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Abstract

Planning under uncertainty faces a scalability problem when considering multi-robot teams, as the information
space scales exponentially with the number of robots. To address this issue, this paper proposes to decentralize
multi-robot Partially Observable Markov Decision Processes (POMDPs) while maintaining cooperation between
robots by using POMDP policy auctions. Auctions provide a flexible way of coordinating individual policies
modeled by POMDPs and have low communication requirements.Additionally, communication models in the
multi-agent POMDP literature severely mismatch with real inter-robot communication. We address this issue by
exploiting a decentralized data fusion method in order to efficiently maintain a joint belief state among the robots.
The paper presents two different applications: environmental monitoring with Unmanned Aerial Vehicles (UAVs);
and cooperative tracking, in which several robots have to jointly track a moving target of interest. The first one is
used as a proof of concept and illustrates the proposed ideasthrough different simulations. The second one adds
real multi-robot experiments, showcasing the flexibility and robust coordination that our techniques can provide.



1 Introduction

Multi-robot systems are of great interest in
many robotic applications, such as exploration
[de Hoog et al., 2009], surveillance [Burdakov et al.,
2010], monitoring [Leonard et al., 2010] or rescue
robotics [Merino et al., 2006, Hsieh et al., 2007,
Maza et al., 2011]. In those applications, a single
robot is not usually able to acquire all the required
information and the cooperation among multiple robots
is essential (see Fig. 1). However, real scenarios present
uncertain and potentially hazardous environments in
which robots can experience communication con-
straints regarding connectivity, bandwidth and delays.
Mapping the overall task into robust plans for each
robot is a challenging problem.

Even when planning for a single robot, uncertainty
complicates task planning. For instance, in many
robotic applications the sensors on board the robot do
not allow it to unambiguously identify its own loca-
tion or pose [Thrun et al., 2005]. Partially Observ-
able Markov Decision Processes (POMDPs) provide a
sound mathematical framework to cope with decision-
making in uncertain and partially observable environ-
ments [Sondik, 1971, Kaelbling et al., 1998].

However, although there are POMDP solvers
able to successfully handle large state spaces cur-
rently, POMDPs ultimately face a scalability prob-
lem when considering planning for multi-agent
teams [Seuken and Zilberstein, 2008]. Popular mod-
els like Dec-POMDPs [Bernstein et al., 2002] or ND-
POMDPs [Nair et al., 2005] remain limited to toy
problems, and other models require flawless instan-
taneous communication [Pynadath and Tambe, 2002,
Nair et al., 2004, Roth et al., 2005].

In this paper, we propose a scheme for exploiting the
power of decision-theoretic planning methods such as
POMDPs, while mitigating their complexity by low-
ering the dependence between individual plans. In
particular, the approach solves independent POMDPs
for each robot, but still fosters online cooperation dur-
ing the execution phase by distributing the individ-
ual policies using auctions. Auction algorithms have
been widely used for optimal multi-robot task alloca-
tion [Gerkey and Matarić, 2004, Mosteo and Montano,
2007, Viguria et al., 2008], and have also been explored
in conjunction with POMDPs [Spaan et al., 2010a].

In addition, robotic teams commonly are capable of
communicating, which we exploit to maintain a decen-
tralized state estimate. Nonetheless, a key point in our

Figure 1: Multi-robot systems like multi-UAV systems
have been demonstrated as very useful in tasks like
disaster monitoring, tracking or surveillance activities
[Merino et al., 2006, Maza et al., 2011].

approach is that we relax the strict assumptions on the
quality of the communication channel commonly found
in the literature on multi-agent planning under uncer-
tainty [Pynadath and Tambe, 2002, Nair et al., 2004,
Roth et al., 2005]. Actually, we consider fully decen-
tralized solutions, that is, solutions that only involve
local information and point-to-point communications,
and which are scalable with the total number of robots.

In the next subsections, a definition of the decentral-
ized models assumed in this paper is stated; some re-
lated works are reviewed; and the main contributions of
the paper are highlighted.

1.1 Decentralized systems

When designing control algorithms for multi-robot sys-
tems, it is important to keep in mind their possibilities
and constraints. Of particular relevance in our context
is the fact that communication between robots is often
possible, but the quality of the communication channel
can vary. This precludes centralized solutions as well as
methods requiring communication guarantees. There-
fore, we focus on decentralized models. In particular,
we adhere to the following definition of a decentralized
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system [Nettleton et al., 2003], see Fig. 2:

1. There is no central entity required for the opera-
tion.

2. There is no common communication facility; that
is, information cannot be broadcasted to the whole
team, and only local point-to-point communica-
tions between neighbors are considered.

3. The robots do not have a global knowledge about
the team topology: they only know about their lo-
cal neighbors.

These characteristics make the system scalable as it
does not require a central node and enough bandwidth
to transmit all the information to that node. Moreover,
the system is more robust and flexible with respect to
loss or inclusion of new robots (there is no need to know
the global topology), and with respect to communica-
tion issues (a failure does not compromise the whole
system).

1.2 Related work

In the single-robot case, the POMDP model
has been applied to a wide variety of robotic
applications. Those include robot navigation
[Simmons and Koenig, 1995, Spaan and Vlassis, 2004,
Roy et al., 2005, Foka and Trahanias, 2007], active
sensing [Hoey and Little, 2007, Spaan et al., 2010b],
object grasping [Hsiao et al., 2007] or human-robot
interaction [Doshi and Roy, 2008].

For multi-robot systems, there are also many mod-
els extending POMDPs, but they usually make strong
assumptions in terms of communication quality or face
scalability issues regarding the number of robots. This
literature for multi-agent planning under uncertainty
will be reviewed later in Section 3.

Apart from POMDPs, there are many other proba-
bilistic approaches that deal with decision-making in
multi-robot teams. For instance, a multi-task archi-
tecture for tracking and monitoring is presented in
[Maza et al., 2011]. However, reasoning on the un-
certainties inherent to the different tasks is just in-
cluded as an ad-hoc plan refining module, as the tasks
are considered observable and deterministic. More-
over, a decentralized algorithm for mapping and track-
ing is presented in [Stroupe and Balch, 2005], whereas
in [Bourgault and Durrant-Whyte, 2004, Wong et al.,
2005], the focus is on multi-target search. Also, there is
some work [Shah et al., 2009] dealing with online task

Figure 2: Decentralized approach. The communication
domains for robotsi, j andk at a given instant are in-
dicated. All the operations are performed within these
domains, so the complexity of the operations is limited
by the number of neighbors of each robot. However,
the information flow through the network will permit
cooperation between all robots.

allocation under uncertainties in which the robots rea-
son about temporal constraints. In a close work to ours
but using a different model, Cole et al. [2006] consider
decentralized state estimation and auctioning for multi-
vehicle coordination in information gathering missions.
Optimal policies are obtained by maximizing the ex-
pected information gain as utility. Multi-vehicle coordi-
nation is performed by a similar auctioning mechanism.
Even though these approaches may cope with some of
them, POMDP techniques embrace together several in-
teresting features for robotic tasks: (i) they deal with
sequential problems and optimize forward for a time
horizon; (ii) they reason about noisy and delayed robot
movements; (iv) they can weight naturally different cost
functions in parallel and implicitly consider the value of
information gathering.

1.3 Main contributions

As a first contribution in this paper, we propose to emu-
late a multi-robot POMDP by combining individual be-
haviors or roles that can be represented by single-robot
POMDPs. We generalize a centralized POMDP auc-
tion [Spaan et al., 2010a] to assign never-ending poli-
cies (behaviors) to different robots at every step. In this
novel decentralized auction, instead of tasks, POMDP
policies that describe a behavior towards a common
goal are distributed; robots can switch between these
behaviors dynamically at each decision step. The auc-
tion determines continuously which behavior is best
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for each robot to cooperatively attain the goal. Since
local POMDPs are solved for each robot, the inter-
connection between the models is low and the approach
can scale well with the number of robots.

The second key component is to efficiently maintain
a joint belief state among the robots, which can serve as
coordination signal. We use an existing Decentralized
Data Fusion (DDF) approach [Capitan et al., 2011], but
in conjunction with POMDP policies for a multi-robot
system. Unlike most work on POMDPs, the belief up-
date here is separated from the decision-making process
during the execution phase. This decoupling between
both processes increases the robustness and reliability
of real-time robotic teams.

In order to highlight the flexibility and performance
of the methods proposed, two different multi-robot ap-
plications are presented. First, environmental mon-
itoring, in which several UAVs have to evaluate the
level of contamination on a given terrain with less
uncertainty as possible. Second, a tracking applica-
tion, in which several robots have to cooperate in or-
der to track a moving target as accurately as possi-
ble. Nonetheless, our techniques suit a wider range
of problems, such as surveillance [Hsieh et al., 2007,
Burdakov et al., 2010] or fire detection [Merino et al.,
2006, Maza et al., 2011], which call for a cooperative
effort of robots coordinating their individual roles.

The paper shows extensive simulation results, but it
also demonstrates the proposed approaches in a real
multi-robot testbed. This is done for the coopera-
tive tracking application and using a fully decentralized
setup in real-time.

1.4 Organization

The remainder of the paper is organized as follows:
Section 2 summarizes POMDP models and describes
the decentralized data fusion algorithms; Section 3 dis-
cusses current approaches in the literature for multi-
agent planning under uncertainty; Section 4 proposed
a role-based model for multi-robot planning; Section 5
describes the algorithms for auctioning POMDPs in a
decentralized manner and the overall overview of the
complete system; Sections 6 and 7 present the two ap-
plications used as case studies, including experimental
results; and Section 8 gives the conclusions and future
work.

2 Background

We give a short description of a decision-theoretic
model for single-robot and multi-robot planning, fol-
lowed by a method for maintaining a joint belief by
multiple robots.

2.1 Decision-theoretic planning models

A popular model for single-robot planning under uncer-
tainty in sensing and acting is the Partially Observable
Markov Decision Process (POMDP).

