raspberry Pi mounted
on the quadcopters due to the computational limitations of
these devices. Instead, the Gaussian processes regression and
learning of hyperparameters run in one separate central com-
puter, but in a decentralized manner. This decentralization is
possible because of the nature of ROS, where nodes run
in different threads. We employ the pyGPs [19] library to
perform these calculations.

For the terrain profile, the ground truth corresponds to 13
markers placed randomly distributed along the height profile.
Their positions are recorded using the Vicon tracking system.

2) Experimental Results: We have shown in the previous
experiment that our algorithm outperforms the meander and
random trajectory. However, we assumed the data model as
known. In a realistic scenario, such as a search and rescue
mission, we have no prior information about the physical
process under study. Instead, we must learn the data model
online while performing the exploration. We show in this
section results corresponding to the online learning of the
model’s hyperparameters; as well as the performance of the
proposed multi-agent exploration algorithm.

First, we analyze the root-mean-square error (RMSE)
between estimate and ground truth (the 13 markers men-
tioned above) after running the exploration algorithm during
the lifetime of the quadcopter’s battery, which is approx.
8 minutes in our case. Exchanging the batteries of the
quadcopter is a highly time-consuming process. Therefore,
our goal is developing exploration algorithms that are able
to reconstruct the original process during this battery’s life-
time. This is done by both developing intelligent exploration
strategies and increasing the number of robots in the swarm.

We compare in Figure 4 the performance of five explo-
ration strategies over time: (i) meander-like trajectory with
pre-set hyperparameters that measures all the positions in
the environment; (ii) random trajectory with online learn-
ing of hyperparameters; (iii) our single-agent exploration
algorithm with online learning of hyperparameters; (iv) our
multi-agent exploration algorithm with online learning of

hyperparameters ; (v) our multi-agent exploration algorithm
with pre-set hyperparameters. Both trajectories (i) and (ii)
employ Gaussian processes regression to predict the physical
process values at positions that were not yet measured.
Trajectories (i) and (v) carry out the regression using the
optimal hyperparameters learned from the data collected with
the meander trajectory in a previous exploration run.

Fig. 4: Terrain profile. Root mean squared error with respect to
the ground truth for five different algorithms during a 8 minutes
exploration.

First thing we observe from results is that the minimum
error we achieve is approx. 7 cm. This error may seem
relatively large. However, it is equal to the best performance
we can obtain with the ultrasound sensor in the explored
environment. We measured all positions in the environment
(we needed 3 batteries and 53 minutes) with the meander
trajectory and calculated the RMSE as benchmark. The
resulting RMSE was 7.64 cm4, although we had measured
the complete physical process. This error is considerably
large and is due to the sensor’s footprint and sensor’s
characteristics, and to the oscillations of the quadcopter while
flying . The sensor takes the minimum range – maximum
height – within its footprint. Therefore it is not able to
distinguish between different heights that are close. This
fact induces the error. Since that is the best performance
we can get with the sensor without any postprocessing of
the measurements, we assume this error as the best possible
solution we can obtain.

Next fact we notice is that, in contrast to the results
obtained for the magnetic field intensity, the error with the
random and single-agent exploration is larger than the one
obtained with the meander trajectory. The difference in this
case is that we are learning the model’s hyperparameters
online, while in the other situation they were pre-set to the
optimal values. Now, the amount of measurements collected
with a single quad in the initial phase of the exploration run
is not enough to learn the process model fast, which incurs
in an initial loss of performance that is dragged during the
rest of the exploration.

However, attending at results from Figure 4, performance
of the random trajectory is comparable to the performance
of the single-agent exploration algorithm. Figure 5a demon-
strates that this performance of the random trajectory is a

4The fact that the meander’s error after measuring the complete process
is larger than the one obtained with our algorithm is due to the sensor’s
noise.



mere coincidence, since this trajectory does not guarantee
the convergence of the hyperparameters learning (see interval
between 210 and 320 seconds). In contrast, as we show
in Figure 5b, our algorithm converges fast to the optimal
hyperparameters given the available measurements because
of the greedy nature of the algorithm.

