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Abstract

Planning under uncertainty faces a scalability problemm@nsidering multi-robot teams, as the information
space scales exponentially with the number of robots. Teesddhis issue, this paper proposes to decentralize
multi-robot Partially Observable Markov Decision ProasséPOMDPSs) while maintaining cooperation between
robots by using POMDP policy auctions. Auctions provide aiffile way of coordinating individual policies
modeled by POMDPs and have low communication requiremedslitionally, communication models in the
multi-agent POMDP literature severely mismatch with re&i-robot communication. We address this issue by
exploiting a decentralized data fusion method in orderficiehtly maintain a joint belief state among the robots.
The paper presents two different applications: envirortal@monitoring with Unmanned Aerial Vehicles (UAVS);
and cooperative tracking, in which several robots haveitdljotrack a moving target of interest. The first one is
used as a proof of concept and illustrates the proposed ieaggh different simulations. The second one adds
real multi-robot experiments, showcasing the flexibilindaobust coordination that our techniques can provide.



1 Introduction

Multi-robot systems are of great interest in
many robotic applications, such as exploration
[de Hoog et al., 2009], surveillance [Burdakov et al.,
2010], monitoring [Leonard etal., 2010] or rescue
robotics [Merinoetal., 2006, Hsiehetal., 2007,
Maza et al., 2011]. In those applications, a single
robot is not usually able to acquire all the required
information and the cooperation among multiple robots
is essential (see Fig. 1). However, real scenarios present
uncertain and potentially hazardous environments in
which robots can experience communication con-
straints regarding connectivity, bandwidth and delays.
Mapping the overall task into robust plans for each
robot is a challenging problem.

Even when planning for a single robot, uncertainty
complicates task planning. For instance, in many
robotic applications the sensors on board the robot do
not allow it to unambiguously identify its own loca-

tion or pose [Thrunetal., 2005]. Partially ObservFigure 1: Multi-robot systems like multi-UAV systems

able Markov Dec_|5|on Processes (POMDP.S) proqu%gve been demonstrated as very useful in tasks like
souqd n*llathemanc_al framewo_rk to cope with dec'tc"oﬂisaster monitoring, tracking or surveillance activities
making in uncertain and partially observable env'ror[‘Merino etal., 2006, Maza et al., 2011].
ments [Sondik, 1971, Kaelbling et al., 1998].

However, although there are POMDP solvers
able to successfully handle large state spaces cafsproach is that we relax the strict assumptions on the
rently, POMDPs ultimately face a scalability probguality of the communication channel commonly found
lem when considering planning for multi-ageni the literature on multi-agent planning under uncer-
teams [Seuken and Zilberstein, 2008]. Popular mogkinty [Pynadath and Tambe, 2002, Nair et al., 2004,
els like Dec-POMDPs [Bernstein et al., 2002] or NDRoth et al., 2005]. Actually, we consider fully decen-
POMDPs [Nair etal., 2005] remain limited to topralized solutions, that is, solutions that only involve
problems, and other models require flawless instdBeal information and point-to-point communications,
taneous communication [Pynadath and Tambe, 208Ad which are scalable with the total number of robots.
Nair et al., 2004, Roth et al., 2005]. In the next subsections, a definition of the decentral-

In this paper, we propose a scheme for exploiting th&ed models assumed in this paper is stated; some re-
power of decision-theoretic planning methods such Rsed works are reviewed; and the main contributions of
POMDPs, while mitigating their complexity by low-the paper are highlighted.
ering the dependence between individual plans. In
particular, the approach solves independent POMDTS_I_
for each robot, but still fosters online cooperation dur-’
ing the execution phase by distributing the individ&hen designing control algorithms for multi-robot sys-
ual policies using auctions. Auction algorithms havems, it is important to keep in mind their possibilities
been widely used for optimal multi-robot task allocaand constraints. Of particular relevance in our context
tion [Gerkey and Matari¢, 2004, Mosteo and Montang the fact that communication between robots is often
2007, Viguria et al., 2008], and have also been explorpdssible, but the quality of the communication channel
in conjunction with POMDPs [Spaan et al., 2010a]. can vary. This precludes centralized solutions as well as

In addition, robotic teams commonly are capable afethods requiring communication guarantees. There-
communicating, which we exploit to maintain a deceffiere, we focus on decentralized models. In particular,
tralized state estimate. Nonetheless, a key point in aue adhere to the following definition of a decentralized

Decentralized systems



system [Nettleton et al., 2003], see Fig. 2: j

1. There is no central entity required for the opera-

tion. ‘ ‘

2. There is no common communication facility; that 2
is, information cannot be broadcasted to the whole " A
team, and only local point-to-point communica- A """""" g ' ’
tions between neighbors are considered. A :

3. The robots do not have a global knowledge about /_’E ﬁ

the team topology: they only know about their lo-
cal neighbors.

- Figure 2: Decentralized approach. The communication
These characteristics make the system scalable a$.jt,4ins for robots, j andk at a given instant are in-

does not require a central node and enough bandwigffiaie - All the operations are performed within these
to transmit "’,‘" the information to thgt nodg. Moreoveaomains’ so the complexity of the operations is limited
the system is more robust and flexible with respect EJ?, the number of neighbors of each robot. However,

loss or inclusion of new robots (there is no need to knQfs information flow through the network will permit
the global topology), and with respect to Commu”ic%operation between all robots.
tion issues (a failure does not compromise the whole

system).

allocation under uncertainties in which the robots rea-
1.2 Related work son about temporal constraints. In a close work to ours

but using a different model, Cole et al. [2006] consider
In the single-robot case, the POMDP modelecentralized state estimation and auctioning for multi-
has been applied to a wide variety of robotigehicle coordination in information gathering missions.
applications. Those include robot navigatio@ptimal policies are obtained by maximizing the ex-
[Simmons and Koenig, 1995, Spaan and Vlassis, 20@#cted information gain as utility. Multi-vehicle coordi-
Roy etal., 2005, Foka and Trahanias, 2007], actiwation is performed by a similar auctioning mechanism.
sensing [Hoey and Little, 2007, Spaan etal., 2010Igyven though these approaches may cope with some of
object grasping [Hsiao etal., 2007] or human-robgiem, POMDP techniques embrace together several in-
interaction [Doshi and Roy, 2008]. teresting features for robotic tasks: (i) they deal with

For multi-robot systems, there are also many mogequential problems and optimize forward for a time
els extending POMDPs, but they usually make stroingrizon; (ii) they reason about noisy and delayed robot
assumptions in terms of communication quality or facaovements; (iv) they can weight naturally different cost
scalability issues regarding the number of robots. THisnctions in parallel and implicitly consider the value of
literature for multi-agent planning under uncertaintyzformation gathering.
will be reviewed later in Section 3.
_Apart from POMDPs, there are many other proba—_s Main contributions

bilistic approaches that deal with decision-making in
multi-robot teams. For instance, a multi-task archis a first contribution in this paper, we propose to emu-
tecture for tracking and monitoring is presented iiate a multi-robot POMDP by combining individual be-
[Maza etal.,, 2011]. However, reasoning on the uhaviors or roles that can be represented by single-robot
certainties inherent to the different tasks is just irPOMDPs. We generalize a centralized POMDP auc-
cluded as an ad-hoc plan refining module, as the tasion [Spaan et al., 2010a] to assign never-ending poli-
are considered observable and deterministic. Modes (behaviors) to different robots at every step. In this
over, a decentralized algorithm for mapping and trackevel decentralized auction, instead of tasks, POMDP
ing is presented in [Stroupe and Balch, 2005], whereaglicies that describe a behavior towards a common
in [Bourgault and Durrant-Whyte, 2004, Wong et algoal are distributed; robots can switch between these
2005], the focus is on multi-target search. Also, thereli®haviors dynamically at each decision step. The auc-
some work [Shah et al., 2009] dealing with online tagion determines continuously which behavior is best



for each robot to cooperatively attain the goal. Sincd Background

local POMDPs are solved for each robot, the inter-

connection between the models is low and the approade give a short description of a decision-theoretic
can scale well with the number of robots. model for single-robot and multi-robot planning, fol-

ﬁwed by a method for maintaining a joint belief by

The second key component is to efficiently mainta, .
gIUpIe robots.

a joint belief state among the robots, which can serve'l
coordination signal. We use an existing Decentralized o ) _
Data Fusion (DDF) approach [Capitan et al., 2011], bdt1 Decision-theoretic planning models

in conjunction with POMDP policies for a multi-robot . :
A popular model for single-robot planning under uncer-

system. U_nllke most work on POM_D_PS’ the pehef uQéinty in sensing and acting is the Partially Observable
date here is separated from the decision-making PrOCESS | oV Decision Process (POMDP)

during the execution phase. This decoupling betwee . !
both processes increases the robustness and reliabzlngzrrga;yb 2 zoy'\;l[[)iaelfbnggfgi\? ?égg}e .It_l;ge

of real-time rOb_OtIC_ teams. - state spacés the finite set of possible states= S; the

In order to highlight the flexibility and performanceyction spacethe finite set of possible actions € A;
of the methods proposed, two different multi-robot agmd theobservation spaceonsists of the finite set of
plications are presented. First, environmental mopossible observationse Z. At every step, an action is
itoring, in which several UAVs have to evaluate thgyken, an observation is made and a reward is given.
level of contamination on a given terrain with lesshys, after performing an actiom, the state transi-
uncertainty as possible. Second, a tracking appliggm is modeled by the conditional probability function
tion, in which several robots have to cooperate in OF(s',a,s) = p(s'|a,s), and the posterior observation
der to track a moving target as accurately as posgy the conditional probability functio®(z, a, s') =
ble. Nonetheless, our techniques suit a wider range;|q, s'). The reward obtained at each stegiss, a),
of problems, such as surveillance [Hsieh et al., 2004zd the objective is to maximize the sum of expected
Burdakov et al., 2010] or fire detection [Merino et al{',ewardsy ONa'ue earned duringl time Steps_ To en-
2006, Maza et al., 2011], which call for a cooperativ§re that this sum is finite whein — oo, rewards are
effort of robots coordinating their individual roles. weighted by a discount factere [0, 1).