Formally, a POMDP is defined by the tuple
〈S,A, Z, T,O,R, h, γ〉 [Kaelbling et al., 1998]: The
state spaceis the finite set of possible statess ∈ S; the
action space, the finite set of possible actionsa ∈ A;
and theobservation spaceconsists of the finite set of
possible observationsz ∈ Z. At every step, an action is
taken, an observation is made and a reward is given.
Thus, after performing an actiona, the state transi-
tion is modeled by the conditional probability function
T (s′, a, s) = p(s′|a, s), and the posterior observation
by the conditional probability functionO(z, a, s′) =
p(z|a, s′). The reward obtained at each step isR(s, a),
and the objective is to maximize the sum of expected
rewards, orvalue, earned duringh time steps. To en-
sure that this sum is finite whenh → ∞, rewards are
weighted by a discount factorγ ∈ [0, 1).

Given that it is not directly observable, the actual
state cannot be known by the system. Instead, a proba-
bility density functionb(s) over the state space is main-
tained. This is called thebelief stateand, due to the
Markov assumption, it can be updated with a Bayesian
filter for every action-observation pair:

b′(s′) = ηO(z, a, s′)
∑

s∈S

T (s′, a, s)b(s) (1)

whereη acts as a normalizing constant such thatb′ re-
mains a probability distribution.

The objective of a POMDP is to find a policy that
maps beliefs into actions in the formπ(b) → a, so that
the total expected reward is maximized. This expected
reward gathered by followingπ starting from beliefb is
called the value function:

V (b) = E

[

h
∑

t=0

γtr(bt, π(bt))|b0 = b

]

(2)

wherer(bt, π(bt)) =
∑

s∈S R(s, π(bt))bt(s). There-
fore, the optimal policyπ∗ is the one that maximizes
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that value function:π∗(b) = argmax
π

V (b).

There are two key results for computing optimal poli-
cies in discrete POMDPs. First, the value function at
horizont can be constructed iteratively from the value
function at horizont− 1 (Value Iteration):

V (t)(b) =

max
a

[

∑

s∈S

R(s, a)b(s) + γ
∑

z∈Z

p(z|a, b)V (t−1)(bza)

]

(3)

wherebza is the belief updated according to (1). Second,
it can be proven that the optimal value function for any
finite horizon is piecewise linear and convex [Sondik,
1971]. It means that the value function at iterationt
can be expressed by a set of vectorsΓt (|S|-dimensional
hyperplanes), each of them defining a region in the be-
lief space for which they are the maximizing element of
V (t).

In general, computing an optimal policy requires one
to explore the continuous belief space, which can be
very complex. Classic point-based solvers, such as
SARSOP [Kurniawati et al., 2008] or Symbolic Perseus
[Poupart, 2005], approximate the value function iter-
atively (3) using a finite set of belief points. More-
over, other solvers [Theocharous and Kaelbling, 2003,
He et al., 2011, Kurniawati et al., 2011] improve policy
computation by sampling the belief space efficiently or
by considering macro-actions. However, our approach
is independent of the particular (approximate) POMDP
solver employed, and advances in POMDP solving can
be applied directly.

2.2 Multi-robot models

When a set ofn robots that share the same reward
function is considered, there are two main options to
extend the POMDP framework. The Decentralized
POMDP (Dec-POMDP) model allows for fully decen-
tralized execution [Bernstein et al., 2002], while the
Multi-agent POMDP (MPOMDP) takes a centralized
approach [Pynadath and Tambe, 2002].

Each roboti can execute an actionai from a fi-
nite setAi and receives an observationzi from a finite
setZi. The key difference between the Dec-POMDP
and MPOMDP models is that in the decentralized case,
each robot only observes its local observationzi, while
in the centralized case, each robot observes the full

time
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Figure 3: Illustration of the difference in information
flow between a centralized model (a) and a decentral-
ized one (b).

observation vectorz. Figure 3 illustrates these con-
cepts, showing that in an MPOMDP the robots need
to synchronize their knowledge using communication.
In fact, for the reduction to an MPOMDP, communi-
cation is assumed to be instantaneous and free of cost
[Pynadath and Tambe, 2002].

In both models, the transition functionT (s′, aJ , s) is
defined over the set of joint actionsaJ ∈ A1×· · ·×An,
and the observation functionO(zJ , aJ , s

′) relates the
state to the joint action and the joint observationzJ ∈
Z1 × · · · × Zn. The common reward signal is defined
over the joint set of states and actionsR : S × A1 ×
· · · ×An → R.

The goal in the multi-robot case is to compute an op-
timal joint policy π∗ = {π1, · · · , πn} that maximizes
the expected discounted reward (as in the POMDP
case). In the MPOMDP case, as robots at each
time step have access to the joint observation and
the joint action, they can maintain a joint belief us-
ing (1) (substituting the single-robot models with the
joint ones). In the Dec-POMDP case, beliefs over
the state space cannot be computed as the observa-
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tion function requires the full observation vector to
be known. As a result, optimal policies map indi-
vidual action-observation histories to actions. The
computational complexity of solving a Dec-POMDP
is significantly higher than that of a POMDP (NEXP-
complete [Bernstein et al., 2002] vs. PSPACE-complete
[Papadimitriou and Tsitsiklis, 1987]).

2.3 Decentralized data fusion

Between the information exchange required by the
MPOMDP model (equivalent to a centralized system
with access to all the information at every time instant)
and the Dec-POMDP model (no exchange at all), there
is the option of estimating the joint belief (1) in a decen-
tralized way: that is, using just local information and
exchanging information with the neighbors.

In order to determine how to estimate the belief in a
decentralized way, it is convenient to consider the joint
belief bJ(s0:t) for the full state trajectory (from time 0
up to timet). Assuming that the data gathered by the
different robots at any time instantt areconditionally
independentgiven the state at that instantst, and the
same assumptions as in (1), the Bayes filter to compute
this joint belief state is given by:

bJ(s0:t) =

η′
τ=t
∏

τ=1

[

n
∏

i=1

O(zi,τ , aJ,τ , sτ )
]

T (sτ , aJ,τ , sτ−1)b(s0)

(4)

with b(s0) the prior andη′ a normalization constant
(we assume, without loss of generality, that every robot
gathers one measurement at every time instant). This
filter requires access to all the information provided by
the team at any moment.

In a decentralized approach, however, each robot em-
ploys only its local datazi and thensharesits belief
with its neighbors at certain time instants. The received
information from other teammates is locally fused in or-
der to improve the local perception of the world. The lo-
cal belief state over the full trajectorybi(s0:t) for robot
i is:

bi(s0:t) = η′′
τ=t
∏

τ=1

O(zi,τ , ai,τ , sτ )T (sτ , aJ,τ , sτ−1)b(s0).

(5)
Comparing this expression to (4), it is possible to ob-

tain the centralized joint belief from the local ones:

bJ(s0:t) = η

n
∏

i=1

bi(s0:t)

b(s0:t)0
b(s0:t)0 (6)

whereb(s0:t)0 =
∏τ=t

τ=1 T (sτ , aJ,τ , sτ−1)b(s0).
Then, if a robot of the team receives all the beliefs

from the other robots, the fusion operation consists of
combining all the local beliefs after removing the com-
mon information they share (the prior over the trajec-
tory b(s0:t)0). The important aspect to be pointed out
is that, by applying this equation, the centralized belief
can beexactlyrecovered.

Several aspects should be considered. First, in a
decentralized system one robot will communicate just
with some neighbors. Therefore, (6) will result on a
belief different from the joint one, but which summa-
rizes all the information from those neighbors. Later,
when this belief is communicated throughout the net-
work, the joint belief will be recovered eventually. For
example, in Fig. 2, robotk will have eventually a com-
mon shared belief with the rest of the team thanks to
its communication with robotj; the belief obtained by
robotj summarizes all the information obtained by its
neighbors, including those not directly in contact with
robot k, like robot i (which itself summarizes all the
information from its neighbors).

Second, the communication between robots will hap-
pen from time to time. Every time fusion operations are
performed shared beliefs are recovered, but meanwhile
there may be a desynchronization between local beliefs.
Moreover, applying (6) requires to know the actions of
the other robots (to applyT (sτ , aJ,τ , sτ−1)). These ac-
tions could be communicated, or even predicted from
the fused beliefs (in case no communication is avail-
able).

Finally, not only does each robot receives informa-
tion from its neighbors, but also sends information to
them. In this case, the fusion equation is slightly dif-
ferent. If roboti received information fromj, its belief
would be updated as it follows:

bi(s0:t)← η
bi(s0:t)bj(s0:t)

bij(s0:t)
(7)

wherebij(s0:t) represents the common information be-
tween the robots (i.e., the common prior mentioned
above b(s0:t)0 but also information previously ex-
changed between the robots). This common informa-
tion can be maintained by a separate filter called chan-
nel filter [Bourgault and Durrant-Whyte, 2004]. If there
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are loops in the information channels, the problem of
double counting should be taken into account as well.

As commented, the previous equations are exact even
for dynamic states. However, maintaining a belief for
the state trajectory is very costly. In [Capitan et al.,
2011], the authors have presented an algorithm for de-
centralized data fusion that scales only linearly with
the length of the trajectory, under the assumption of
Gaussian beliefs. For other belief functions, the same
Equation (7) can be applied to the belief on the last
stateb(st). However, some error will be committed
with respect to the centralized ideal belief if the fusion
equation is not applied every time instant in which a
measurement is obtained in the team. This error will
depend on the effect of the prediction function on the
belief. In [Bourgault and Durrant-Whyte, 2004] it can
be seen how this error stays bounded for a searching ap-
plication in which the dynamics of the target implies a
zero-mean Gaussian diffusion of the belief, and its size
depends on the communication rate of the DDF.

Furthermore, Capitan et al. [2011], Merino et al.
[2012] show the error committed in similar tracking ap-
plications. They highlight that the error between com-
munication instants also depends on the amount of in-
formation associated to the measurements gathered by
the fleet in the meantime (represented by the infor-
mation matrix of these measurements in the Gaussian
case). In that case, as a delayed-state filter is consid-
ered, the error is reset in each communication event.

