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ABSTRACT
Multi-robot teams can play a crucial role in many applica-
tions such as exploration, or search and rescue operations.
One of the most important problems within the multi-robot
context is path planning. This has been shown to be particu-
larly challenging, as the team of robots must deal with addi-
tional constraints, e.g. inter-robot collision avoidance, while
searching in a much larger action space. Previous works
have proposed solutions to this problem, but they present
two major drawbacks: (i) algorithms suffer from a high com-
putational complexity, or (ii) algorithms require a communi-
cation link between any two robots within the system. This
paper presents a method to solve this problem, which is both
computationally efficient and only requires local communi-
cation between neighboring agents. We formulate the multi-
robot path planning as a distributed constraint optimization
problem. Specifically, in our approach the asynchronous dis-
tributed constraint optimization algorithm (Adopt) [15] is
combined with sampling-based planners to obtain collision
free paths, which allows us to take into account both kine-
matic and kinodynamic constraints of the individual robots.
The paper analyzes the performance and scalability of the
approach using simulations, and presents real experiments
employing a team of several robots.

Keywords
multi-robot path planning, distributed constraint optimiza-
tion, sampling-based planner

1. INTRODUCTION
In many applications, the use of a multi-robot team can

offer clear advantages when compared to a single robot sys-
tem (see, for instance, [7, 14]). The tasks that compose a
given mission can be shared by the robots in the team, lead-
ing to more efficient solutions. For example, different robots
could share local information, enhancing the global situation
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Figure 1: Example of an scenario where multiple robots aim
to visit a set of points of interest – stations. On the one hand,
robots that are close form a connected subnetwork to find
a joint solution to move towards the next station. On the
other hand, robots that are far plan their paths individually.
This is realized with our proposed algorithm.

awareness; or a team of robots may be able to perform tasks
that a single robot cannot accomplish.

At the same time, the use of multiple robots in a mission
presents unique challenges. In particular, it requires dealing
with shared resources, such as space, time or communication
bandwidth; and with additional constraints, such as network
connectivity. These challenges need to be considered when
determining which tasks and actions each robot has to per-
form during the mission. In this work, we focus on the space
and time constraints that arise when a team of robots needs
to plan a set of paths that minimize a global objective func-
tion while avoiding collisions between the robots. This can
be formulated as a multi-robot path planning problem. Path
planning for multiple robots is a common problem that arises
in applications such as target tracking [5] or exploration [24].
This problem has been shown to be NP-hard [20]. In the
following, we will review the most relevant algorithms that
have been proposed in the literature to solve the multi-robot
path planning problem.

Several approaches have been proposed in the control the-
ory community to deal with the multi-robot path plan-
ning problem. Approaches such as dynamic program-
ming [21], linear programming [2], mixed integer linear pro-
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gramming (MILP) [6], or decentralized model predictive
control (DMPC) [9] have been shown to work well but they
suffer from a high computational complexity. This makes
such approaches intractable for large teams of robots, and
for missions that are subject to complex constraints.

Prioritized planning techniques like sequential planning
represent a good alternative from the computational per-
spective [23]. However, they are based on an arbitrary as-
signment of priorities that could incur in a loss of perfor-
mance [22]. Van der Berg et al. solve this problem by
proposing an online method to determine the robots’ pri-
orities based on local information [22]. Sequential planning
algorithms require that agents need to wait for their neigh-
bors’ response each time they have to take a decision. This
is in general not desirable as it would result in a performance
degradation as the number of robots in the system grows.
Consensus based approaches have been also considered in
the literature [19, 16]. However, they are suited to sparse
environments where only infrequent planning is required.

Efficient algorithms that assume a discretized representa-
tion of the environment and robot’s state space have been
recently proposed in the literature [27, 8, 26, 25]. Specifi-
cally, the algorithm in [25] serves us as inspiration for our
approach. In [25], the authors employ the concept of subdi-
mensional expansion; i.e. initially each of the robots plans a
path individually, and then coordinates its motion with the
other robots as needed. However, the previous works resort
to discretization and graph-based path planning algorithms,
which face computational complexity problems when deal-
ing with robots with complex kinematic and kinodynamic
constraints.