The paper shows extensive simulation results, but itGiven that it is not directly observable, the actual
also demonstrates the proposed approaches in a g&ale cannot be known by the system. Instead, a proba-
multi-robot testbed. This is done for the cooperdility density functionb(s) over the state space is main-
tive tracking application and using a fully decentralizei@ined. This is called theelief stateand, due to the
setup in real-time. Markov assumption, it can be updated with a Bayesian

filter for every action-observation pair:

V(s') =n0(z,a,5) > T(s',a,9)b(s) (1)
1.4 Organization s€S
wheren acts as a normalizing constant such thiate-
The remainder of the paper is organized as f0”0"\4$iainsaprobability distribution.
Section 2 summarizes POMDP models and describeshe objective of a POMDP is to find a policy that
the decentralized data fusion algorithms; Section 3 digmps beliefs into actions in the formib) — a, so that
cusses current approaches in the literature for mulfie total expected reward is maximized. This expected

agent planning under uncertainty; Section 4 proposgfvard gathered by following starting from belieb is
a role-based model for multi-robot planning; Section &led the value function:

describes the algorithms for auctioning POMDPS in a
decentralized manner and the overall overview of the ‘
complete system; Sections 6 and 7 present the two ap- Vi)=& ;7 r(be, m(be))lbo = b (2)
plications used as case studies, including experimental B

results; and Section 8 gives the conclusions and futwvberer(b;, w(b:)) = >, g R(s,m(b))bi(s). There-
work. fore, the optimal policyr* is the one that maximizes

h



that value functionz*(b) = argmax V(b). robot i robot |
™ . . . 2
There are two key results for computing optimal poli- !

cies in discrete POMDPs. First, the value function at
horizont can be constructed iteratively from the value
function at horizort — 1 (Value Iteration):

Clj/
®(p) =
v (b) % decision
interval

max > R(s,a)b(s) +7 Y _ p(2la, b)V“—l)(bg)]

sES z€Z
3)

whereb? is the belief updated according to (1). Second,
it can be proven that the optimal value function for any
finite horizon is piecewise linear and convex [Sondik,
1971]. It means that the value function at iteration
can be expressed by a set of veclor§|S|-dimensional
hyperplanes), each of them defining a region in the be-
lief space for which they are the maximizing element of
Ve,

In general, computing an optimal policy requires one
to explore the continuous belief space, which can be

very complex. Classic point-based solvers, such ei%ure 3: lllustration of the difference in information

SARSOP [Kurniawati et al., 2008] or Symbolic Perseyg ), poyeen a centralized model (a) and a decentral-
[Poupart, 2005], approximate the value function itef; .4 e (b)

atively (3) using a finite set of belief points. More-

over, other solvers [Theocharous and Kaelbling, 2003,

He etal,, 2011, Kurniawati et al., 2011] improve policypseryation vector. Figure 3 illustrates these con-
computation by sampling the belief space efficiently @gpts, showing that in an MPOMDP the robots need
by considering macro-actions. However, our approaghigynchronize their knowledge using communication.
is independent of the particular (approximate) POMDR fact, for the reduction to an MPOMDP, communi-
solver employed, and advances in POMDP solving C@gion is assumed to be instantaneous and free of cost

time
decision
Zj % interval

(2) MPOMDP.

robot i robot j

-t

(b) Dec-POMDP.

be applied directly. [Pynadath and Tambe, 2002].
In both models, the transition functidi(s’, a s, s) is
2.2  Multi-robot models defined over the set of joint actiong € A; x---x Ay,

and the observation functio@(z;, ay, s') relates the

When a set ofn robots that share the same rewarstate to the joint action and the joint observatigne
function is considered, there are two main options ¢, x --- x Z,. The common reward signal is defined
extend the POMDP framework. The Decentralizealer the joint set of states and actioRs: S x A; x
POMDP (Dec-POMDP) model allows for fully decen--- x A,, — R.
tralized execution [Bernstein etal., 2002], while the The goal in the multi-robot case is to compute an op-
Multi-agent POMDP (MPOMDP) takes a centralizetimal joint policy 7* = {m,--- ,m,} that maximizes
approach [Pynadath and Tambe, 2002]. the expected discounted reward (as in the POMDP

Each roboti can execute an action; from a fi- case). In the MPOMDP case, as robots at each
nite setA; and receives an observatiepfrom a finite time step have access to the joint observation and
setZ;. The key difference between the Dec-POMD#he joint action, they can maintain a joint belief us-
and MPOMDP models is that in the decentralized caseg (1) (substituting the single-robot models with the
each robot only observes its local observatiprwhile joint ones). In the Dec-POMDP case, beliefs over
in the centralized case, each robot observes the fihié state space cannot be computed as the observa-



tion function requires the full observation vector ttain the centralized joint belief from the local ones:
be known. As a result, optimal policies map indi- n
vidual action-observation histories to actions. The by (s0:¢) = ”H
computational complexity of solving a Dec-POMDP il
is significantly higher than that of a POMDP (NEXP-

complete [Bernstein et al., 2002] vs. PSPACE-completdiereb(so.t)o = [17Z T'(sr, a.r, 57-1)b(s0).
[Papadimitriou and Tsitsiklis, 1987]). Then, if a robot of the team receives all the beliefs

from the other robots, the fusion operation consists of
combining all the local beliefs after removing the com-
2.3 Decentralized data fusion mon information they share (the prior over the trajec-
tory b(so:t)o). The important aspect to be pointed out

Between the informati_on exchange rquired by tri‘§that, by applying this equation, the centralized belief
MPOMDP model (equivalent to a centralized system, beexactlyrecovered

with access to all the information at every time instant) Several aspects should be considered. First, in a
ffjmd the [.)ec-POM.DP 'T“Ode' (.nc.) exchange at all), th&jg centralized system one robot will communicate just
|sthe option of es“ma“”gth‘?lo'm be“(_af (1)in adecer?/\'/ith some neighbors. Therefore, (6) will result on a
tralized way. that IS, using Just Ioc_al information anﬂelief different from the joint one, but which summa-
exchanging mformat!on with the ng|ghb0rs. .. rizes all the information from those neighbors. Later,
In order to determine how to estimate the belief in g en this belief is communicated throughout the net-
decentralized way, it is convenient to consider the jifjork; the joint belief will be recovered eventually. For
bellefb_J(so:t) for the _fuII state trajectory (from time Oexample, in Fig. 2, robot will have eventually a com-
up to timet). Assuming that the data gathered by the,o shared belief with the rest of the team thanks to
_dlfferent robo_ts at any time mstantarecondmonally its communication with robof; the belief obtained by
independengiven the state at that instasi, and the 4,4t ; summarizes all the information obtained by its
same assumptions as in (1), the Bayes filter to compyiggnpors, including those not directly in contact with

bi(s0:¢)
b(50)0 b(s0:¢)0 (6)

this joint belief state is given by: robot k, like roboti (which itself summarizes all the
information from its neighbors).
by(s0:¢) = Second, the communication between robots will hap-
T=t n pen from time to time. Every time fusion operations are
n' [H O(zirsar,57)| T (57,007, 57—-1)b(s0) performed shared beliefs are recovered, but meanwhile
r=1 i=1 there may be a desynchronization between local beliefs.

(4) Moreover, applying (6) requires to know the actions of
the other robots (to apply/(s-, as -, s-—1)). These ac-
with b(so) the prior andr’ a normalization constanttions could be communicated, or even predicted from
(we assume, without loss of generality, that every rob@fe fused beliefs (in case no communication is avail-
gathers one measurement at every time instant). Thisle).
filter requires access to all the information provided by Finally, not only does each robot receives informa-
the team at any moment. tion from its neighbors, but also sends information to
In a decentralized approach, however, each robot efifem. In this case, the fusion equation is slightly dif-
ploys only its local datay; and thensharesits belief ferent. If roboti received information fromj, its belief
with its neighbors at certain time instants. The receivegbuld be updated as it follows:
information from other teammates is locally fused in or-

der to improve the local perception of the world. The lo- bi(s0:) nbi(so:t)bj(SOIt) @)
cal belief state over the full trajectoty(sy.;) for robot bij (so:t)
tls: whereb;; (so.+) represents the common information be-

s tween the robots (i.e., the common prior mentioned
by (50:¢) :77”HO(zm,al-_,T,sT)T(sT,aJ_,,sT,l)b(so).above b(so:4)o but also information previously ex-
changed between the robots). This common informa-
(5) tion can be maintained by a separate filter called chan-
Comparing this expression to (4), it is possible to olmel filter [Bourgault and Durrant-Whyte, 2004]. If there

3

T=1



double counting should be taken into account as well.
As commented, the previous equations are exact even

for dynamic states. However, maintaining a belief for

the state trajectory is very costly. In [Capitan et al., Dec-POMDP

2011], the authors have presented an algorithm for de-

centralized data fusion that scales only linearly with

with
comms
POMDPs
the length of the trajectory, under the assumption of
Gaussian beliefs. For other belief functions, the same denendem
Equation (7) can be applied to the belief on the last None POMDPS Pec-PONDR
L

stateb(s;). However, some error will be committed
ow ==  High

are loops in the information channels, the problem of . .
Multiagent
POMDP

Communication

with respect to the centralized ideal belief if the fusion

equation is not applied every time instant in which a Interdependence

measurement is obtained in the team. This error will

depend on the effect of the prediction function on tHégure 4: Classification of multi-agent POMDP ap-

belief. In [Bourgault and Durrant-Whyte, 2004] it caProaches according to interdependence and level of

be seen how this error stays bounded for a searching @@nmunication between the agents.  “Auctioned

plication in which the dynamics of the target implies ROMDPs" refers to our proposed approach.

zero-mean Gaussian diffusion of the belief, and its size

depends on the communication rate of the DDF. _ _ _
Furthermore, Capitan etal. [2011], Merino et af® agents’ model requires re-computing the poli-