3 Multi-agent Planning under Un-
certainty

In the literature a wide variety of decision-theoretic
models exist to deal with multi-agent systems
[Seuken and Zilberstein, 2008], of which Multi-agent
POMDPs and Decentralized POMDPs were already in-
troduced in Section 2.2. However, many of these mod-
els have severe drawbacks when considering applying
them to multi-robot scenarios. Before presenting our
solution, we analyze the models available in the litera-
ture by comparing them in terms of agent interdepen-
dence and communication assumptions.

The level of interdependence between agents is de-
termined by 1) the amount of information that an
agent needs to know about the other agent and 2)
how coupled the final policies are. We call a sys-
tem highly interdependent if a change in one of
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Figure 4: Classification of multi-agent POMDP ap-
proaches according to interdependence and level of
communication between the agents. “Auctioned
POMDPs” refers to our proposed approach.

the agents’ model requires re-computing the poli-
cies for the others. Many models from the litera-
ture are highly interdependent, for instance Multi-agent
MDPs (MMDP) [Boutilier, 1996], MPOMDPs, Dec-
POMDPs, and ND-POMDPs [Nair et al., 2005], and I-
POMDPs [Gmytrasiewicz and Doshi, 2005]. Figure 4
presents a possible classification of existing models
with respect to their interdependence and the grade of
communication that is assumed for the agents.

The simplest approach is to map the global task as
well as possible into a set of individual tasks, and model
these as independent POMDPs (Fig. 4, bottom left).
Thus, each agent can solve its own POMDP and exe-
cute its own policy without any communication. In this
case, the interdependence between agents is very low,
but since each agent ignores the others, the level of co-
operation or even coordination is low too. Many inter-
esting multi-agent planning problems cannot be tackled
adequately with such a loosely coupled approach. The
advantage of such an approach is its relatively low com-
putational complexity, since it only requires solvingn
single-agent POMDPs, each of which is defined over
individual action and observation spaces. Hence, scal-
ability in the number of agents is linear, which is very
low compared to other models.

On the other end of the spectrum, MPOMDPs and
Dec-POMDPs solve a single decision-theoretic model
for the whole team reasoning about all the actions and
observations of each agent (Fig. 4, right column).

The MPOMDP model assumes perfect communica-
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tion and each agent has access to joint actions and ob-
servations at every moment, whereas the Dec-POMDP
model assumes no communication at all. Such mod-
els allow for tight coordination, but they present a high
interdependence, since any small change in one of the
agents entails a recalculation of the policy for the whole
team. Furthermore, if due to imperfect communication
agents do not have access to other agents’ observations,
the behavior of the MPOMDP model is not defined. Re-
garding computational complexity, an MPOMDP is a
POMDP defined over the joint action and observation
spaces, whose sizes grow exponentially with the num-
ber of agents.

The Dec-POMDP model, on the other hand, does not
exploit communication at all, which in many scenar-
ios could be beneficial to improve team performance.
For instance, in our cooperative tracking application,
it is easy to see that if a pursuer robot detects the tar-
get and informs its teammates about the target’s ap-
proximate location, the other pursuers can close in
on the target. Without communication, each pursuer
might need to find the target by itself, which is clearly
less time-efficient. Solving Dec-POMDPs optimally
takes doubly-exponential time in the worst case, which
severely restricts their applicability in multi-robot sce-
narios.

In between MPOMDPs and Dec-POMDPs there are
several models in which some communication is as-
sumed [Nair et al., 2004, Roth et al., 2005, Spaan et al.,
2008, Oliehoek and Spaan, 2012] (Fig. 4, middle right).
These models try to exploit the fact that agents actually
share information, but just partially and at certain in-
stants. Furthermore, most of them assume that commu-
nication arrives instantly.

By looking at the current state of the literature, we
can conclude existing multi-agent decision-theoretic
models do not take into account the requirements that
multi-robot missions pose. First, a critical dependence
on communication is to be avoided, but it should be ex-
ploited when available. Second, a strong coupling be-
tween individual robots is undesirable, as tightly coor-
dinated joint actions are often hard to execute with a
low probability of success.

4 Role-based Multi-robot POMDP

In order to address the shortcoming of existing multi-
agent planning models for multi-robot scenarios, as dis-
cussed in Section 3, we present a new model that specif-

ically takes into account multi-robot issues. In a sense,
we aim to reach middle ground on both axes of Figure 4.

There are many multi-robot missions that could be
modeled as POMDPs [Kok et al., 2005, de Hoog et al.,
2009, Burdakov et al., 2010]. If all the robots have
access to joint information (actions and observations
from the whole team), the problem can be modeled as
a MPOMDP. The objective of the team can be encoded
in a reward function that, in general, depends on joint
states and joint actions, and can be seen as the addition
of the local rewards for each robot:

R(s, a) = R1(s, a) + · · ·+Rn(s, a). (8)

Without losing generality, the reward can be decom-
posed into two parts: one based only on local informa-
tion Rlocal

i from each roboti; and one based on joint
informationRjoint. The local information for a roboti
means its actionai and its statesi 1. In case of a fac-
tored state, each local statesi would include the local
factors that can be controlled by local actions, and the
factors that are common for all the robots. Thus, the
global reward can be expressed as:

R(s, a) =

Rlocal
1 (s1, a1) + · · ·+Rlocal

n (sn, an) +Rjoint(s, a)
(9)

Apart from thelocal rewards (i.e., the rewards that
robots would get if there were no others), there is the
coupled termRjoint(s, a), which models cooperation
among the robots. Indeed, actions from different robots
need to be considered in order to compute this reward.
Even though the design of this cooperative term is very
dependent on the application, in many cases, due to effi-
ciency issues, it is common to penalize different robots
repeating similar tasks. For instance, in many surveil-
lance applications the robots should get less reward for
surveying an area that is already being surveyed by an-
other.

The previous idea is useful for many robotic appli-
cations in which there are either limited resources that
cannot be accessed simultaneously by the robots, or dif-
ferent roles/tasks that must be covered. Thus, the team
objective in many missions (e.g., detecting a target or
alarm) can be achieved with robots following differ-
ent roles or behaviors (e.g., patrol a certain area, ap-
proach the target, etc.). For instance, in smart energy

1For the sake of clarity, in the rest of the papers, a andz refer to
joint variables whereas local variables are indicated withsub-indices.
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grids there are providers and consumers [van der Sluis,
2011]; and in robotic soccer strikers and defenders
[Kok et al., 2005]. Also, in active perception applica-
tions [Maza et al., 2011], where the team needs to max-
imize its information, it is positive to have robots fol-
lowing non-overlapping behaviors in order to provide
richer information to the team.

In this work, we are interested in these role-based ap-
plications. In order to model the problem that way, we
assume the following:

Assumption 1. For a given mission, there is a fi-
nite set ofm possible roles/behaviors for the robots that
are exclusive and define the whole problem. In other
words, the problem can be modeled with a set ofm
non-overlapping behaviors (i.e., each robot can only be
playing one role at a moment).

Assumption 2. Each role is a single-robot behavior
that can be represented by a reward functionRk

i (si, ai),
wherek ∈ {1, . . . ,m} identifies the behavior andi ∈
{1, . . . , n} the robot performing it.

Provided that{ci}i=1,...,n ∈ {1, . . . ,m} are the be-
haviors chosen by each robot, the local rewards in (9)
depend on this assignment. These rewardsRlocal

i are
the ones that each robot would get by acting on its own,
and they are encoded in the correspondingRci

i . More-
over, the cooperative term also depends on the assign-
ment of the behaviors:Rjoint = f(s, a, c1, · · · , cn).

The idea in our role-based model is that, at each time
step, the robots should select their behaviors optimally
(apart from their actions) in order to maximize the ex-
pected reward of the whole team. Therefore, we can
define a role-based MPOMDP in which the value func-
tion (3) is modified as follows:

V (t)(b) = max
a,c1,...,n

{
∑

s∈S

[Rc1
1 (s1, a1) + · · ·+Rcn

n (sn, an)

+Rjoint(s, a, c1,...,n)]b(s) + γ
∑

z∈Z

p(z|a, b)V (t−1)(bza)}

(10)

This new value iteration performs optimization at
two different levels, behavior level and action level. Ac-
tions and behaviors are chosen at each step so that the
value function is maximized. Note that the role assign-
ments from one step to the next one are not correlated.
This role-based model may entail even higher computa-
tional complexity than the original MPOMDP, since the
optimization is carried out over all the possible joint ac-
tions and behavior assignments. In the next section, we
propose an approximate method to solve the role-based

MPOMDP in which the policies are sub-optimal, but
the computational complexity of the solution is reduced
dramatically.

5 Decentralized Auction with
POMDPs

The proposed approach builds on two mechanisms: the
decentralized data fusion filter described in Section 2.3
and a POMDP auction (Section 5.1). The former allows
the robots to share information and build a joint belief
like in a MPOMDP, the latter is used to assign the dif-
ferent behaviors to the robots in a cooperative manner.
Moreover, both approaches are decentralized following
the definition of Section 1.1.

In Fig. 4, our approach can be seen as in between “in-
dependent POMDPs” and MPOMDP/Dec-POMDP in
terms of agent interdependence. In terms of communi-
cation requirements, our approach does not require the
high-quality guarantees of the methods that enhance the
Dec-POMDP model with communications.

5.1 Auctioning POMDP policies

We already stated in Section 4 how a MPOMDP can
be modeled with single-robot behaviors for a certain
class of problems. Such a decomposition is of inter-
est in many robotic applications like search and res-
cue [Burdakov et al., 2010, Hsieh et al., 2007], tracking
[Maza et al., 2011], fire detection [Merino et al., 2006]
or robotic soccer [Kok et al., 2005], in which coopera-
tion between robots playing different roles is required.
An idea to solve the role-based MPOMDP is to use
the reward functions of the behaviors to define a set of
single-robot POMDPs that can be solved separately of-
fline. Then, these behaviors can be run online simulta-
neously and combined in some optimal manner to pro-
duce a joint behavior similar to the one desired for the
whole team initially.