Sampling based path planning algorithms are natural can-
didates to account for arbitrary robot dynamics. Specifi-
cally, we are interested in Rapidly-exploring Random Trees
(RRT) [11]. Several works for multi-robot cooperation have
employed the RRT algorithm to plan the robots’ paths [28,
18, 13]. However, none of them focus on the specific problem
of path planning for multiple robots.

The work from Desaraju and How is the one that is closest
to our proposed approach [3]. They employ the closed-loop
RRT algorithm [10] in combination with a token based ap-
proach to solve the multi-robot path planning problem in
a decentralized manner. However, the authors assume that
the network that the agents conform is fully connected. In
contrast, in this work, we propose an algorithm that only
requires local communication between robots to solve the
multi-robot path planning problem. Like in [25] our algo-
rithm is based on a two steps approach: (i) first, the robots
plan several paths individually using the RRT algorithm, (ii)
second, the robots communicate asynchronously with their
neighbors as needed to find the set of paths that minimize
an user-defined utility function. This second step is realized
by formulating the problem as a distributed constrained op-
timization problem [12].

The remainder of this paper is organized as follows. Sec-
tion II states formally the problem. Section III summarizes
the distributed constraint optimization approach that we
employ to achieve the multi-robot coordination. We describe
in Section IV our distributed multi-robot path planning al-
gorithm. Sections V and VI present the simulations and
experiments performed, and is then followed by the conclu-
sions.

2. PROBLEM STATEMENT
Let us consider a network of N robots. Each robot i =

1, 2, ..., N aims to visit, in a predefined order, the set of
stations Si = {si,1, si,2, ..., si,ni} (for instance, a set of places
to take samples), with ni the number of stations that agent
i aims to traverse. We define the path between two stations
si,j and si,l as Psi,j ,si,l with j = [1, 2, ..., ni − 1] and l =
j + 1. The set of paths that link the stations Si is given by
PSi = [Psi,1,si,2 ,Psi,2,si,3 , ...,Psi,ni−1,si,ni

].
The goal of agent i is to find the set of paths PSi that

minimizes function f(PS1 ,PS2 , ...,PSN ). This function is
a global function that encodes the inter-dependencies of all
the agents that conform the network. In this work, we define
the function f(·) as the total distance traveled by the robots
while avoiding collisions. Let us remark that a large class
of functions and complex constraints could be considered
within the framework proposed in this paper, as we will
describe in Section 3.

In this work, we consider the following constraints and
simplifying assumptions:

1. Each robot’s global position is known exactly and noise-
free. We assume that there exists an external posi-
tioning system that provides us with a highly accurate
localization, e.g., a Global Positioning System for out-
door scenarios.

2. The borders and obstacles that define the environment
are a priori known.

3. Robots initially know neither about the presence nor
about the location of other robots.

4. Robots can only communicate locally; i.e. two robots
can communicate if they are neighbors. Here we con-
sider two robots as neighbors if they are separated less
than a distance rc. This corresponds to a disc commu-
nication model.

5. Stations si,j , si,j+1 can only be separated a maximum
distance rc

2
. This simplifying assumption allows us

to easily cast our problem within the distributed con-
straint optimization algorithm that is described in Sec-
tion 3. We discuss possible solutions to relax this as-
sumption in Section 4.

We propose in this paper an algorithm that is able to solve
the aforementioned problem for robots whose motion can be
planned with a RRT-like algorithm [11]. This corresponds
to a large class of robots that includes both kinematic and
kinodynamic constraints.