[2012] show the error committed in similar tracking agti€S for the others.  Many models from the litera-

plications. They highlight that the error between conjt® are highly interdependent, for instance Multi-agent

munication instants also depends on the amount of [{PPS (MMDP) [Boutilier, 1996], MPOMDPs, Dec-

formation associated to the measurements gathere DPs, and ND-POMDPs [Nair et al., 2005], and I-

the fleet in the meantime (represented by the infdfOMDPs [Gmytrasiewicz and Doshi, 2005]. Figure 4

mation matrix of these measurements in the GaussR{§SeNts @ possible classification of existing models

case). In that case, as a delayed-state filter is condiff respect to their interdependence and the grade of

ered, the error is reset in each communication event.COMmunication that is assumed for the agents.
The simplest approach is to map the global task as

well as possible into a set of individual tasks, and model
3 ; _ these as independent POMDPs (Fig. 4, bottom left).
3 MUItI_agent Plannmg under Un Thus, each agent can solve its own POMDP and exe-
certainty cute its own policy without any communication. In this
case, the interdependence between agents is very low,
In the literature a wide variety of decision-theoretibut since each agent ignores the others, the level of co-
models exist to deal with multi-agent systemgperation or even coordination is low too. Many inter-
[Seuken and Zilberstein, 2008], of which Multi-agergsting multi-agent planning problems cannot be tackled
POMDPs and Decentralized POMDPs were already imdequately with such a loosely coupled approach. The
troduced in Section 2.2. However, many of these moadvantage of such an approach is its relatively low com-
els have severe drawbacks when considering applypufational complexity, since it only requires solving
them to multi-robot scenarios. Before presenting ogingle-agent POMDPs, each of which is defined over
solution, we analyze the models available in the literardividual action and observation spaces. Hence, scal-
ture by comparing them in terms of agent interdepeability in the number of agents is linear, which is very
dence and communication assumptions. low compared to other models.

The level of interdependence between agents is deOn the other end of the spectrum, MPOMDPs and
termined by 1) the amount of information that alec-POMDPSs solve a single decision-theoretic model
agent needs to know about the other agent andf@j the whole team reasoning about all the actions and
how coupled the final policies are. We call a sysbhservations of each agent (Fig. 4, right column).
tem highly interdependent if a change in one of The MPOMDP model assumes perfect communica-




tion and each agent has access to joint actions and hily takes into account multi-robot issues. In a sense,
servations at every moment, whereas the Dec-POMB aim to reach middle ground on both axes of Figure 4.
model assumes no communication at all. Such mod-There are many multi-robot missions that could be
els allow for tight coordination, but they present a higimodeled as POMDPs [Kok et al., 2005, de Hoog et al.,
interdependence, since any small change in one of 2809, Burdakov etal., 2010]. If all the robots have
agents entails a recalculation of the policy for the whodecess to joint information (actions and observations
team. Furthermore, if due to imperfect communicatidrom the whole team), the problem can be modeled as
agents do not have access to other agents’ observatiangdPOMDP. The objective of the team can be encoded
the behavior of the MPOMDP modelis not defined. R@ a reward function that, in general, depends on joint
garding computational complexity, an MPOMDP is atates and joint actions, and can be seen as the addition
POMDP defined over the joint action and observatiaf the local rewards for each robot:

spaces, whose sizes grow exponentially with the num-

ber of agents. R(s,a) = Ri(s,a) + -+ Rn(s,a). (8)

The Dec-POMDP model, on the other hand, does not ;. ¢ losing generality, the reward can be decom-

exploit communication at all, which in many scenar- . ) .

. - ) osed into two parts: one based only on local informa-

ios could be beneficial to improve team performance. —,ca f h roboi: and based .

For instance, in our cooperative tracking applicatior%On [ from each robot; and one based on joint

it is easy to éee that if a pursuer robot detects the t|r1rformat|onRJ°mt. The local information for a robat
y P fleans its actiom; and its states; 1. In case of a fac-

get and informs its teammates about the target's PBred state, each local statewould include the local

ELO)t(rI:g?c;er Igtc a%;ﬁ;ﬁfchiuﬁ;rsﬁsrzs (;:::h Clafseuflé;ctors that can be controlled by local actions, and the
: get. . » €ach p flctors that are common for all the robots. Thus, the
might need to find the target by itself, which is clearl

. . ) X lobal rewar n Xpr :
less time-efficient. Solving Dec-POMDPs optimall obal reward can be expressed as
takes doubly-exponential time in the worst case, which

severely restricts their applicability in multi-robot sce R(s, a) = o
narios. R (sy,a1) 4 - - -+ RI°U(s,,, a,) + RIO™ (s, a)
In between MPOMDPs and Dec-POMDPs there are 9)

several models in which some communication is as- )

sumed [Nair et al., 2004, Roth et al., 2005, Spaan et al Apart from thel(_)cal rewards (i.e., the rewards _that
2008, Oliehoek and Spaan, 2012] (Fig. 4, middle righf)(?botS would get "; there Were no others), there IS the
These models try to exploit the fact that agents actuafijuP!ed termi’*"(s, a), which models cooperation
share information, but just partially and at certain iffM0N9 the robots. Indeed, actions from different robots

stants. Furthermore, most of them assume that comrfi§€d to be considered in order to compute this reward.
nication arrives instantly. Even though the design of this cooperative term is very

By looking at the current state of the literature, Wgependenton the application, in many cases, due to effi-

can conclude existing multi-agent decision-theorefl€NCY ISSUES, itis common to penalize different robots

models do not take into account the requirements ghgpeating similar tasks. For instance, in many surveil-

multi-robot missions pose. First, a critical dependenk‘?é1Ce applications the r.obots ShOUId_ get less reward for
on communication is to be avoided, but it should be ex4'VeYINg an area that is already being surveyed by an-

ploited when available. Second, a strong coupling pRther.

tween individual robots is undesirable, as tightly coor- The previous idea is useful for many robotic appli-

dinated joint actions are often hard to execute Withcgtions in which there are either limited resources that
low probability of success cannot be accessed simultaneously by the robots, or dif-

ferent roles/tasks that must be covered. Thus, the team
objective in many missions (e.g., detecting a target or

4 Role-based Multi-robot POMDP alarm) can be achieved with robots following differ-
ent roles or behaviors (e.g., patrol a certain area, ap-

In order to address the shortcoming of existing mulffroach the target, etc.). For instance, in smart energy

agent pl_anning_ models for multi-robot scenarios, as d|5_'1For the sake of clarity, in the rest of the paper andz refer to
cussed in Section 3, we present a new model that spejifit variables whereas local variables are indicated with-indices.




grids there are providers and consumers [van der SIMPOMDP in which the policies are sub-optimal, but
2011]; and in robotic soccer strikers and defenddfse computational complexity of the solution is reduced
[Kok et al., 2005]. Also, in active perception applicadramatically.

tions [Maza et al., 2011], where the team needs to max-

imize its information, it is positive to have robots fol-

lowing non-overlapping behaviors in order to provid® Decentralized Auction with
richer information to the team.

In this work, we are interested in these role-based ap- POMDPs
plications. In order to model the problem that way,
assume the following:

Assumption 1 For a given mission, there is a fi-
nite set ofn possible roles/behaviors for the robots th
are exclusive and define the whole problem. In oth
words, the problem can be modeled with a setrof !

non-overlapping behaviors (i.e., each robot can only reover. both roach re decentralized followin
playing one role at a moment). oreover, both approaches are decentralized foliowing
the definition of Section 1.1.

Assumption 2 Each role is a single-robot behavior i .
In Fig. 4, our approach can be seen as in between “in-

that can be represented by a reward functif(s;, a;), N .

wherek € {1,...,m} identifies the behavior and e dependfent POMDP(‘;’ anddMPOI\/IIDP/Dec-F;OMDP n

{1,...,n} the robot performing it. terms of agent interdependence. In terms of communi-
cation requirements, our approach does not require the

Provided that{c; }i—=1...» € {1,...,m} are the be- 1
haviors chosen by each robot, the local rewards in h-quality guarantee_s ofthe met_hod_s that enhance the
ec-POMDP model with communications.

depend on this assignment. These rewdkfs® are
the ones that each robot would get by acting on its own,
and they are encoded in the correspondijg More- g 1 Auctioning POMDP policies
over, the cooperative term also depends on the assign-
ment of the behaviors®’°™t = f(s,a,cy, -+ ,cn). We already stated in Section 4 how a MPOMDP can
The idea in our role-based model is that, at each tirhe modeled with single-robot behaviors for a certain
step, the robots should select their behaviors optimafilass of problems. Such a decomposition is of inter-
(apart from their actions) in order to maximize the exest in many robotic applications like search and res-
pected reward of the whole team. Therefore, we cane [Burdakov et al., 2010, Hsieh et al., 2007], tracking
define a role-based MPOMDP in which the value funfMaza et al., 2011], fire detection [Merino et al., 2006]
tion (3) is modified as follows: or robotic soccer [Kok et al., 2005], in which coopera-
tion between robots playing different roles is required.
V() = max {> [R{(s1,a1) + -+ RS (sn,a,) An idea to solve the role-based MPOMDP s to use
G (s the reward functions of the behaviors to define a set of
joint (t—1) ;1.2\ Single-robot POMDPs that can be solved separately of-
TR s 0 010)lb() Z p(ela,b)V (ba)}ﬂing. Then, these behaviors can be run onlilze simzlta—
(10) neously and combined in some optimal manner to pro-
duce a joint behavior similar to the one desired for the
This new value iteration performs optimization awhole team initially.
two differentlevels, behavior level and action level. Ac- The objective is to approximate the multi-robot re-
tions and behaviors are chosen at each step so thatwhed in (9). For that, a single-robot POMDP is de-
value function is maximized. Note that the role assigfined for each given behaviére {1, ..., m} and robot
ments from one step to the next one are not correlatéd: {1,...,n}. With each POMDP the reward function
This role-based model may entail even higher comput-the corresponding behavidi! is associated, which
tional complexity than the original MPOMDP, since thés defined over the sets of local variab{&s, 4;, Z;). In
optimization is carried out over all the possible joint a@n offline planning phase, individual policies are com-
tions and behavior assignments. In the next section, pueted for all these POMDPSs, each of them with a value
propose an approximate method to solve the role-basexdction V*(b;). Although the actual multi-robot ob-

W?he proposed approach builds on two mechanisms: the
decentralized data fusion filter described in Section 2.3
nd a POMDP auction (Section 5.1). The former allows
e robots to share information and build a joint belief
e in a MPOMDP, the latter is used to assign the dif-
rent behaviors to the robots in a cooperative manner.
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jective cannot be modeled as a set of single-robot mélgorithm 1 Auctioneer Robot (b;)

ward functions, if these policies could be assigned op;. for a1 & {1,...,m} do

timally to one or more robots, all together should lead,. bir = —VF(b;) {; Local bids

to a cooperative behavior pursuing the global objective,. Sendop;, {0 neighbors.