The objective is to approximate the multi-robot re-
ward in (9). For that, a single-robot POMDP is de-
fined for each given behaviork ∈ {1, . . . ,m} and robot
i ∈ {1, . . . , n}. With each POMDP the reward function
of the corresponding behaviorRk

i is associated, which
is defined over the sets of local variables〈Si, Ai, Zi〉. In
an offline planning phase, individual policies are com-
puted for all these POMDPs, each of them with a value
functionV k

i (bi). Although the actual multi-robot ob-
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jective cannot be modeled as a set of single-robot re-
ward functions, if these policies could be assigned op-
timally to one or more robots, all together should lead
to a cooperative behavior pursuing the global objective.
The problem of determining which policy should be as-
signed to each robot at each step can be modeled as a
task allocation problem [Spaan et al., 2010a].

In general, a task allocation algorithm attempts to as-
sign a set ofm tasks to a team ofn robots minimizing
a global cost. In this case, each robot always has to be
assigned a sole task, which is the POMDP policy to fol-
low. In order to foster cooperation, we try not to assign
the same policy to different robots. Given thatxik = 1
when policyk is assigned to roboti (ci = k) and 0
otherwise, andφik is the cost associated with that as-
signment, the problem consists of minimizing the total
cost:

min

n
∑

i=1

(

m
∑

k=1

φikxik

)

(11)

subject to

n
∑

i=1

xik ≤ 1, ∀k ∈ {1, . . . ,m}

m
∑

k=1

xik ≤ 1, ∀i ∈ {1, . . . , n}

xik ∈ {0, 1}, ∀i, j

In the execution phase, the best behavior for each
robot is selected online with an auction algorithm
[Spaan et al., 2010a] where the cost or bid of assign-
ing a policyk to a roboti is φik = −V k

i (bi). Thus,
policies with a greater expected reward are more likely
to be selected for each robot, which helps to maximize
the global expected reward for the whole team. As ex-
plained in Section 4, the assignment of the behaviors
can vary from one time step to the following in an un-
correlated manner. Note that these behaviors are not
finite tasks that the robots must select and solve, but
different policies to follow given the current belief. As
the belief changes, the robots are allowed to switch their
behaviors in order to pursue the optimal solution.

In casen > m, the algorithm above will leave robots
with no policy assigned. Therefore, the assignment
problem is repeated with these free robots until they all
get a policy. In this case, some policies would be as-
signed to more than one robot at the same time. Even
though the existing behaviors are distributed equally

Algorithm 1 Auctioneer Roboti (bi)

1: for all k ∈ {1, . . . ,m} do
2: φik = −V k

i (bi) {; Local bids}
3: Sendφik to neighbors.
4: end for
5: Receive bids from neighbors.
6: Φ = {φjk}j,k {; Create cost matrix}
7: {xjk}j,k ← Hungarian(Φ)
8: return Policy selected for roboti (ci).

among the teammates here (i.e., there are similar num-
ber of robots executing each behavior), the approach is
more general. As it will be discussed in Section 5.3,
alternative methods for role allocation could be used.

Algorithm 1 summarizes a decentralized auction in
which the assignment problem is solved locally at each
robot with the information available. Each roboti
computes its own bids for the behaviors from its lo-
cal belief bi and communicates them to other neigh-
boring robots. Then, with the bids received from other
robots, a local solution for the assignment problem (11)
is obtained. This decentralized behavior assignment is
solved at each decision step for the robots. The compu-
tation can be performed efficiently in polynomial time
using the Hungarian algorithm [Burkard, 2002], a well-
known algorithm for solving the assignment problem
optimally. It computes a cost-minimizing assignment,
operating on ann ×m cost matrix, whose entries con-
sists ofφik values. Hence, the allocation of behaviors
to robots is optimal within each local auction.

The local cost matrices, and hence the local solutions
for the behavior assignment, should be the same at each
robot as long as all the robots communicate with each
other, and the communication is error-free. In that case,
all the local beliefs are equal and each robot creates a
complete cost matrix with inputs from all the robots in
the team. However, if a robot only receives informa-
tion from a subset of neighbors (due to communication
failures or network topology), it can still solve the as-
signment with a cost matrix that only has inputs from
those robots.

Due to this partial information at each robot, or due to
the fact that local beliefs for DDF systems are not syn-
chronized all the time, inconsistencies leading to sub-
optimal assignments may be obtained. In an inconsis-
tent assignment, the local cost matrices and hence the
local solutions differ from one robot to another. There-
fore, a good synchronization of the local beliefs is de-
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sirable to avoid these suboptimal situations. In contrast,
the robustness of the system is high, since information
from all the robots is not required to compute each lo-
cal solution. In case some communication links failed,
each robot would still get a suboptimal solution with the
available information from their neighbors (robots from
whom information was received). Moreover, the com-
putation time of the Hungarian algorithm is relaxed,
since each robot only runs it with a submatrix of the
complete cost matrix.

In addition, there is another potential desynchroniza-
tion when the robots make decisions at different mo-
ments and hence with different available information.
Some previous works [Choi et al., 2009] propose con-
sensus algorithms over this information in order to guar-
antee convergence for decentralized auctions even in
case of time desynchronization. However, the decision-
making performance is still degraded. Moreover, in the
approach presented here robots are allowed to change
their policies at every step. Therefore, the establish-
ment of a previous consensus to converge to the same
distributed solution is not worthwhile.

Furthermore, it is important to remark that, although
independent POMDPs are solved for the robots, transi-
tion independence for the local states is not assumed.
We are approximating a role-based MPOMDP, and
hence, a joint belief is required for the team. This belief
over the joint state and containing information from all
the robots, is provided by the DDF algorithm running
during the execution phase. Nonetheless, to compute
the bids for the auctions, the value functions of the dif-
ferent behaviors (defined over local states) have to be
evaluated. The joint state variables can be marginalized
out to keep only the local state variables and obtainbi
for each roboti.

Finally, note that from the joint belief obtained
through the DDF it is possible to predict locally the
bids from other teammates, even if they do not com-
municate. Therefore, it may be possible to reason about
other teammates’ actions even in the case of no com-
munication (in heterogeneous teams, robots could also
require additional information about the capabilities of
their teammates). Of course, the longer the commu-
nication breakdown lasts, the larger the difference with
the assignments that would be obtained when additional
information is received from other robots. In our cur-
rent implementation, we just consider the robots within
communication range to solve the behavior assignment,
in order to have the most up-to-date information.

Robot

Sensors

POMDP

Controller 1

POMDP

Controller M

Auctioneer

Decentralized Data

Fusion Filter

Belief

Robot

Controller

Observations

Actions

Belief Data Bus

Bid Values Bus

Figure 5: Functional scheme for decision-making and
belief update at each robot.

5.2 System overview

Figure 5 illustrates the system elements per robot. The
whole process is separated into two different modules.
Each robot can execute a certain number of behaviors
modeled as single-robot POMDP controllers. A DDF
module is in charge of computing the belief and feed-
ing the Auctioneer module, which then chooses the ad-
equate POMDP controller and the associated action.
Even though most POMDP-based systems synchronize
belief update and decision-making in the same loop,
here the two processes are separated. In this way some
constraints that limit the flexibility and robustness of the
system are avoided. For instance, communication chan-
nels and transmission rates are totally independent for
both modules, which is critical in decentralized systems
under possible communication failures.

The approach is completely decentralized, since the
belief estimation and the decision-making are carried
out without the need for a central entity. On the one
hand, the belief estimation is computed by a DDF algo-
rithm that is distributed along the multiple robots. On
the other hand, the POMDP controllers act also sepa-
rately for each robot. Despite the fact that a multi-robot
POMDP for the whole team is not solved (with its com-
putational benefits), cooperative behavior still arises in
two manners. First, the robots select their best role
by explicitly reasoning about which behaviours their
neighbours are performing via the auction mechanism.
Second, the DDF also allows the robots to obtain in-
formation from further teammates. As explained in
Section 2.3, the information travels throughout the net-
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work, and even robots that were not in direct commu-
nication range will recover a common belief eventually.
Therefore, the joint beliefs contain implicit information
from all the teammates and help the robots to coordinate
in an indirect manner.

5.3 Discussion

The decentralized auction proposed in this section pro-
vides a joint policy for the teamπ′ = {π′

1, · · · , π
′
n}

that is suboptimal in the sense that does not opti-
mize the original value function (10) for the role-based
MPOMDP. Instead, the value that would be obtained
after executing the computed policyπ′ is the following:

V ′(t)(b) =
∑

s∈S

[Rc1
1 (s1, a1(π

′
1)) + · · ·+Rcn

n (sn, an(π
′
n))]b(s)

+ γ
∑

z∈Z

p(z|a, b)V ′(t−1)(bza)

with ci
∀i∈{1,...,n}

= argmax
ci





∑

j∈nα(i)

m
∑

k=1

V k
j (bj)





(12)

where the optimizations for the behavior assignments
are repeated at every decision step. Note that the role
of each robotci is computed considering only its set of
neighborsnα(i) and their local beliefs. Analyzing (12),
it can be seen more clearly how our method approxi-
mates the optimal policy for the role-based MPOMDP
mainly in two manners:

1. The optimization process does not consider the
joint reward termRjoint explicitly. Moreover,
for assigning behaviors, the best long-term option
is considered assuming that each robot will keep
the same behavior during the whole time horizon.
Thus,{ci} can be computed using the value func-
tions from the individual behaviors.

The fact thatRjoint is not considered allows us
to compute policies disjointly for single robots,
which alleviates dramatically the complexity of the
problem and makes it scalable with the number
of robots. Moreover, to compensate the lack of
global optimality,{ci} are recomputed each time
step during the execution of the policies, what al-
lows the assignments to evolve suboptimally dur-
ing the performance of the mission.