(a) Hyperparameters learned while following a random trajectory.

(b) Hyperparameters learned by the two quads, hans and hindrich,
while exploring with our algorithm.

Fig. 5: Hyperparameters learned during the exploration run. The
black points represent the actual values. The color lines are the
result of a linear interpolation of those points.

Since one quad is not sufficient to explore this physical
process, we use the multi-agent exploration algorithm with
online learning of hyperparameters with two quads (trajec-
tory (iv)). Here, we observe in Figure 4 that the error has
been reduced by one half respect to our benchmark, which
proves the correct coordination between robots. However,
this error of 12.84 cm is still larger than our benchmark
error of 7.64 cm. On the other hand, the exploration time
was 8 minutes, which is approx. seven times smaller than
the time needed to achieve our benchmark error.

In order to understand where this remaining error lies, we
run the multi-agent exploration algorithm with two quads but
with the optimal hyperparameters that where set and pre-
learned from the data collected with the meander trajectory.
This corresponds to trajectory (v). Here, we notice that
the error is approx. equal as our best possible solution
while the exploration time is approx. seven times smaller.
Figure 6 shows the trajectories of the two robots for the
trajectories (iv) and (v). We can see that for the online
learning case, the robots fly around in a local area in the
starting phase. This response is due to the fact that the
robots have not learned a proper model and are not able
to decide correctly where to measure next. We observe this
behavior as well in Figure 5b. In the first 220 seconds, the
hyperparameters learning does not converge and this causes
an inferior performance compared to the set hyperparameters
trajectory. However, we remark that the convergence time

is fast considering the non-smooth nature of the measured
physical process.

(a) Hyperparameters learning. (b) Hyperparameters set.

Fig. 6: Reconstruction of the terrain profile (see Figure 1) after
running our algorithm for two different setups: online learning
(left) and defined hyperparameters (right). On top we show the
trajectories of the two quadcopters. The big blue dots correspond
to the markers’ positions that serve us as ground truth.

We can conclude that our multi-agent exploration algo-
rithm is able to achieve the correct coordination between the
robots. However, as part of the future work we must improve
the learning phase to get closer to the performance obtained
while using the optimal hyperparameters.

VI. CONCLUSIONS AND FUTURE WORK

The paper has presented a method for multi-agent explo-
ration of spatially distributed physical phenomena. Gaussian
processes are employed as the underlying representation.
Then, the system is able to learn, online and in a decentral-
ized fashion, the hyperparameters of the Gaussian process,
and, at the same time, determine the best next positions of
the agents in the team to obtain new measurements from
the point of view of information gain. Agent coordination
and collision avoidance is achieved by sharing information.
The experiments show how the method allows for a more
efficient exploration of the environment compared to other
strategies.

Future extensions of the algorithm include considering a
more complex environment populated with obstacles. In this
sense, we aim to extend our previous work in [20] to propose
a multi-agent exploration algorithm in complex, unknown
environments. We would like as well to perform exploration
missions with robots with complex dynamics. In addition,
in order to consider the algorithm for actual search and
rescue operations, we should extend it to handle uncertainty
in the robot’s motion and positioning. As part of the future
work, we believe we could reduce the ultrasound sensor error
adding a post-processing step and considering an array of



sensors. Additionally, we are interested in exploring alter-
native covariance functions to represent better the process’
model.

One of the assumptions of our proposed work is that the
network of agents is fully connected. This assumption could
be relaxed by considering a connected network and using
appropriate communication protocols. However, to achieve
scalability respect to the number of agents, we aim to
consider distributed algorithms. That includes solving the
Gaussian processes regression and learning of hyperparam-
eters in a distributed fashion; as well as determining the
exploration targets in a distributed manner by employing
consensus algorithms.
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