The problem of determining which policy should be as-,. ang for

signed to each robot at each step can be modeled as; aReceive bids from neighbors.

task allocation problem [Spaan et al., 2010a]. 6. & = {$},.x {; Create cost matrix
In general, a task allocation algorithm attempts to as,. {zjn}in — 7Hungarian(<I>)

sign a set ofn tasks to a team af robots minimizing . refurn Policy selected for robat(c;).

a global cost. In this case, each robot always has to-be

assigned a sole task, which is the POMDP policy to fol-

low. In order to foster cooperation, we try not to assign h h . h il
the same policy to different robots. Given thag — 1 among the teammates here (i.e., there are similar num-

when policy is assigned to robat (¢; — ) and 0 ber of robots executing each behavior), the approach is

otherwise, ands, is the cost associated with that admnore general. As it will be discussed in Section 5.3,

signment, the problem consists of minimizing the totg*ternat!ve methods for.role allocation Cf)u'd be u_sed..
cost: Algorithm 1 summarizes a decentralized auction in

which the assignment problem is solved locally at each

n m robot with the information available. Each robbt
minz (Z ¢z‘k$z‘k> (11) computes its own bids for the behaviors from its lo-
=1 \k=1 cal beliefb; and communicates them to other neigh-
subject to boring robots. Then, with the bids received from other

robots, a local solution for the assignment problem (11)
is obtained. This decentralized behavior assignment is

Z vik <1, VEE€{l,...,m} solved at each decision step for the robots. The compu-
121 tation can be performed efficiently in polynomial time
Z za <1, Vie{l,...,n} using the Hungarian algorithm [Burkard, 2002], a well-
i - known algorithm for solving the assignment problem

optimally. It computes a cost-minimizing assignment,
operating on am x m cost matrix, whose entries con-

In the execution phase, the best behavior for eati§ts 0f¢i. values. Hence, the allocation of behaviors
robot is selected online with an auction algorithrp robots is optimal within each local auction.
[Spaan et al., 2010a] where the cost or bid of assign-The local cost matrices, and hence the local solutions
ing a policy k to a roboti is ¢, = —Vik(bi). Thus, forthe behavior assignment, should be the same at each
policies with a greater expected reward are more likelgbot as long as all the robots communicate with each
to be selected for each robot, which helps to maximigéher, and the communication is error-free. In that case,
the global expected reward for the whole team. As e&ll the local beliefs are equal and each robot creates a
plained in Section 4, the assignment of the behavigi@mplete cost matrix with inputs from all the robots in
can vary from one time step to the following in an urthe team. However, if a robot only receives informa-
correlated manner. Note that these behaviors are fien from a subset of neighbors (due to communication
finite tasks that the robots must select and solve, Batures or network topology), it can still solve the as-
different policies to follow given the current belief. Assignment with a cost matrix that only has inputs from
the belief changes, the robots are allowed to switch th#iose robots.
behaviors in order to pursue the optimal solution. Due to this partial information at each robot, or due to

In casen > m, the algorithm above will leave robotshe fact that local beliefs for DDF systems are not syn-
with no policy assigned. Therefore, the assignmectironized all the time, inconsistencies leading to sub-
problem is repeated with these free robots until they albtimal assignments may be obtained. In an inconsis-
get a policy. In this case, some policies would be a®nt assignment, the local cost matrices and hence the
signed to more than one robot at the same time. EMenal solutions differ from one robot to another. There-
though the existing behaviors are distributed equalfigre, a good synchronization of the local beliefs is de-

i, €{0,1}, Vi, j



sirable to avoid these suboptimal situations. In contrast,
the robustness of the system is high, since information ﬁ

from all the robots is not required to compute each lo-
cal solution. In case some communication links failed, Robot
each robot would still get a suboptimal solution with the
available information from their neighbors (robots from
whom information was received). Moreover, the com-
putation time of the Hungarian algorithm is relaxed,
since each robot only runs it with a submatrix of the
complete cost matrix.

In addition, there is another potential desynchroniza-
tion when the robots make decisions at different mo-
ments and hence with different available information.

Some previous works [Choi et al., 2009] propose con-

sensus algorithms over this information in order to gudfigure 5: Functional scheme for decision-making and
antee convergence for decentralized auctions everb#lief update at each robot.

case of time desynchronization. However, the decision-

making performance is still degraded. Moreover, in the

approach presented here robots are allowed to chahgg System overview

their policies at every step. Therefore, the establish- )
ment of a previous consensus to converge to the sa ure 5 illustrates the system elements per robot. The

distributed solution is not worthwhile. whole process is separated into_two different modul_es.
Each robot can execute a certain number of behaviors
Furthermore, it is important to remark that, althouglyogeled as single-robot POMDP controllers. A DDF
independent POMDPs are solved for the robots, trangjsqule is in charge of computing the belief and feed-
tion independence for the local states is not assumggh the Auctioneer module, which then chooses the ad-
We are approximating a role-based MPOMDP, ang,ate POMDP controller and the associated action.
hence, a joint belief is required for the team. This beligeny though most POMDP-based systems synchronize
over the joint state and containing information from af{g|ief update and decision-making in the same loop,
the robots, is provided by the DDF algorithm runningere the two processes are separated. In this way some
during the execution phase. Nonetheless, 10 CompHifstraints that limit the flexibility and robustness of the
the bids for the auctions, the value functions of the difystem are avoided. For instance, communication chan-
ferent behaviors (defined over local states) have 10 hgis and transmission rates are totally independent for
evaluated. The joint state variables can be marginalizggih modules, which is critical in decentralized systems
out to keep only the local state variables and obtin ;nqer possible communication failures.
for each robot. The approach is completely decentralized, since the
Finally, note that from the joint belief obtainedelief estimation and the decision-making are carried
through the DDF it is possible to predict locally theut without the need for a central entity. On the one
bids from other teammates, even if they do not corhand, the belief estimation is computed by a DDF algo-
municate. Therefore, it may be possible to reason abaitihm that is distributed along the multiple robots. On
other teammates’ actions even in the case of no cothe other hand, the POMDP controllers act also sepa-
munication (in heterogeneous teams, robots could afstely for each robot. Despite the fact that a multi-robot
require additional information about the capabilities ®#OMDP for the whole team is not solved (with its com-
their teammates). Of course, the longer the commuutational benefits), cooperative behavior still arises in
nication breakdown lasts, the larger the difference wittvo manners. First, the robots select their best role
the assignments that would be obtained when additiobgl explicitly reasoning about which behaviours their
information is received from other robots. In our cumeighbours are performing via the auction mechanism.
rent implementation, we just consider the robots withiBecond, the DDF also allows the robots to obtain in-
communication range to solve the behavior assignmefatymation from further teammates. As explained in
in order to have the most up-to-date information. Section 2.3, the information travels throughout the net-
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work, and even robots that were not in direct commu-2
nication range will recover a common belief eventually.
Therefore, the joint beliefs contain implicit information
from all the teammates and help the robots to coordinate
in an indirect manner.

5.3 Discussion

The decentralized auction proposed in this section pro-
vides a joint policy for the team’ = {n{,--- ,7,}
that is suboptimal in the sense that does not opti-

. In the planning phase, the local policies are
not solved considering joint beliefs (joint ac-
tions/observations), since they assume a single
robot. However, joint information from all the
robots (joint belief) is accessible during the execu-
tion phase (DDF) to evaluate the local value func-
tionsV;k.

In this paper, point-based algorithms are used to
compute the policies. Due to this, only a limited

set of beliefs is taken into account to compute each
value function. Thus, the set of belief points used

mize the original value function (10) for the role-based
MPOMDP. Instead, the value that would be obtained
after executing the computed poligyis the following:

when executing the policies is, in general, different
from the set of belief points used to compute such
policies, since joint beliefs are richer in terms of
information (joint actions/observations). Nonethe-

V'O (b) = less, the error that is made when a value function
Z[R? (s1,a1(m})) + - 4 RS (5, an(n,))]b(s) (approximated by any point-based method) is eval-
oy uated in a belief point that was not used during its
oy ZP(Z|G7 b)V’(tfl)(bj) computation, is bounded [Pineau et al., 2006].
z€Z Despite these approximations, our method can still
m get an exact solution for the role-based model in Sec-
with ¢ = arg max Z Z ij(bj) tion 4 for some particular sub-domains. In particular, if
vie{l,...,n} ci

the following conditions are met: (i) individual policies
for the roles are solved optimally; (ii) the joint belief

computed by the DDF incorporates all the robots (also

where the optimizations for the behavior assignmenjg, 4yctions) and is consistent; (iii) the planning hori-
are repeated at every decision step. Note that the rgjg, s 1; (iv) there is no joint term in the reward; and

of each robot; is computed considering only its set ofy) gifferent roles are assigned to different robots.
neighborsu, (i) and their local beliefs. Analyzing (12), the first condition is standard for most POMDP

it can be seen more clearly how our method approji,rks since optimal policies can only be obtained in
mates the optimal policy for the role-based MPOMDEgy restricted domains. The second condition is not