2. In the planning phase, the local policies are
not solved considering joint beliefs (joint ac-
tions/observations), since they assume a single
robot. However, joint information from all the
robots (joint belief) is accessible during the execu-
tion phase (DDF) to evaluate the local value func-
tionsV k

i .

In this paper, point-based algorithms are used to
compute the policies. Due to this, only a limited
set of beliefs is taken into account to compute each
value function. Thus, the set of belief points used
when executing the policies is, in general, different
from the set of belief points used to compute such
policies, since joint beliefs are richer in terms of
information (joint actions/observations). Nonethe-
less, the error that is made when a value function
(approximated by any point-based method) is eval-
uated in a belief point that was not used during its
computation, is bounded [Pineau et al., 2006].

Despite these approximations, our method can still
get an exact solution for the role-based model in Sec-
tion 4 for some particular sub-domains. In particular, if
the following conditions are met: (i) individual policies
for the roles are solved optimally; (ii) the joint belief
computed by the DDF incorporates all the robots (also
the auctions) and is consistent; (iii) the planning hori-
zon is 1; (iv) there is no joint term in the reward; and
(v) different roles are assigned to different robots.

The first condition is standard for most POMDP
works, since optimal policies can only be obtained in
very restricted domains. The second condition is not
a strong restriction either since when communication
channels present negligible delays (when compared to
the DDF rate), the DDF can achieve after some time
such a consistent belief even when all robots are not in
direct communication range (the belief could be prop-
agated through the different subnetworks). Moreover,
if all the robots are not within communication range, at
least the auctions would be optimal for each subteam.
Assumptions (iii) and (iv) are the strongest ones. Re-
garding (iii), as explained above, we assume that robots
do not switch roles when planning to compute the costs
(which would just be true for a horizon equal to 1),
but later, we compensate this effect by recomputing the
{ci} at each execution step (online re-planning). Even
though assuming fixed roles makes planning easier, it
could be the case that a robot needs to change its role in
the middle of a mission (because conditions have var-
ied) to achieve optimal performance. We account for
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that with this online re-planning.
The other strong assumption is to eliminate the joint

reward. However, the cooperative behavior encoded in
Rjoint can be emulated by designing the roles properly
for a given application. In the literature, there is some
work about how to split the joint problem into individ-
ual sub-problems or roles. In particular, Matignon et al.
[2012] design individual rewards towards a global ob-
jective trying to minimize the interactions among the
robots. Moreover, Sleight and Durfee [2012] and the
references therein contribute with theoretical discussion
on how to design individual models for the teammates
so that, put together, lead to joint cooperation.

Finally, (v) is not so restrictive. In this paper, we fo-
cus on a strategy in which the existing behaviors are
assigned equally among the different robots in the team
(Hungarian algorithm in (11)). This applies to many
applications in which performing all the available tasks
in a homogeneous fashion is beneficial. However, our
approach is more general and alternative methods to
solve the role assignment could be possible. For in-
stance, some robots could get no role assigned depend-
ing on the circumstances (they would stay in an idle
status). Also, more complex constraints could be added
to the problem, such as robots that can only play a sub-
set of the roles (i.e., heterogeneous capabilities for the
robots), or subsets of roles that must be assigned jointly
(e.g., a couple of robots carrying something together).

Unfortunately, for the general case, obtaining mean-
ingful bounds on the loss in value that our approxima-
tions incur is hard. In fact, by removing the synchro-
nized belief assumption present in MPOMDP models,
optimal policies can be computed using a role-based
variation of the Dec-POMDP model. One such vari-
ation, the Role-based Multiagent Team Decision Prob-
lem, has been shown to be NEXP-Complete [Nair et al.,
2003]. Furthermore, computing anǫ-approximate joint
policy for a general Dec-POMDP is NEXP-Complete
as well [Rabinovich et al., 2003].

Regarding complexities, our approach scales far bet-
ter with the number of robots than the MPOMDP. In
the worst case, the complexity of a single step of value
iteration (3) for the MPOMDP isO(|S|2|A||Γt−1|

|Z|)
[Pineau et al., 2006], where|S|, |A| and |Z| grow ex-
ponentially with the number of robots2. In the worst
case, our approach solvesm × n local POMDPs (one
per robot and behavior), each of them with a maximum

2In general,|S| =
∏

n

i=1
|Si|, and the same applies to|A| and

|Z|.

complexity ofO(|Si|
2|Ai||Γ

′
t−1|

|Zi|) for a single value
iteration. Apart from computing the policies, we also
solve the auction at each time step during the execution
phase, which entails a complexityO(max(n,m)3) in
the worst case [Burkard, 2002].

In our approach, even though the total computation
time increases withn andm, it does so polynomially in-
stead of exponentially. Moreover, these values are usu-
ally bounded for real applications. On the one hand, the
number of available behaviors is limited for most role-
based real applications, and it depends on the problem
itself. Also, in case of necessity the number of behav-
iorsm could be traded off according to computational
constraints. On the other hand, since the auctions are
solved locally at each robot using only its available in-
formation, in practice, the robots only work with a sub-
set of neighborsnα ≤ n, that are the ones within com-
munication range. Although it is not the focus of this
paper, in the literature there exist other works that pro-
pose more efficient solutions for the assignment prob-
lem in case of large teams [Liu and Shell, 2011].

6 Case Study 1: Environmental
Monitoring with UAVs

In order to illustrate the flexibility and scalability of
the proposed approach, two different applications with
multiple robots are presented: environmental monitor-
ing with UAVs and cooperative tracking. In this section
the models and results of the first case are presented.

6.1 Scenario definition

In this problem there is a team ofn UAVs whose mis-
sion is to fly over a certain terrain in order to monitor a
potential contamination that may appear. It is assumed
that this contamination can only appear and propagate
through a network of water flows on the terrain. There-
fore, instead of surveying the whole scenario, a set of
key points within that network can be extracted to eval-
uate the level of contamination. These points are inter-
connected through water flows and the contamination
can propagate among them.

The scenario is discretized into a cell grid and it is as-
sumed that the overall contamination can be controlled
reliably by surveying a set ofm critical cells. The ob-
jective of the team of UAVs is to decide how to visit the
critical points optimally in order to reduce the joint un-
certainty on the contamination level. Figure 6 depicts
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Figure 6: Piece of marshland in the National Park of
Doñana. The shadowed cells in the grid represent non-
flying zones: a beach; and the core of the park. Each
critical cell is marked with a number, and the propaga-
tion graph with arrows.

this scenario adapted to the National Park of Doñana,
a remarkable marshland located in the south of Spain.
Due to the huge number of species that it hosts, con-
tamination or any other natural disaster are real threats
that need to be controlled.

The problem can be modeled using POMDPs. All
the details are shown in the Appendix A. In particular,
each UAV is equipped with a camera sensor pointing
downwards that provides a (noisy) binary observation
about the contamination level of the cell in which it is
located:yesor no. We assume that the UAVs are he-
licopters (like the ones in Fig.1), so at each time step,
they canstay(hovering) in the same cell or moving to
a neighboring cell:north, west, eastor south. Noisy
transition functions are considered for these movement
actions. Besides, when a UAV is on top of a critical
point, instead of moving, it can select two additional ac-
tions (classContandclassNotCont) to classify that area
as contaminated or non-contaminated, respectively.

There is a factored state with a set of variables de-
scribing the contamination level of each critical point,
which can be:none, low or high. A graph describing
the inter-connections among the critical points (due to
water flows) is also known. Thus, the evolution of the
contamination is modeled so that it can start at certain
points of the graph (entry points), and these effects can
be propagated to the other inter-connected points down-

stream. In addition, there is another binary state factor
for each critical point to specify whether it was already
classified or not. Thus, if a UAV that is on top of a
critical cell takes one of the two classification actions,
the corresponding variable for that critical point is set
to 1. Otherwise, if there are not classification actions
but the critical point was previously classified, it can
switch back to0 (not-classified) with a probabilitypdes
at each time step. This is to allow the critical areas to be
declassified again after some time. The local state for
each UAV consists of all the mentioned factors and an
additional one indicating its position on the grid.

In this application, the main objective is to reduce the
uncertainty over the contamination level. This is done
by monitoring the critical points and classifying them
when their uncertainty is low enough. According to the
classic POMDP formulation that is considered in this
paper, information gain cannot be rewarded explicitly,
since the rewards are state-based (rewards depending on
entropies would be belief-based). However, when hav-
ing better information improves the task performance
(e.g., less uncertainty on an event detection reduces the
risk of a wrong detection), the POMDP policy will try
to select these information-gaining actions. Therefore,
the idea here is to maintain state-based rewards (and
hence, a classic POMDP framework with linear value
functions), but adding classification actions in order to
reward UAVs for reaching a certain level of uncertainty
regarding contamination.

According to this idea, positive rewards are obtained
when right classification actions are taken, whereas
negative rewards are obtained when the classifications
are wrong. The resulting policy will lead to beliefs with
low uncertainty on the contamination state, for which
the UAVs are more likely to make right classifications.

The approach proposed in this paper can be used to
solve this problem. A single-robot behavior is consid-
ered for each possible point to monitor (m behaviors).
Thus, the reward function for each behaviork (Rk

i ) re-
wards UAVi only if it classifies the critical areak.

6.2 Results

This case study has been analyzed in a simulated envi-
ronment. In the following subsections, the setup for the
different simulations and their corresponding results are
detailed.
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Table 1: Complexity of the POMDP models used in this
paper. Number of states (the observable states are un-
derlined), actions and observations are computed for the
general multi-robot case and for a single-robot case.

|S| |A| |Z|
Monitoring

40n × 81× 16 7n 2n
(n robots, 4 areas)

Monitoring
40× 1, 296 7 2

(1 robot, 4 areas)
Tracking (n robots) 82n × 4n × 82 4n 2n

Tracking (1 robot) 328× 82 4 2

6.2.1 Simulation setup

Experiments on environmental monitoring were per-
formed on a simulated scenario (MATLAB) of the Na-
tional Park of Doñana described above (see Fig. 6). In
order to survey the Park with a team of UAVs, it was di-
vided into the 7×7 grid shown in Fig. 6, where the dark
shaded cells represent non-flying zones that the UAVs
cannot access for security reasons. Since the contami-
nation is assumed to propagate through the water flows,
the four key areas shown in Fig. 6 are used for surveil-
lance. The inter-connection graph considered to model
the propagation is also depicted in the figure. More-
over, it is assumed that contamination could only start
at Area 1 (entry point).