3. ASYNCHRONOUS DISTRIBUTED CON-
STRAINT OPTIMIZATION

Distributed constraint optimization problems (DCOP)
have emerged as one of the most relevant frameworks to solve
complex multi-robot coordination problems [12]. Specifi-
cally, in this work we propose the use of the asynchronous
distributed constraint optimization algorithm (Adopt) [15]
to tackle the multi-robot path planning problem described
in Section 2. In contrast to the other algorithms reviewed
in [12], Adopt provides theoretical guarantees on the global
solution optimality while keeping communication between
agents asynchronous and localized. This is our motivation



to incorporate Adopt into our algorithm. The three key
ideas behind Adopt are the following:

1. Decision making based on local information.

2. Efficient reconstruction of previously explored solu-
tions. This speeds up the algorithm execution since
previous solutions can be reused to meet the updated
constraints imposed by the other robots.

3. Built-in termination detection. Once the algorithm
converges, a termination message is sent through the
network. We can exploit this feature to trigger the
next step of our algorithm.

In Adopt, each robot can control a decision variable xi

that can take values from domainDi = {Di,1,Di,2, ...,Di,ki},
with ki the number of elements in the domain. Let us de-
note the set of robots – variables – for which we aim to solve
the optimization problem as V. The goal of the robots is to
minimize the global objective function g(D), where D de-
notes a possible assignment for the variables. For example,
for a team of three robots i = 2, 3, 6 with identical domain
size ki = 4, a possible assignment for the variables could be
D : {x2 : D2,1; x3 : D3,4; x6 : D6,1}. Adopt only allows us
to solve problems that involve binary constraints between
robots. We denote a constraint between robots i and j as
gi,j(Di,l,Dj,m), with l ∈ [1, 2, ..., ki], m ∈ [1, 2, ..., kj ]. The
goal is to find the optimal assignment D∗ that minimizes the
following function:

g(D) =
∑

xi,xj∈V

gi,j(Di,l,Dj,m), (1)

in a distributed fashion, where each agent i is only in con-
trol of its own variable xi. The robots participating in Adopt
must conform a connected subnetwork; i.e. there must be
a direct or indirect communication path between any two
robots. Let us emphasize that this framework allows us
to formulate a large class of objective functions. For more
details about the properties that equation (1) must meet,
please refer to [15].

The Adopt algorithm takes as input a depth-first search
(DFS) tree that encodes the constraints between different
robots. The vertices of this tree represent the robots that
aim to solve the optimization problem, and the edges define
the constraints between robots. Let us clarify that a DFS
tree is only valid if there are no constraints between agents
in different subtrees of the DFS tree. In this work, we have
implemented the algorithm proposed in [1] to create the DFS
tree.

The algorithm from [1] is fully distributed. However, one
robot – the leader – must trigger the DFS tree creation.
The leader will become then the root of the DFS tree. Here,
for leader election we have implemented the YO-YO algo-
rithm [17] because it is well suited to connected subnetworks
of arbitrary topology, as it is the case in this work.

Let us point out that the proposed multi-robot path plan-
ning algorithm does not require that all robots belong to
the same network. In contrast, it allows robots to be or-
ganized in several disconnected subnetworks. Specifically,
within each subnetwork, all robots must be in direct or in-
direct communication as the Adopt algorithm requires. For
example, in Figure 1 we show a system with 8 agents. One

agent (green) is not in communication with the rest of the
system. The remaining robots form two connected subnet-
works with 4 (grey) and 3 (violet) robots. Notice that the
two subnetworks are disconnected. Such a situation is han-
dled with the proposed algorithm.

4. DISTRIBUTED MULTI-ROBOT PATH
PLANNING

We describe in this section our proposed algorithm. First,
we present an overview of the algorithm execution. To this
end, we propose a state machine that controls the robot’s
behavior within a complex mission. Second, we describe
in detail the elements that compose our algorithm for the
particular case of a connected subnetwork.