mainly in two manners: a strong restriction either since when communication
channels present negligible delays (when compared to
o oint o ﬂ?e DDF rate), the DDF can achieve after some time
joint re_wqrd termR7 explicitly. Moreover,- such a consistent belief even when all robots are not in
for assigning behawo_rs, the best Iong-term_opncmrect communication range (the belief could be prop-
is considered assuming that each ropot will _ke%%ated through the different subnetworks). Moreover,
the same behavior during the vyhole time horIZOﬂ'all the robots are not within communication range, at
'I.'hus,{cl-} can.be.c.omputed using the value fun‘?éast the auctions would be optimal for each subteam.
tions from the individual behaviors. Assumptions (jii) and (iv) are the strongest ones. Re-
The fact thatR’?™** is not considered allows usgarding (iii), as explained above, we assume that robots
to compute policies disjointly for single robotsdo not switch roles when planning to compute the costs
which alleviates dramatically the complexity of théwhich would just be true for a horizon equal to 1),
problem and makes it scalable with the numbéut later, we compensate this effect by recomputing the
of robots. Moreover, to compensate the lack dk;} at each execution step (online re-planning). Even
global optimality,{c;} are recomputed each timeghough assuming fixed roles makes planning easier, it
step during the execution of the policies, what atould be the case that a robot needs to change its role in
lows the assignments to evolve suboptimally duthe middle of a mission (because conditions have var-
ing the performance of the mission. ied) to achieve optimal performance. We account for

jENG (i) k=1

(12)
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that with this online re-planning. complexity of O(|S;|?|A;||T_,|I#) for a single value
The other strong assumption is to eliminate the joiiteration. Apart from computing the policies, we also
reward. However, the cooperative behavior encodedsilve the auction at each time step during the execution
RI°""t can be emulated by designing the roles propeipiase, which entails a complexi€y(max(n,m)?) in
for a given application. In the literature, there is sontbe worst case [Burkard, 2002].
work about how to split the joint problem into individ- In our approach, even though the total computation
ual sub-problems or roles. In particular, Matignon et dime increases with andm, it does so polynomially in-
[2012] design individual rewards towards a global olstead of exponentially. Moreover, these values are usu-
jective trying to minimize the interactions among theally bounded for real applications. On the one hand, the
robots. Moreover, Sleight and Durfee [2012] and tH&umber of available behaviors is limited for most role-
references therein contribute with theoretical discussibased real applications, and it depends on the problem
on how to design individual models for the teammatédiself. Also, in case of necessity the number of behav-
so that, put together, lead to joint cooperation. iors m could be traded off according to computational
Finally, (v) is not so restrictive. In this paper, we foconstraints. On the other hand, since the auctions are
cus on a strategy in which the existing behaviors agelved locally at each robot using only its available in-
assigned equally among the different robots in the ted@fmation, in practice, the robots only work with a sub-
(Hungarian algorithm in (11)). This applies to man§et of neighbore, < n, that are the ones within com-
applications in which performing all the available task®unication range. Although it is not the focus of this
in a homogeneous fashion is beneficial. However, o@per, in the literature there exist other works that pro-
approach is more general and alternative methodsP@se more efficient solutions for the assignment prob-
solve the role assignment could be possible. For ii§m in case of large teams [Liu and Shell, 2011].
stance, some robots could get no role assigned depend-
ing on the circumstances (they would stay in an id . ;
stgtus). Also, more comple>(< co)r/1$traints COL)J/|d be added Case StUdy 1: Environmental
to the problem, such as robots that can only play a sub- Monitoring with UAVs
set of the roles (i.e., heterogeneous capabilities for the
robots), or subsets of roles that must be assigned joinitlyorder to illustrate the flexibility and scalability of
(e.g., a couple of robots carrying something together}he proposed approach, two different applications with
Unfortunately, for the general case, obtaining meafultiple robots are presented: environmental monitor-
ingful bounds on the loss in value that our approxim#g with UAVs and cooperative tracking. In this section
tions incur is hard. In fact, by removing the synchrdhe models and results of the first case are presented.
nized belief assumption present in MPOMDP models,
optimal policies can be computed using a role-basgdl  Scenario definition
variation of the Dec-POMDP model. One such vari-
ation, the Role-based Multiagent Team Decision Prolt this problem there is a team of UAVs whose mis-
lem, has been shown to be NEXP-Complete [Nair et 10N iS t0 fly over a certain terrain in order to monitor a
2003]. Furthermore, computing arapproximate joint Potential contamination that may appear. It is assumed
policy for a general Dec-POMDP is NEXP-CompIetEhat this contamination can only appear and propagate
as well [Rabinovich et al., 2003]. through a network of water flows on the terra_in. There-
Regarding complexities, our approach scales far b€, instead of surveying the whole scenario, a set of
ter with the number of robots than the MPOMDP. |K€Y Points within that network can be extracted to eval-
the worst case, the complexity of a single step of valyiate the level of contamination. These points are mtgr-
iteration (3) for the MPOMDP i€)(|S|2|A||T;_1|1%)) connected through water flows and the contamination
[Pineau et al., 2006], whers|, || and|Z| grow ex- €3N Propagate among them. - N
ponentially with the number of robdts In the worst The scenario is discretized mtoa_well grid anditis as-
case, our approach solves x n local POMDPs (one sumed that the ov_erall contamlnfipon can be controlled
per robot and behavior), each of them with a maximuffiliaPly by surveying a set of: critical cells. The ob-
jective of the team of UAVs is to decide how to visit the
2In general|S| = [, |S:|, and the same applies fei| and critical points optimally in order to reduce the joint un-
|Z]. certainty on the contamination level. Figure 6 depicts
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stream. In addition, there is another binary state factor

i N for each critical point to specify whether it was already
o — classified or not. Thus, if a UAV that is on top of a
Il H m!mm v critical cell takes one of the two classification actions,

| 5 I"IF

the corresponding variable for that critical point is set
to 1. Otherwise, if there are not classification actions
but the critical point was previously classified, it can
switch back td) (not-classified) with a probability.

at each time step. This is to allow the critical areas to be
declassified again after some time. The local state for
each UAV consists of all the mentioned factors and an
additional one indicating its position on the grid.

In this application, the main objective is to reduce the
uncertainty over the contamination level. This is done
by monitoring the critical points and classifying them
Figure 6: Piece of marshland in the National Park #fhen their uncertainty is low enough. According to the
Dofiana. The shadowed cells in the grid represent n@fassic POMDP formulation that is considered in this
flying zones: a beach; and the core of the park. Eaeaper, information gain cannot be rewarded explicitly,

critical cell is marked with a number, and the propagéince the rewards are state-based (rewards depending on
tion graph with arrows. entropies would be belief-based). However, when hav-

ing better information improves the task performance
(e.g., less uncertainty on an event detection reduces the

this scenario adapted to the National Park of Dofiafdigk of @ wrong detection), the POMDP policy will try
a remarkable marshland located in the south of Spdifi Sélect these information-gaining actions. Therefore,
Due to the huge number of species that it hosts, cdhe idea here is to maintain state-based rewards (and

tamination or any other natural disaster are real thre3&ce, @ classic POMDP framework with linear value
that need to be controlled. functions), but adding classification actions in order to

The problem can be modeled using POMDPs. Arlr]award UAVs for reaching a certain level of uncertainty

the details are shown in the Appendix A. In particularrfagalrdlng contamination.

each UAV is equipped with a camera sensor pointingAccording to this idea, positive rewards are obtained
downwards that provides a (noisy) binary observatid¥hen right classification actions are taken, whereas
about the contamination level of the cell in which it i§€gative rewards are obtained when the classifications
located: yesor no. We assume that the UAVs are he@re wrong. The resulting policy will lead to beliefs with
licopters (like the ones in Fig.1), so at each time stef§ uncertainty on the contamination state, for which
they canstay (hovering) in the same cell or moving tdhe UAVs are more likely to make right classifications.

a neighboring cell:north, west eastor south Noisy  The approach proposed in this paper can be used to
transition functions are considered for these movemeaive this problem. A single-robot behavior is consid-
actions. Besides, when a UAV is on top of a criticadred for each possible point to moniter (oehaviors).
point, instead of moving, it can select two additional adhus, the reward function for each behaviofz¥) re-
tions (classContindclassNotConjtto classify that area wards UAV: only if it classifies the critical arek

as contaminated or non-contaminated, respectively.

There is a factored state with a set of variables de-
scribing the contamination level of each critical point,
which can be:none low or high. A graph describing 6.2 Results
the inter-connections among the critical points (due to
water flows) is also known. Thus, the evolution of th€his case study has been analyzed in a simulated envi-
contamination is modeled so that it can start at certamnment. In the following subsections, the setup for the
points of the graph (entry points), and these effects cdifferent simulations and their corresponding results are
be propagated to the other inter-connected points dowdetailed.
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Table 1: Complexity of the POMDP models used in this The complexity of the models considered is sum-
paper. Number of states (the observable states are miarized in Table 1. It is important to highlight
derlined), actions and observations are computed for th@t, in order to alleviate the complexity of the belief
general multi-robot case and for a single-robot case. space, Mixed Observability Markov Decision Processes
(MOMDPSs) [Ong et al., 2009] were considered to find

_ S| Al | [Z] the policies for all the experiments in this paper. The
Monitoring 40" x 81 x 16 | 7™ | on robots’ positions were assumed to be observable within
(n robots, 4 areas) | —— the POMDP, which is reasonable if the sensors for self-
Monitoring 40 % 1,296 71 9 positioning are accurate enough for the given grid reso-
(1 robot, 4 areas) lution.
Tracking (n robots) | 82™ x 4™ x 82 | 4™ | 2"
Tracking (1 robot) 328 x 82 4 2 6.22  Simulations

_ _ We tested our approach with auctioned policies for
6.2.1 Simulation setup teams with 1, 2, 3 and 4 UAVs, each of them running

an estimation filter implementing the DDF scheme in

Experiments on environmental monitoring were pef: .
formed on a simulated scenario (MATLAB) of the Na_éectlon 2.3, and an auctioneer controller that executed

. N . i the algorithm in Section 5.1. For each team, 1000 sim-
tional Park of Doflana described above (see Fig. 6). unations of 100 steps were performed with the UAVS
order to survey the Park with a team of UAVs, it was di- P P

vided into the %7 grid shown in Fig. 6, where the dar starting at random positions. Moreover, all the simu-

shaded cells represent non-flying zones that the UA fions started without contamination, but there was a

cannot access for security reasons. Since the conta{rirﬁﬁbab'“ty of0.1 that contaminated water appeared at

nation is assumed to propagate through the water flows, entry point (Area 1) at any moment.