Each cell in the grid is a square of 1×1 Km and can
be surveyed by a UAV whenever it is flying on it. For
these experiments, the probability to declassify areas is
set topdes = 0.04. Moreover, due to the spatial res-
olution of the grid, the dynamics of the UAVs and the
contamination model are slow. Therefore, a time step
of 10 minutes is assumed in the simulations.

As mentioned in Section 5.2, the communication
channels for the DDFs and the Auctioneers are inde-
pendent. In these experiments, the UAVs communicate
their DDF information in a tree-like topology, whereas
the bids for the auctions are sent to all others in the
neighborhood (the required bandwidth for the latter is
not significant).

There are 4 different behaviors, one for each critical
area. A single-robot policy was computed for each of
them with a Java version of Symbolic Perseus3. The
solver ran 10 minutes for each policy in a computer with
an Intel Core processor (4 cores @2.67GHz) and 8GB.

3The parameters for Symbolic Perseus were 5000 belief points,
1500α-vectors maximum, 30 iterations per round and 5 rounds.

The complexity of the models considered is sum-
marized in Table 1. It is important to highlight
that, in order to alleviate the complexity of the belief
space, Mixed Observability Markov Decision Processes
(MOMDPs) [Ong et al., 2009] were considered to find
the policies for all the experiments in this paper. The
robots’ positions were assumed to be observable within
the POMDP, which is reasonable if the sensors for self-
positioning are accurate enough for the given grid reso-
lution.

6.2.2 Simulations

We tested our approach with auctioned policies for
teams with 1, 2, 3 and 4 UAVs, each of them running
an estimation filter implementing the DDF scheme in
Section 2.3, and an auctioneer controller that executed
the algorithm in Section 5.1. For each team, 1000 sim-
ulations of 100 steps were performed with the UAVs
starting at random positions. Moreover, all the simu-
lations started without contamination, but there was a
probability of0.1 that contaminated water appeared at
the entry point (Area 1) at any moment.

The average discounted rewards and belief entropies
for all the experiments are shown in Fig. 7a and 7b,
respectively. It can be seen how the addition of
more UAVs improves the performance, increasing the
reward of the team and decreasing the entropy of
the belief on the contamination levels for each area
(
∑

∀level −plevel log(plevel)). Note that the entropy of
Area 1 is always higher, since there is the uncertainty of
new contamination appearing. In Fig. 7c, the percent-
age of time that each area is visited by any UAV is also
shown. The more UAVs there are, the better they can
cooperate to cover all the areas.

Since only single-robot policies are computed in our
approach, the complexities of the models do not in-
crease with the number of UAVs (see Table 1), which
makes the solution scalable. Nonetheless, in this sce-
nario, experiments with more than four UAVs are not
presented because they do not improve the performance
significantly (four UAVs can already cover all the crit-
ical areas). Moreover, it may look like the propaga-
tion model does not scale with the number of areas.
However, if the interconnection graph for the areas is
sparse enough, we can still keep bounded the number
of parents for each area, and just increase moderately
the complexity of the factored model.

We also tested our approach against a joint policy for
a multi-robot POMDP. The multi-robot POMDP is far

14



1 2 3 4

40

50

60

70

80

90

UAVs

R
ew

ar
d

Auctioned policies

(a)

1 2 3 4
0

0.2

0.4

0.6

0.8

1

UAVs

E
n

tr
o

p
y

Area 1
Area 2
Area 3
Area 4

(b)

1 2 3 4
0

20

40

60

80

100

UAVs

O
cc

u
p

an
cy

 (
%

)

Area 1
Area 2
Area 3
Area 4

(c)

Figure 7: Simulations of an environmental monitoring application with four critical areas. The average results
(±3σ) for auctioned policies are shown varying the number of UAVsinvolved. (a) Discounted rewards. (b)
Entropies of the beliefs on the contamination levels. (c) Percentages of occupancy for each critical area.

from scalable (see Table 1), so we were only able to
solve it for a simple case with 2 UAVs and 3 areas (Ar-
eas 1, 2 and 3)4. Actually, any variation of this small
scenario considering more UAVs or areas, caused the
same computer mentioned above to run out of memory.

We used Symbolic Perseus5 again to compute a
single-robot policy for each behavior (5 minutes each)
and a joint policy for the 2-UAV MPOMDP (14 hours).
Then, we ran 1000 simulations of 100 steps (with ran-
dom starting positions and no initial contamination) for
our approach, and the same with the joint policy. The
average values for the belief entropies and the percent-
age of occupancy (times visited) of each area are shown
in Fig. 8. Despite the huge difference in computational
time for both approaches, the results are still remark-
ably similar. Of course, the joint policy should be bet-
ter for more complex examples, but its computation be-
comes intractable. Furthermore, the average discounted
rewards were53.4970 ± 0.91 for our approach, and
41.0252±1.08 for the joint policy. The reward function
used to compute the joint policy is used to evaluate both
approaches. In this reward function, apart from the local
rewards for each UAV, there is also a joint reward term,
which does not allow two UAVs to get rewards simulta-
neously for classifying the same area (see the Appendix
for details). In this case, our approach outperforms the
joint policy, which is possible given that all the policies
are approximate.

4The MPOMDP was designed to reward only one UAV at a time
in case of several classifying the same area. This fostered the distri-
bution along the different critical points.

5The parameters for Symbolic Perseus were 5000 belief points,
700α-vectors maximum, 10 iterations per round and 5 rounds.

7 Case Study 2: Multi-robot Co-
operative Tracking

This section describes the case study about cooperative
tracking. The models for this application are explained
and the corresponding experiments detailed.

7.1 Scenario definition

In this case, the objective is that a group ofn robots
track a moving target estimating its position with their
sensors. The idea is to obtain an estimation as accurate
as possible. Target tracking problems benefit from rea-
soning about future steps [He et al., 2010]. Besides, co-
operative behaviors are particularly helpful when there
are multiple robots involved in the tracking.

To model this scenario as a POMDP, the local state
for each robot is composed of the position of the tar-
get and its own position and heading. The state space
is discretized into a cell grid, and a map of the scenario
is assumed to be known. All the details about the mod-
els are shown in the Appendix A. In particular, there
are four possible headings for each robot:north, west,
southor east.

At each time step, the robots can choose between
four possible actions:stay, turn right, turn left or go
forward. staymeans doing nothing; whenturning, the
robot changes its heading90◦; and whengoing forward,
it moves to the cell ahead. Nonetheless, noisy transi-
tion functions for the states of the robots are consid-
ered. Besides, the target is assumed to move randomly.
Therefore, the transition function for its position indi-
cates that from one time step to the next, the target can
move to any of its 8-connected cells with equal proba-
bility (only non-obstacle cells are considered in order to
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Figure 8: Average results (±3σ) for simulations on en-
vironmental monitoring with two UAVs and three crit-
ical areas. Auctioned polices are compared to a joint
policy. (a) Entropies of the beliefs on the contamina-
tion levels. (b) Percentages of occupancy for each criti-
cal area.

calculate that probability).
In addition, the robots carry a sensor that provides a

boolean measurement:detectedor non-detected. These
sensors proceed as follows, if the target is out of its
FOV, the sensor produces anon-detectedmeasurement.
However, when the target is within its FOV, it can be
detectedwith a probabilitypD.

The robots aim to reduce the uncertainty of the tar-
get estimate. The FOV of their sensors (a 3×4 rectan-
gle in front of the robot), which is shown in Fig. 9b,
entails mainly uncertainty in depth, since the heading
where the target is can be determined precisely. Point-
ing at it from different angles definitely helps to reduce
the uncertainty of its estimate by achieving a partial
overlapping in the FOVs. Therefore, cross configura-
tions should be fostered by giving a high reward to each
robot that is keeping the target within its FOV, and even
higher if the robot’s orientation differs from the others’.

The method presented in this paper to combine indi-
vidual behaviors is used. Since robots should cooperate

(a) Testbed. (b) Occupancy grid.

Figure 9: (a) Picture of the multi-robot testbed. (b)
Testbed occupancy grid (black cells are obstacles) and
an example of the FOV for a robot (yellow cells, 3x4
rectangle in front of the robot). All the robots have the
same FOV. Besides, if the target is in one of the cells
with crosses (closest part of the FOV) and the heading
is adequate, a high reward is obtained.

to track the target from different directions, each be-
havior consists of following the target from a specific
direction. Here, a single-robot behavior for each possi-
ble orientation is considered:{north,west, south, east}.
Therefore, the reward function for the behaviork (Rk

i )
gives a high reward to roboti only if the target is within
its FOV and the robot’s heading corresponds to the ori-
entation of behaviork. Also, since the objective is
tracking the target, the robots should position their sen-
sors in the best way not to lose it. For the sensors pro-
posed, the high reward is only obtained when the target
is in one of the closest cells. The cells with high rewards
are illustrated in Fig. 9b.

7.2 Results

Real and simulated experiments on cooperative tracking
were conducted with a real testbed6 that allows the user
to combine simulated and real robots (Pioneer-3AT), an
illustration of which is shown in Fig. 9a. The simulated
version ran with Player/Stage.

7.2.1 Experimental setup

The map of this testbed was discretized into 2×2-meter
cells and resulted in the occupancy grid of 12×10 di-
mensions shown in Fig. 9b, where cells representing
obstacles are in black. A team of robots is consid-
ered in order to follow a target, represented by another

6http://www.cooperating-objects.org
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robot. All the pursuers present similar perception ca-
pabilities by means of a sensor withpD = 0.9 and the
FOV shown in Fig. 9b. Note that the pursuer obser-
vations were obtained by simulating sensors with the
mentioned capabilities on board the robots, since the
development of real detectors is out of the scope of this
paper.