the four key areas shown in Fig. 6 are used for SurVe(ﬂl_The average discounted rewards and belief entropies

lance. The inter-connection graph considered to mo &l all t_he experiments are shown in Fig. 7a ‘?‘.”d 7b,
égspectlvely. It can be seen how the addition of

ore UAVs improves the performance, increasing the
reward of the team and decreasing the entropy of
: S the belief on the contamination levels for each area
Each cell in the grid is a square ok1 Km and can
FZVleuel —Dievel 10g(Drever)). Note that the entropy of

be surveyed by a UAV whenever it is flying on it. Fo . ; g . 4

. o . Area 1 is always higher, since there is the uncertainty of
these experiments, the probability to declassify areas is T . :

. néw contamination appearing. In Fig. 7c, the percent-
set topg.s = 0.04. Moreover, due to the spatial res- . Co :
. . . age of time that each area is visited by any UAV is also
olution of the grid, the dynamics of the UAVs and the
S . shown. The more UAVs there are, the better they can
contamination model are slow. Therefore, a time sté

. . . . ; cgoperate to cover all the areas.
of 10 minutes is assumed in the simulations. Since only single-robot policies are computed in our
As mentioned in Section 5.2, the communication y sing P P

channels for the DDFs and the Auctioneers are indae[_)proach, the complexities of the models do not in-

. .__crease with the number of UAVs (see Table 1), which
pendent. In these experiments, the UAVs communicate . T
: . o . makes the solution scalable. Nonetheless, in this sce-
their DDF information in a tree-like topology, whereas . : :
: . .~ hario, experiments with more than four UAVs are not
the bids for the auctions are sent to all others in the

neighborhood (the required bandwidth for the latter Psres_(fa_ntedlbe;;ause they do nc:t improve the pl)le:ormgnce
not significant), significantly (four UAVs can already cover all the crit-

. . ... ical areas). Moreover, it may look like the propaga-
There are 4 different b_ehawors, one for each lecl n model does not scale with the number of areas.
area. A single-robot policy was computed for each o

. . . wever, if the interconnection graph for the areas is
them with a Java version of Symbolic PerséusThe grap

solver ran 10 minutes for each policy in a computer wit arse enough, we can still keep bounded the number
arents for each area, and just increase moderatel
an Intel Core processor (4 cores @2.67GHz) and 8G§. P j y

e complexity of the factored model.

3The parameters for Symbolic Perseus were 5000 belief points YV f_ilso tested our approach a_gainSt ajoint po_licy for
1500a-vectors maximum, 30 iterations per round and 5 rounds. @ multi-robot POMDP. The multi-robot POMDP is far

the propagation is also depicted in the figure. Mor
over, it is assumed that contamination could only st
at Area 1 (entry point).
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Figure 7: Simulations of an environmental monitoring aggtiion with four critical areas. The average results
(£30) for auctioned policies are shown varying the number of UAMslved. (a) Discounted rewards. (b)
Entropies of the beliefs on the contamination levels. (ct@etages of occupancy for each critical area.

from scalable (see Table 1), so we were only able ®© Case Study 2: Multi-robot Co-
solve it for a simple case with 2 UAVs and 3 areas (Ar- ; ;

eas 1, 2 and 3) Actually, any variation of this small operatlve TraCkmg
scenario considering more UAVs or areas, caused LH%

. s section describes the case study about cooperative
same computer mentioned above to run out of memogy,

cking. The models for this application are explained

We used Symbolic Perseldsagain to compute aand the corresponding experiments detailed.
single-robot policy for each behavior (5 minutes each)
and a joint policy for t_he 2-L_JAV MPOMDP (14 h(_)urs).7_1 Scenario definition
Then, we ran 1000 simulations of 100 steps (with ran-
dom starting positions and no initial contamination) fdn this case, the objective is that a grouprofobots
our approach, and the same with the joint policy. Theack a moving target estimating its position with their
average values for the belief entropies and the percesgnsors. The idea is to obtain an estimation as accurate
age of occupancy (times visited) of each area are shoampossible. Target tracking problems benefit from rea-
in Fig. 8. Despite the huge difference in computationabning about future steps [He et al., 2010]. Besides, co-
time for both approaches, the results are still remarperative behaviors are particularly helpful when there
ably similar. Of course, the joint policy should be betre multiple robots involved in the tracking.
ter for more complex examples, but its computation be-To model this scenario as a POMDP, the local state
comes intractable. Furthermore, the average discounfi@deach robot is composed of the position of the tar-
rewards were3.4970 £+ 0.91 for our approach, andget and its own position and heading. The state space
41.0252+1.08 for the joint policy. The reward functionis discretized into a cell grid, and a map of the scenario
used to compute the joint policy is used to evaluate baghassumed to be known. All the details about the mod-
approaches. In this reward function, apart from the locgls are shown in the Appendix A. In particular, there
rewards for each UAV, there is also a joint reward terrare four possible headings for each robwrth, west
which does not allow two UAVs to get rewards simultasouthor east
neously for classifying the same area (see the AppendixAt each time step, the robots can choose between
for details). In this case, our approach outperforms tfeur possible actionsstay, turn right, turn left or go
joint policy, which is possible given that all the policie$orward. staymeans doing nothing; whenrning, the
are approximate. robot changes its headifg°; and whergoing forward
it moves to the cell ahead. Nonetheless, noisy transi-
tion functions for the states of the robots are consid-
ered. Besides, the target is assumed to move randomly.
“The MPOMDP was designed to reward only one UAV at a timherefore, the transition function for its position indi-

in case of several'classﬁyln.g the same area. This fosteeedistri- cates that from one time step to the next, the target can
bution along the different critical points.

5The parameters for Symbolic Perseus were 5000 belief poinffdOVe to any of its 8-connected cells V_Vith qual proba-
700 a-vectors maximum, 10 iterations per round and 5 rounds.  bility (only non-obstacle cells are considered in order to
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(a) Testbed. (b) Occupancy grid.

Figure 9: (a) Picture of the multi-robot testbed. (b)
Testbed occupancy grid (black cells are obstacles) and
an example of the FOV for a robot (yellow cells, 3x4
rectangle in front of the robot). All the robots have the
same FOV. Besides, if the target is in one of the cells
with crosses (closest part of the FOV) and the heading
is adequate, a high reward is obtained.

Wl Auctioned policies|
Il Joint policy

a
<)

Occupancy (%)
IS
o

1 Aa 3 to track the target from different directions, each be-
(b) havior consists of following the target from a specific
direction. Here, a single-robot behavior for each possi-
Figure 8: Average results3c) for simulations on en- ple orientation is considerednorth, west south eas.
vironmental monitoring with two UAVs and three crit-Therefore, the reward function for the behavio¢R¥)
ical areas. Auctioned polices are compared to a joigites a high reward to robobnly if the target is within
policy. (a) Entropies of the beliefs on the contaminas FOV and the robot's heading corresponds to the ori-
tion levels. (b) Percentages of occupancy for each crigintation of behaviok. Also, since the objective is
cal area. tracking the target, the robots should position their sen-
sors in the best way not to lose it. For the sensors pro-
posed, the high reward is only obtained when the target

calculate that probability). ~isinone of the closest cells. The cells with high rewards
In addition, the robots carry a sensor that providesge jllustrated in Fig. 9b.

boolean measurementetectedbr non-detectedThese
sensors proceed as follows, if the target is out of its
FOV, the sensor producesian-detectedneasurement. /-2 Results

gotwe:/ec;,,v_\t/\r/]hen ths tk(;a_lr_get is within its FOV, it can bEeeal and simulated experiments on cooperative tracking
etectedvith a probabilitypp. were conducted with a real testl§etat allows the user

The _robots aim to reduce the uncertainty of the t% combine simulated and real robots (Pioneer-3AT), an
get gstlmate. The FOV of th§|r SEnsors (>a‘_‘3re9ta”' illustration of which is shown in Fig. 9a. The simulated
gle in front of the robot), which is shown in Fig. gbversion ran with Player/Stage

entails mainly uncertainty in depth, since the heading
where the target is can be determined precisely. Point- _
ing at it from different angles definitely helps to reducé-2-1 Experimental setup

the uncertainty of its estimate by achieving a parti‘i‘lhe map of this testbed was discretized intd2meter
overlapping in the FOVs. Therefore, cross configurg

ell d Ited in th id of<1D di-
tions should be fostered by giving a high reward to eaﬁﬁes anc restited In e occupancy grid o !

: : L nsions shown in Fig. 9b, where cells representing
robot that is keeping the target within its FOV, and EVelbstacles are in black. A team of robots is consid-

higher if the robot’s orientation differs from the othersered in order to follow a target, represented by another

The method presented in this paper to combine indi-
vidual behaviors is used. Since robots should cooperatéhttp://iwww.cooperating-objects.org
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robot. All the pursuers present similar perception cdable 2: Average results of the experiments with a
pabilities by means of a sensor with, = 0.9 and the three-robotteam for three different approaches. The er-
FOV shown in Fig. 9b. Note that the pursuer obseior of the estimated position of the target with respect
vations were obtained by simulating sensors with tie its actual position and the entropy of the estimated
mentioned capabilities on board the robots, since theliefs are shown.

development of real detectors is out of the scope of this

paper. Error(m) [ Entropy
During all the experiments the target followed a path Auction+DDF
unknown for the pursuers and with a random com- Robot 0 | 4.07+0.16 | 2.61+0.05

ponent. A path planning algorithm was used to ob- Robot1 | 3.95£0.15 | 2.55+0.05
tain the path to the high level goals provided by the Robot2 | 4.18+£0.16 | 2.66 +0.05
POMDP controllers (next cell to move and robot head- Independent+DDF
ing), whereas a local navigation algorithm was used to | Robot0 | 6.864+0.32 | 2.80+0.05
safely navigate the given path. Each robot had running | Robot1 | 6.70+£0.32 | 2.70 +0.05
onboard an implementation of the DDF (Section 2.3) Robot2 | 6.75+0.32 | 2.68+0.05
and an auctioneer controller (Section 5.1). Again, as Auction
in the previous case study, the DDFs communicateina | Robot0 | 9.74+£0.29 | 3.85+0.03
tree-like topology, whereas the bids for the auctionsare | Robot1 | 9.41+0.34 | 3.28 +£0.06
sent to all others in the neighborhood. Robot 2 | 10.46 + 0.40 | 3.62 £ 0.04
Three different approaches were tested: (i) auctioned
POMDPs with DDF; (ii) auctioned POMDPs without _
DDF; (iii) independent POMDPs with DDF. The twolD minutes was performed for each of the three ap-
first approaches are based on the auction method ghRaches.
posed in this paper, but in the second one, neither comSome average results with their standard deviations
munication nor fusion is considered for the DDF modire presented in Table 2. At each time step, the target
ules. In the third approach, a single and independé@gation is estimated by searching the cell of the be-
POMDRP is used for each robot and communication béef with a highest likelihood. This value is compared
tween the DDF modules is allowed. Moreover, all th® the actual target position. The entropies of the belief
policies were obtained by solving the correspondir@€ach stepXCy,..;; —Peeu log(peen)) are also averaged
MOMDPs with a C++ implementation of the SARSORNd shown. It can be seen that the approach proposed
algorithm (POMDP complexities are shown in Table 1¥ this paper (Auction+DDF) reduces the entropy and
The solver ran 1700 seconds for each policy in a coffie target localization error with respect to the Indepen-
puter with an Intel Core 2 Duo processor @2.47GHient POMDPs approach, since the cooperation between
and 2.9GB. For the approaches (i) and (i), a differeiite robots allows them to track the target from different
MOMDP is solved for each heading, whereas for apoints of view. It can also be noticed that the estima-
proach (iii), there is a single MOMDP independent dfon of the target position is worse for the auctioned
the heading (no roles). approach in which no DDF is included. Note that in
this case, the mean errors are bounded by the resolu-
tion of the cells (2 meters). The option of Independent
POMDPs without DDF resulted in very poor perfor-
First, some experimenfswere carried out in order toMmance (an_d hence_is not includgd), as th_e robots_ do not
compare our approach with the others mentioned abovaare any information nor coordinate their behaviors.
Three of the real Pioneer-3AT were used to track the re-PUe t0 the bearing information encoded in the sensor
maining one, that played the target's role. In order fPServations, a cross configuration among the pursuers
have similar conditions for each run, the three robcows them to point at the target from different points
always started at the same fixed points and the sgh-view and reduce the uncertainty of its estimation.
ple times were the same, 10 seconds for the decisidhiS €ross configuration is fostered by our auctioned

making and 3 seconds for the DDF. An experiment 8PProach, as it can be seen in Fig. 10. This figure com-
pares our approach to the Independent POMDPs with

See video at http://vimeo.com/18898325. DDF in terms of angle configuration between the pur-

7.2.2 Realrobots
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Figure 10: Normalized histograms of the maximum an-
gle differences between the robots when the target is
within the FOV of any of them.

suers. Normalized histograms of the maximum angle
difference between any of the pursuers every time the
target is within FOV are shown. The Auction+DDF his- "
togram presents a high peak closel&)° and a small fv:
mode in90° (cross configurations), whereas the his-¢ ‘ ‘ ‘ ‘
togram is quite flat for the Independent POMDPs. This ’ Y e ® *
shows that the proposed approach is more effective in (b) Policy assignment.
reaching cross configurations.

Multiple robots
Robot 3

Robot 2

Robot 1

Robot 0

Not assigned

Figure 11: Experiment with a four-robot team. (a) Tra-

Second, to show the scalability and robustness of fleetories followed by the robots and the target during
system, a tracking experiment with a four-robot teathe experiment. Orientations at the last time step are
was performed. In this case, the target was represemsd shown. (b) Policies allocated to each robot during
by a simulated robot (we only had 4 robots availabldghe same time frame.
We were able to run this experiment for more than
30 minutes with the algorithms working on board the _ 4
robots in a distributed way and using Wi-Fi commugng
nications, showing the robustness of the system. érg 20
extract of the trajectories followed by the pursuers arﬁc@
the target can be seen in Fig. 11a. The orientation of © 1 4 8 13 18 23
the pursuers at the end of the experiment has also been DDF communication rate (5)

plotted to show how they surround the target to reduggyure 12: Evolution of the performance of the auction

the estimation uncertainty. Note that, when the tarqgider variable transmission rate for the DDFs.
turns right, since they know the map, the pursuers opt

for going directly to the other exit of the aisle so they , .
can find it there. L

The cooperation between the members of the team is |
depicted in Fig. 11b, which shows the policies aIIocat@
to each robot during the same time frame (each iteratiUEJn 3.
takes place every 10 seconds). Due to differences in thgs
local beliefs and different decision times for the robots,
inconsistent solutions (robots with the same policy) are
obtained in some occasions. However, as time passes®— 20 30 0
the robots have built up a better belief regarding the tar- Rx rate (%)
get’s position, and the assignment stabilizes (after it
ation 22 in Fig. 11b). Information regarding the tim
spent solving the auctions will be provided in the ne
section.

[
-

75 85 100

gi_gure 13: Average entropy{3o) of the target estimate
)gtepending on the rate of received bids. Some bids are
not received to simulate noisy communication channels.
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OJiuctioned policies 3 ments becomes more difficult under worse communica-
aoofFixed policies | e tions. However, Figure 12 shows graceful degradation
3500 P with respect to the communication rate.
- L Second, an experiment with 8 robots simulating
g noisy communication channels was performed. In this
& 2500 experiment the robots were accessing the joint belief,
2000 but a percentage of the packages with bid values was
1500 lost during communication. Again, a graceful degra-
if/ dation in the entropy of the target estimate is shown in
Robots 4 Fig. 13 as we reduce the percentage of bids received
(@) successfully (100 runs of 100 steps were carried out for
each rate value). For comparison, we added the worst
->-Auctioned policies|  pOSsible case, in which all the bids were lost and each
“mhixed policies robot selected its role without any reasoning about the
22 T others.
2 Third, we ran simulations in order to prove the bet-
\35\ ter performance of our auctioned algorithm against a
) naive approach in which the same fixed behavior was
................... assigned to each robot during the whole experiment.
.................. With the robots starting always at the same positions,
2 ' located at the four cardinal points of the scenario, 1000
Robots runs of 100 steps were carried out considering 2, 3 and
(b) 4 robots. In the case of fixed policies, each robot was al-
ways assigned the one that fitted better according to its
Figure 14: Average resultsgo) for simulations on co- starting position (e.g., the robot starting at the north was
operative tracking with different numbers of robots incommanded to approach the target from the north). In
volved. Auctioned policies are compared to fixed polfjg. 14, the average discounted rewards and entropies
cies assigned to the robots. (a) Discounted rewards. gi)the target estimation are shown together with their
Entropies of the belief on the target position. standard deviations. It can be seen that for all the cases
the auction approach performs better, since the robots
are able to adapt to different situations throughout the
7.2.3 Simulations experiment.
Finally, some simulations were run in order to pro-
Some simulations were run in the simulated version wide empirical results about scalability. We ran our ap-
the testbed. First, simulations to check how our auctipnoach in the same scenario but increasing the number
algorithm performs when robots do not access the sanfeobots in the team. For each experiment, 100 runs of
information. The experiments consisted of three simli©0 steps were carried out with the robots and the target
lated robots, 2 pursuers and a target, starting at the satagting at random positions. The entropy of the target
positions in each experiment and with sample times @stimation and the total average reward (discounted) di-
before. Communication latency for the DDF modulesded by the number of robots are shown in Fig. 15a.
was varied throughout the simulations (two simulatioscan be seen how the performance does not increase
of 20 minutes for each latency value). Communicaignificantly after 6/8 robots. This is due to the size of
tion rates for the bid values were maintained, as thlee scenario, which can be handled with a few robots.
data volume is not significant for the bandwidth comn Fig. 15b, the average time spent at each robot (per
pared to beliefinformation. The performance of the digeration) to solve the role assignment is plotted. In this
tributed auction algorithm is shown in Fig. 12 by repreease, all the robots were considered within communica-
senting the percentage of inconsistent assignments.tida range in order to evaluate the worst possible case
the communication rate for the DDFs is increased, tf@uctions needed to be solved for the complete team).
difference between the beliefs to which the robots haltecan be seen that the execution time scales polyno-
access grows too. Thus, the consistency of the assignally with the number of robots, but in general, our
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2000

< Reward do not require such strict communication guarantees,
& “© Entropy which are hard to meet in multi-robot domains with
unreliable wireless channels.
"gg‘ —3—2 For certain roled-based applications, we approxi-
1000 s ?= mate the MPOMDP solution by auctioning independent
% 0., POMDP-based controllers in a cooperative fashion. We
" also relax the communication guarantees by introducing

S g, a DDF approach for belief propagation, which allows
T2 34 6 & 10 1z 12 15 1 20 ° forimperfect communication channels and makes the
system more reliable. Even though the solution of our
approach is suboptimal, the results obtained in terms of
cooperative behavior are still good. Moreover, since the
computational complexity is reduced dramatically, it is
much more scalable than other multi-robot POMDP ap-
proaches, offering a trade-off between optimality and
applicability.

We present results on environmental monitoring and
cooperative tracking applications that cannot be solved
with the current state of the art in multi-robot POMDP
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—5 solvers. Besides, there are many other multi-robot ap-
o——© ot : ;
S et v 10 1 1 15 15 plications tha_t can be modeled with cooperative roles
Robots and solved with our framework.

(b) In the future, more research is still necessary to eval-

Fi 15 A It , K uate the exact degradation that we suffer against opti-
igure 15: Average result3-go) on cooperative track- mal solutions. Also, some methods to analyze the initial

ing to show scalability with multiple robots. (a) Eny roblem and identify potential sets of roles would be of

fropy of the target estimation and discounted reward filerest. So far, those roles are set in an ad-hoc fashion.
robot. (b) Average time spent to solve a role assignment '

at each robot.