During all the experiments the target followed a path
unknown for the pursuers and with a random com-
ponent. A path planning algorithm was used to ob-
tain the path to the high level goals provided by the
POMDP controllers (next cell to move and robot head-
ing), whereas a local navigation algorithm was used to
safely navigate the given path. Each robot had running
onboard an implementation of the DDF (Section 2.3)
and an auctioneer controller (Section 5.1). Again, as
in the previous case study, the DDFs communicate in a
tree-like topology, whereas the bids for the auctions are
sent to all others in the neighborhood.

Three different approaches were tested: (i) auctioned
POMDPs with DDF; (ii) auctioned POMDPs without
DDF; (iii) independent POMDPs with DDF. The two
first approaches are based on the auction method pro-
posed in this paper, but in the second one, neither com-
munication nor fusion is considered for the DDF mod-
ules. In the third approach, a single and independent
POMDP is used for each robot and communication be-
tween the DDF modules is allowed. Moreover, all the
policies were obtained by solving the corresponding
MOMDPs with a C++ implementation of the SARSOP
algorithm (POMDP complexities are shown in Table 1).
The solver ran 1700 seconds for each policy in a com-
puter with an Intel Core 2 Duo processor @2.47GHz
and 2.9GB. For the approaches (i) and (ii), a different
MOMDP is solved for each heading, whereas for ap-
proach (iii), there is a single MOMDP independent of
the heading (no roles).

7.2.2 Real robots

First, some experiments7 were carried out in order to
compare our approach with the others mentioned above.
Three of the real Pioneer-3AT were used to track the re-
maining one, that played the target’s role. In order to
have similar conditions for each run, the three robots
always started at the same fixed points and the sam-
ple times were the same, 10 seconds for the decision-
making and 3 seconds for the DDF. An experiment of

7See video at http://vimeo.com/18898325.

Table 2: Average results of the experiments with a
three-robot team for three different approaches. The er-
ror of the estimated position of the target with respect
to its actual position and the entropy of the estimated
beliefs are shown.

Error(m) Entropy
Auction+DDF

Robot 0 4.07± 0.16 2.61± 0.05
Robot 1 3.95± 0.15 2.55± 0.05
Robot 2 4.18± 0.16 2.66± 0.05

Independent+DDF
Robot 0 6.86± 0.32 2.80± 0.05
Robot 1 6.70± 0.32 2.70± 0.05
Robot 2 6.75± 0.32 2.68± 0.05

Auction
Robot 0 9.74± 0.29 3.85± 0.03
Robot 1 9.41± 0.34 3.28± 0.06
Robot 2 10.46± 0.40 3.62± 0.04

15 minutes was performed for each of the three ap-
proaches.

Some average results with their standard deviations
are presented in Table 2. At each time step, the target
location is estimated by searching the cell of the be-
lief with a highest likelihood. This value is compared
to the actual target position. The entropies of the belief
at each step (

∑

∀cell−pcell log(pcell)) are also averaged
and shown. It can be seen that the approach proposed
in this paper (Auction+DDF) reduces the entropy and
the target localization error with respect to the Indepen-
dent POMDPs approach, since the cooperation between
the robots allows them to track the target from different
points of view. It can also be noticed that the estima-
tion of the target position is worse for the auctioned
approach in which no DDF is included. Note that in
this case, the mean errors are bounded by the resolu-
tion of the cells (2 meters). The option of Independent
POMDPs without DDF resulted in very poor perfor-
mance (and hence is not included), as the robots do not
share any information nor coordinate their behaviors.

Due to the bearing information encoded in the sensor
observations, a cross configuration among the pursuers
allows them to point at the target from different points
of view and reduce the uncertainty of its estimation.
This cross configuration is fostered by our auctioned
approach, as it can be seen in Fig. 10. This figure com-
pares our approach to the Independent POMDPs with
DDF in terms of angle configuration between the pur-
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Figure 10: Normalized histograms of the maximum an-
gle differences between the robots when the target is
within the FOV of any of them.

suers. Normalized histograms of the maximum angle
difference between any of the pursuers every time the
target is within FOV are shown. The Auction+DDF his-
togram presents a high peak close to180◦ and a small
mode in90◦ (cross configurations), whereas the his-
togram is quite flat for the Independent POMDPs. This
shows that the proposed approach is more effective in
reaching cross configurations.

Second, to show the scalability and robustness of the
system, a tracking experiment with a four-robot team
was performed. In this case, the target was represented
by a simulated robot (we only had 4 robots available).
We were able to run this experiment for more than
30 minutes with the algorithms working on board the
robots in a distributed way and using Wi-Fi commu-
nications, showing the robustness of the system. An
extract of the trajectories followed by the pursuers and
the target can be seen in Fig. 11a. The orientation of
the pursuers at the end of the experiment has also been
plotted to show how they surround the target to reduce
the estimation uncertainty. Note that, when the target
turns right, since they know the map, the pursuers opt
for going directly to the other exit of the aisle so they
can find it there.

The cooperation between the members of the team is
depicted in Fig. 11b, which shows the policies allocated
to each robot during the same time frame (each iteration
takes place every 10 seconds). Due to differences in the
local beliefs and different decision times for the robots,
inconsistent solutions (robots with the same policy) are
obtained in some occasions. However, as time passes
the robots have built up a better belief regarding the tar-
get’s position, and the assignment stabilizes (after iter-
ation 22 in Fig. 11b). Information regarding the time
spent solving the auctions will be provided in the next
section.

(a) Robot and target trajectories.
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Figure 11: Experiment with a four-robot team. (a) Tra-
jectories followed by the robots and the target during
the experiment. Orientations at the last time step are
also shown. (b) Policies allocated to each robot during
the same time frame.
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Figure 12: Evolution of the performance of the auction
under variable transmission rate for the DDFs.
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Figure 13: Average entropy (±3σ) of the target estimate
depending on the rate of received bids. Some bids are
not received to simulate noisy communication channels.
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Figure 14: Average results (±3σ) for simulations on co-
operative tracking with different numbers of robots in-
volved. Auctioned policies are compared to fixed poli-
cies assigned to the robots. (a) Discounted rewards. (b)
Entropies of the belief on the target position.

7.2.3 Simulations

Some simulations were run in the simulated version of
the testbed. First, simulations to check how our auction
algorithm performs when robots do not access the same
information. The experiments consisted of three simu-
lated robots, 2 pursuers and a target, starting at the same
positions in each experiment and with sample times as
before. Communication latency for the DDF modules
was varied throughout the simulations (two simulations
of 20 minutes for each latency value). Communica-
tion rates for the bid values were maintained, as the
data volume is not significant for the bandwidth com-
pared to belief information. The performance of the dis-
tributed auction algorithm is shown in Fig. 12 by repre-
senting the percentage of inconsistent assignments. As
the communication rate for the DDFs is increased, the
difference between the beliefs to which the robots have
access grows too. Thus, the consistency of the assign-

ments becomes more difficult under worse communica-
tions. However, Figure 12 shows graceful degradation
with respect to the communication rate.

Second, an experiment with 8 robots simulating
noisy communication channels was performed. In this
experiment the robots were accessing the joint belief,
but a percentage of the packages with bid values was
lost during communication. Again, a graceful degra-
dation in the entropy of the target estimate is shown in
Fig. 13 as we reduce the percentage of bids received
successfully (100 runs of 100 steps were carried out for
each rate value). For comparison, we added the worst
possible case, in which all the bids were lost and each
robot selected its role without any reasoning about the
others.

Third, we ran simulations in order to prove the bet-
ter performance of our auctioned algorithm against a
naive approach in which the same fixed behavior was
assigned to each robot during the whole experiment.
With the robots starting always at the same positions,
located at the four cardinal points of the scenario, 1000
runs of 100 steps were carried out considering 2, 3 and
4 robots. In the case of fixed policies, each robot was al-
ways assigned the one that fitted better according to its
starting position (e.g., the robot starting at the north was
commanded to approach the target from the north). In
Fig. 14, the average discounted rewards and entropies
on the target estimation are shown together with their
standard deviations. It can be seen that for all the cases
the auction approach performs better, since the robots
are able to adapt to different situations throughout the
experiment.

Finally, some simulations were run in order to pro-
vide empirical results about scalability. We ran our ap-
proach in the same scenario but increasing the number
of robots in the team. For each experiment, 100 runs of
100 steps were carried out with the robots and the target
starting at random positions. The entropy of the target
estimation and the total average reward (discounted) di-
vided by the number of robots are shown in Fig. 15a.
It can be seen how the performance does not increase
significantly after 6/8 robots. This is due to the size of
the scenario, which can be handled with a few robots.
In Fig. 15b, the average time spent at each robot (per
iteration) to solve the role assignment is plotted. In this
case, all the robots were considered within communica-
tion range in order to evaluate the worst possible case
(auctions needed to be solved for the complete team).
It can be seen that the execution time scales polyno-
mially with the number of robots, but in general, our
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Figure 15: Average results (±3σ) on cooperative track-
ing to show scalability with multiple robots. (a) En-
tropy of the target estimation and discounted reward per
robot. (b) Average time spent to solve a role assignment
at each robot.

approach will only depend on the number of neighbors,
which should be lower than the team size for larger sce-
narios. Nonetheless, even in this worst case, execution
times stay at quite reasonable levels for real-time appli-
cations.

8 Conclusions

Planning-under-uncertainty techniques, such as
POMDPs, face a scalability problem when considering
teams of robots, becoming intractable quite easily.
Popular frameworks like Decentralized POMDPs scale
poorly to many robots, unless very severe indepen-
dence assumptions are applied [Nair et al., 2004].
Furthermore, many of these models either do not allow
robots to exploit inter-robot communication, or im-
plicitly assume instantaneous cost-less communication
(MPOMDP). We focus on scalable techniques that

do not require such strict communication guarantees,
which are hard to meet in multi-robot domains with
unreliable wireless channels.

For certain roled-based applications, we approxi-
mate the MPOMDP solution by auctioning independent
POMDP-based controllers in a cooperative fashion. We
also relax the communication guarantees by introducing
a DDF approach for belief propagation, which allows
for imperfect communication channels and makes the
system more reliable. Even though the solution of our
approach is suboptimal, the results obtained in terms of
cooperative behavior are still good. Moreover, since the
computational complexity is reduced dramatically, it is
much more scalable than other multi-robot POMDP ap-
proaches, offering a trade-off between optimality and
applicability.

We present results on environmental monitoring and
cooperative tracking applications that cannot be solved
with the current state of the art in multi-robot POMDP
solvers. Besides, there are many other multi-robot ap-
plications that can be modeled with cooperative roles
and solved with our framework.

In the future, more research is still necessary to eval-
uate the exact degradation that we suffer against opti-
mal solutions. Also, some methods to analyze the initial
problem and identify potential sets of roles would be of
interest. So far, those roles are set in an ad-hoc fashion.
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A Appendix: Probabilistic Models

This appendix details the transition, observation and re-
ward models used for each of the example applications
in this paper.

A.1 Case study 1: Environmental moni-
toring

Given the positions of them critical points to monitor,
L1, . . . , Lm, the factored state of a UAVi consists of its
position in the grid (see Fig. 6),li ∈ {1, . . . , 40}; the
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contamination level of each critical pointj, statusj ∈
{none, low , high}; and a factor to specify whether each
critical pointj is classified,isClassj ∈ {0, 1}:

si = (li, status
1, isClass1, . . . , statusm, isClassm)

(13)
The transition probabilityp(s′|a, s) can be factorized
and computed for the different factors in the following
manner.

UAV transition model

A UAV can select a classifying actionai ∈
{classCont , classNotCont}, in which case it does not
move andli will not change. However, ifai ∈
{north,west , east , south}, the UAV will move to a de-
sired goal celllgoal = f1(li, ai). Also, there is a set
of additional cells where it may end up due to obstacle
avoidance or other issuesC = f2(li, ai) (see Fig. 16a).
Thus, if ai is any of the movement actions, the transi-
tion for the UAV position is the following:

p(l′i|ai, li) =















0.792, if l′i = lgoal
0.108, if l′i = li
0.025, if l′i ∈ C
0, otherwise

(14)

A UAV can only classify a critical point when it is
on top of it. Thus,p(isClass ′j = 1|a, isClassj) = 1
if ∃i \ ai ∈ {classCont , classNotCont}, andli = Lj.
Otherwise, the critical point is declassified with the fol-
lowing model:p(isClass ′j = 1|a, isClassj = 0) = 0;
andp(isClass ′j = 0|a, isClassj = 1) = pdes.

Propagation model

Regarding the contamination level, there is a propa-
gation model. The critical points are connected in a di-
rected graph and they can be of two types: entry points
or normal points. Entry points have no parents and the
contamination could appear or disappear on them inde-
pendently. For instance, the critical point 1 in Fig. 6 is
an entry point. Their transition model is described in
Table 3.

The points with one or more parents are normal
points, and their levels of contamination depend on the
ones from their parents. The contamination level is
propagated from the parents to the children, so the level
on a normal point will increase or decrease as the level

0.792

0.108

0.025 0.025

0.025 0.025

*

x
(a)

(b)

Figure 16: Graphical examples of the transition models
for the movement of the robots. (a) Position transition
if the robot has to advance towards the north. On the
left, the initial position is marked with a cross, the goal
position with a star, and the cells inC with a dot. On
the right, the transition probabilities. (b) Heading tran-
sition probabilities for two cases. On the left, the robot
is pointing north and it is commanded to turn right. On
the right, the robot pointing east and it is commanded
to go forward.

on its parents does. Table 4 describes this propagation
model for a point with a single parent. When there are
more parents, effects of the different parents (Table 4)
are combined.

Sensor model and reward

The observations for each UAV,zi ∈ {yes , no},
are conditionally independent, so the obser-
vation probability function can be factorized
p(z|a, s′) =

∏n

i=1 p(zi|l
′
i, status

′1, . . . , status′m).
If l′i /∈ {L1, . . . , Lm}, then p(zi = yes |s′i) = 0.

Table 3: Transition model for the contamination level
of an entry pointj.

status ′j

statusj none low high
none 0.9 0.1 0.0
low 0.1 0.8 0.1
high 0.0 0.1 0.9
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Table 4: Transition model for the contamination level
of a normal pointj with a single parentk.

status ′j

statusj/statusk none low high
none/none 1.0 0.0 0.0
none/low 0.9 0.1 0.0
none/high 0.85 0.15 0.0
low/none 0.1 0.9 0.0
low/low 0.0 1.0 0.0
low/high 0.0 0.9 0.1
high/none 0.0 0.15 0.85
high/low 0.0 0.1 0.9
high/high 0.0 0.0 1.0

Otherwise,

p(zi = yes |s′i) =







0.05, if status ′j = none

0.6, if status ′j = low

0.9, if status ′j = high

,

(15)
wherej is such thatl′i = Lj.

Finally, there is a local reward for each UAVi and
behavior k, Rk

i (si, ai). The reward is only given
when the UAV classifies a critical point. Therefore,
there is no reward ifli /∈ {L1, . . . , Lm} or ai /∈
{classCont , classNotCont}. Otherwise,

Rk
i (si, ai) =















































10, if ai = classCont ,
and statusk ∈ {low , high}

−90, if ai = classCont ,
and statusk = none

10, if ai = classNotCont ,
and statusk = none

−90, if ai = classNotCont ,
and statusk ∈ {low , high}

(16)
Of course, if the critical point was already classified,

there is no reward. Otherwise, the UAVs would keep
classifying all the time to obtain rewards and the policy
computation would converge very slowly. Moreover, a
small cost of0.1 is assigned for the movement actions,
whereas no cost is assigned forstay.

For the experiments with the MPOMDP model there
is a joint reward functionR(s, a). On the one hand,
if a UAV i is not classifying (i.e.,li /∈ {L1, . . . , Lm}
or ai /∈ {classCont , classNotCont}), it does not con-
tribute to this joint reward. On the other hand, for each
UAV i classifying, the value of the rewardRk

i (si, ai) is
added toR(s, a), beingk such thatli = Lk. However,

if several UAVs are classifying the same critical point as
contaminatedor asnon-contaminated, the local reward
term is added only once. This is not to reward several
times UAVs classifying the same point. Moreover, if
there are different UAVs classifying the same critical
point ascontaminatedand asnon-contaminatedat the
same time, a reward value of−90 is added toR(s, a) as
penalization (instead of any local termRk

i (si, ai)).

A.2 Case study 2: Cooperative tracking

The factored state of each roboti consists of its po-
sition in the grid (see Fig. 9b),li ∈ {1, . . . , 82};
its heading,hi ∈ {north,west , south, east}; and
the position of the target,lt ∈ {1, . . . , 82}: si =
(li, hi, lt). The local action for each robot isai ∈
{stay, turn right , turn left , go forward}. Moreover,
the transition probabilityp(s′|a, s) can be factorized
into different components.

The target only moves to 8-connected cells at each
iteration. Therefore, ifn8 is the number of 8-connected
cells8 for a initial positionlt,

p(l′t|lt) =

{

1/n8, if ||l′t − lt|| < 2
0, otherwise

(17)

The actionstaydoes not vary the positionli nor the
headinghi of the robot. Ifai ∈ {turn right , turn left},
li does not vary, but the goal heading can be obtained
by rotating90◦ the initial one clockwise or counter-
clockwise, respectively:α1 = rotcw (hi) or α1 =
rotccw (hi). If the robot rotates too much, it will end
up in the next headingα2 = rotcw (α1) or α2 =
rotccw (α1), respectively (see Fig. 16b for a graphical
example):

p(h′
i|ai, hi) =















0.025, if h′
i = hi

0.95, if h′
i = α1

0.025, if h′
i = α2

0, otherwise

(18)

If the action isgo forward, the robot heading can
also vary due to an erroneous movement or an obsta-
cle avoidance manoeuvre:

p(h′
i|ai, hi) =















0.025, if h′
i = α3

0.95, if h′
i = hi

0.025, if h′
i = α4

0, otherwise

(19)

whereα3 = rotccw (hi) andα4 = rotcw (hi).

8The operator|| · || represents cartesian distance in the grid.
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Besides, for eachgo forwardaction, there is a goal
position (in front of the robot)lgoal = f ′

1(li, ai), and a
set of additional positions where the robot may end up
due to obstacle avoidance or other issuesC = f ′

2(li, ai).
This model is similar to the one in the previous case
study (see Fig.16 for an example):

p(l′i|ai, li) =















0.792, if l′i = lgoal
0.108, if l′i = li
0.025, if l′i ∈ C
0, otherwise

(20)

The observations for each robot,zi ∈
{detected , non detected}, are conditionally inde-
pendent, so the observation probability function can be
factorizedp(z|a, s′) =

∏n

i=1 p(zi|l
′
i, h

′
i, l

′
t). The target

can only be detected if it is in the field of view (FOV)
of the robot. This field of view consists of a3 × 4
rectangle in front of the robot (see Fig.9b).

p(zi = detected |s′i) =

{

pD, if l′t ∈ FOV (l′i, h
′
i)

0, otherwise
(21)

Finally, there is a local reward for each roboti and
behaviork, Rk

i (si, ai). The reward is only given when
the robot is tracking the target from a certain headingk,
which depends on the behavior. Tracking the target
means that it is located in one of the 3 cells in front
of the robot (see Fig. 9b):

Rk
i (si, ai) =







100, if lt ∈ D,
and hi = k

0, otherwise
, (22)

whereD ⊂ FOV (li, hi), and lt ∈ D ⇐⇒ lt ∈
FOV (li, hi) and ||lt − li|| < 2.
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