Funding

approach will only depend on the number of neighborgpis work was partially funded by Fundacio para
which should be lower than the team size for larger scg-ciancia e a Tecnologia (ISR-IST) [Project CMU-
narios. Nonetheless, even in this worst case, executjﬂp/S|A/0023/2009]; the FP7 Marie Curie Actions
tim_es stay at quite reasonable levels for real-time apQligividual Fellowship [#275217 (FP7-PEOPLE-2010-
cations. IEF)]; and the FP7 EC-SAFEMOBIL Project [288082].

8 Conclusions A Appendix: Probabilistic Models

Planning-under-uncertainty techniques, such Zhis appendix details the transition, observation_anc_i re-
POMDPs, face a scalability problem when considerifffrd models used for each of the example applications
teams of robots, becoming intractable quite easilf this paper.

Popular frameworks like Decentralized POMDPs scale

poorly to many robots, unless very severe indepen-1 Case study 1: Environmental moni-
dence assumptions are applied [Nairetal., 2004]. toring

Furthermore, many of these models either do not allow
robots to exploit inter-robot communication, or imGiven the positions of the: critical points to monitor,
plicitly assume instantaneous cost-less communicatibh, . . ., L™, the factored state of a UAVconsists of its
(MPOMDP). We focus on scalable techniques thpbsition in the grid (see Fig. 6); € {1,...,40}; the
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contamination level of each critical poift status’ €
{none, low, high}; and a factor to specify whether each ® x| @ 0.025/0.792/0.025
critical pointj is classifiedjsClass’ € {0, 1}:

® X | @ 0.025(0.108(0.025

s; = (I3, status®, isClass', . . . | status™, isClass™)
(13) CY

The transition probabili'_[y)(s’|a, s) can .be factorize_d p =002 p =002
and computed for the different factors in the following hi =N as =N
manner. :— ~ _turn right go forward

UAV transition model | |

A UAV can select a classifying actiomn; € as =5 ay -
{classCont, classNotCont}, in which case it does not e b
move andl; will not change. However, ifa; € ®)

{north, west, east, south}, the UAV will move to a de- kigyre 16: Graphical examples of the transition models
sired goal cellgoar = fi(li;a:). Also, there is a set o1 the movement of the robots. (a) Position transition
of additional cells where it may end up due to obstageihe rohot has to advance towards the north. On the
avoidance or other issu€s= f5(li, a;) (see Fig. 162). |eft, the initial position is marked with a cross, the goal
Thus, ifa; is any of the movement actions, the transjosition with a star, and the cells tiwith a dot. On
tion for the UAV position is the following: the right, the transition probabilities. (b) Heading tran-
sition probabilities for two cases. On the left, the robot
is pointing north and it is commanded to turn right. On
(14) the right, the robot pointing east and it is commanded
to go forward.

0.792, ifl] =lgoa
foooy ) 0108, ifl=1;
pllilai, li) = 0.025, iflleC
0, otherwise

A UAV can only classify a critical point when itis ) ] )
on top of it. Thusp(isClass”? = 1|a, isClass’) = 1 ON its parents does. Table 4 describes this propagation

if 3i \ a; € {classCont, classNotCont}, andl; = L. model for a point with a single parent. When there are
Otherwise, the critical point is declassified with the fofore parents, effects of the different parents (Table 4)
lowing model:p(isClass” = 1|a, isClass’ = 0) = 0; ar€ combined.
andp(isClass” = 0|a, isClass’ = 1) = pges-

Sensor model and reward

The observations for each UAY,; € {yes, no},
are conditionally independent, so the obser-
Regarding the contamination level, there is a propeation probability function can be factorized

gation model. The critical points are connected in a di{z|a,s’) = [[i_, p(z|l}, status’, ..., status'™).
rected graph and they can be of two types: entry poitsl; ¢ {L!,...,L™}, thenp(z; = yes|s)) = 0.

or normal points. Entry points have no parents and the

contamination could appear or disappear on them inde-

pendently. For instance, the critical point 1 in Fig. 6 igable 3: Tran;ition model for the contamination level
an entry point. Their transition model is described i@f an entry point.

Table 3.

The points with one or more parents are normal
points, and their levels of contamination depend on the
ones from their parents. The contamination level is
propagated from the parents to the children, so the level
on a normal point will increase or decrease as the level

Propagation model

status’’

status’ | none low high
none 09 01 00
low 0.1 08 0.1
high 0.0 01 09
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Table 4: Transition model for the contamination leved several UAVs are classifying the same critical point as

of a normal poiny with a single parert. contaminatedr asnon-contaminatedhe local reward
term is added only once. This is not to reward several
, status” _ times UAVs classifying the same point. Moreover, if
status’/status® | none low _high there are different UAVs classifying the same critical

none/none 1.0 00 00 point ascontaminatedand asnon-contaminateat the
none/low 09 01 00 same time, a reward value e00 is added taR(s, a) as
none/high | 0.85 0.15 0.0 penalization (instead of any local tetRf (s;, a;)).
low/none | 01 09 0.0 A.2 Case study 2: Cooperative tracking
low/low 00 10 0.0
low/high 00 09 01 The factored state of each robotonsists of its po-
high/none 00 015 0.85 sition in the grid (see Fig. 9b);; € {1,...,82};
high/low 0.0 0.1 0.9 its heading,h; € {north, west, south, east}; and
high/high 00 00 1.0 the position of the targeti; € {1,...,82}: s; =

(li, hi,1t). The local action for each robot ig; €
{stay, turn right, turn left, go forward}. Moreover,
Otherwise, the transition probabilityp(s’|a, s) can be factorized
into different components.
The target only moves to 8-connected cells at each
’ iteration. Therefore, ifig is the number of 8-connected
(15) cell for a initial positioni;,

0.05, if status’”’ = none
p(z; = yes|s;) = ¢ 0.6, if status” = low
0.9, if status”? = high

wherej is such that!, = 7. e
Finally, there is a local reward for each UAVand p(lille) = { 1/07187 gtugrwiiﬂ <2 17)
behaviork, R¥(s;,a;). The reward is only given ’
when the UAV classifies a critical point. Therefore, The actionstaydoes not vary the positiola nor the
there is no reward if; ¢ {L',...,L™} or a; ¢ headingh, ofthe robot. Ifa; € {turn right, turn left},
{classCont, classNotCont }. Otherwise, I; does not vary, but the goal heading can be obtained
. by rotating90° the initial one clockwise or counter-
10, ifa; = Cla‘fjcmt’ ‘ clockwise, respectively:a; = 70t (h;) or a1 =
?nd status” € {low, high} rotecw(h;). If the robot rotates too much, it will end
—90, if a; = classCont, up in the next headingr, = rote,(a1) or as =
and status® = none

kie o) — rot..w (1), respectively (see Fig. 16b for a graphical
R (si, ai) 10, if a; = classNotCont, examp(le;:) P y( g grap

and status® = none
—90, if a; = classNotCont, 0.025, if b} = h;
and status® € {low, high 0.95, ifhl=a
{ (}16) p(ilai hi) =0 095, i 1l = s (18)
Of course, if the critical point was already classified, 0, otherwise
there is no reward. Otherwise, the UAVs would keep
classifying all the time to obtain rewards and the policy If the action isgo forward the robot heading can
computation would converge very slowly. Moreover, also vary due to an erroneous movement or an obsta-
small cost of0.1 is assigned for the movement actionsile avoidance manoeuvre:
whereas no cost is assigned fvay. e
For the experiments with the MPOMDP model there 0.025, if h; = a3
3 /
is a joint reward functionR(s,a). On the one hand, p(hl|as, hi) = 0.95, }f h;’ B hi
if a UAV i is not classifying (i.e.l; ¢ {L',..., L™} 0.025, if h; = oy
ora; ¢ {classCont, classNotCont}), it does not con- 0,  otherwise
tribute to this joint reward. On the other hand, for ea%\
UAV i classifying, the value of the rewaff'(s;, a;) is
added toR(s, a), beingk such that; = L*. However,  8The operatof| - || represents cartesian distance in the grid.

(19)

hereas = rotcw (h;) @anday = rotey, (h;).
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Besides, for eaclyo forward action, there is a goal O. Burdakov, P. Doherty, K. Holmberg, J. Kvarnstrom,
position (in front of the robot),..; = f1(l;,a;), anda  and P. M. Olson. Relay positioning for unmanned
set of additional positions where the robot may end upaerial vehicle surveillancelnternational Journal of
due to obstacle avoidance or other issties f5(l;, a;). Robotics Researci29(8):1069-1087, 2010.

This model is similar to the one in the previous case

study (see Fig.16 for an example): R. E. Burkard. Selected topics on assignment problems.
] Discrete Applied Mathematicd23(1-3):257 — 302,
07927 if l,i = lgoal 2002
0.108, ifl=1; '
l/4 a;, ll = R ; 20
p(tilai, i) 0.025, ifljecC (20) J. Capitan, L. Merino, F. Caballero, and A. Ollero. De-
0,  otherwise centralized delayed-state information filter (DDSIF):

The observations for each robot,z; c A new approach for cooperative decentralized track-
{detected, non detected}, are conditionally inde- Ng- Robotics and Autonomous Systehts376-388,

pendent, so the observation probability function can be2011. ISSN 0921-8890.
factorizedp(z|a, s') = [, p(zl}, h},1}). The target
can only be detected if it is in the field of view (FOV
of the robot. This field of view consists of & x 4
rectangle in front of the robot (see Fig.9b).

.-L. Choi, L. Brunet, and J. How. Consensus-Based
Decentralised Auctions for Robust Task Allocation.
IEEE Transactions on Robotic85:912-926, 2009.

, pp, ifl, € FOV(l,,n;)  D.Cole, S. Sukkarieh, and A. Goktogan. System devel-
p(zi = detected|s;) = { 0, otherwise opment and demonstration of a UAV control archi-
(21)  tecture for information gathering missiondournal
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of the robot (see Fig. 9b): F. Doshi and N. Roy. The permutable POMDP: fast

100, ifl; € D, solutions to POMDPs for preference elicitation. In
RY (i, a:) = andh; =k , (22)  Proc. AAMASvolume 1, pages 493-500, 2008.
0, otherwise
A. Foka and P. Trahanias. Real-time hierarchical
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