4.1 Algorithm Overview
In this paper we propose an algorithm that allows multiple

robots to jointly plan their motion in a distributed fashion.
Instead of optimizing function f(·) for the complete set of
stations as described in Section 2, we optimize the problem
in a station to station basis; i.e. robots only cooperate to
plan their paths between their current station and the next
one. On the one hand, this problem relaxation allows us
to keep the algorithm complexity bounded and independent
of the number of stations. On the other hand, solving the
problem for the complete set of stations is not necessarily
optimal; imagine, for example, that the mission requires in-
corporating a new robot to the system. Then, the robots
should replan their complete paths to consider the new con-
straints imposed by a new robot, which would make the
optimization for the full set of stations useless.

Figure 2 shows the state machine that controls the algo-
rithm’s execution. First, when a robot reaches an station,
it will search for neighbors in the environment by sending
an identification message. Second, neighboring robots will
create connected subnetworks. Notice that, within a large
environment, several isolated subnetworks may be created.
Then, each subnetwork will execute the proposed multi-
robot path planning algorithm described in Section 4.2. This
is realized in two steps: First, the robots plan several paths
individually towards the next station. To this end, we em-
ploy in this work the RRT algorithm [11]. Let us remark
that this choice is motivated by the fact that, due to the
random nature of the RRT, the algorithm delivers differ-
ent solutions each time we run it, which is a requirement
for our algorithm. Second, the robots cooperate to find the
combination of paths that minimize a user-defined objective
function while avoiding inter-agent collisions.

Each of the robots plans ki paths to the next station.
However, this does not guarantee the existence of a collision-
free solution. Therefore, we introduce a replanning strategy
to deal with this problem.

The last step of the algorithm for a connected subnetwork
consists of a synchronization step that forces the robots to
start at the same time. This is required to avoid collisions.
The robots will continue the algorithm’s execution until they
reach the last station. The aforementioned procedures are
explained in further detail in Section 4.2.

Let us also emphasize that in the first step of the algorithm
the robot could find no neighbors; for instance, in large en-
vironments or for robots that have a small communication
range. Then, the robot will plan its path individually and
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Figure 2: State machine that describes the algorithm’s exe-
cution.

follow it till the next station. This is a natural approach
since robots that are not in communication range cannot
cooperate to find a joint solution. However, it could happen
that while the robots are moving they find another robots.
Then, an alert condition will be triggered and robots in-
volved will stop following their paths and will execute the
second step of the algorithm; i.e. creation of a connected
subnetwork.

4.2 Multi-Robot Path Planning for a Con-
nected Subnetwork

This section explains in detail the procedures that the
robots follow once they have created a connected subnet-
work.

First, each of the robots will generate ki different paths
between their current position and their next station using
the RRT algorithm. We denote the set of paths – domain
– of robot i as Di. For example, the domain of robot 3
with domain size k3 = 3, which aims to travel from station

s3,4 to station s3,5 would be D3 : {D3,1 = P(1)
s3,4,s3,5 , D3,2 =

P(2)
s3,4,s3,5 , D3,3 = P(3)

s3,4,s3,5}.
Second, robots will elect a leader and create the DFS tree

required by Adopt. For the DFS tree we consider that two
robots have a constraint if they are in communication range.
This definition, together with assumption 5 from Section 2
allows us to plan collision-free trajectories. Then robots
start the execution of Adopt. We employ Adopt to find the
set of paths from the robots’ domain that minimize a user-
defined function while avoiding collision between robots. We

consider that two paths Di,l and Dj,m are in collision if at
the same time instant they are separated a distance smaller
than rs, which we denote safety distance.

Specifically, in this work our goal is to find the best com-
bination of paths in terms of the total distance traveled by
the robots ; i.e. the algorithm will select the shortest com-
bination of paths from the ones ”sampled” by the RRT. We
denote the distance associated to path Di,l as Dist(Di,l).
Following the notation introduced in Section 3, we can de-
fine the constraint function gi,j(·) between robots i and j for
the collision-free case as follows:

gi,j(Di,l,Dj,m) =
Dist(Di,l)

|Ni|
+

Dist(Dj,m)

|Nj |
(2)

with l ∈ [1, 2, ..., ki],m ∈ [1, 2, ..., kj ], and |Ni|, |Nj | the num-
ber of neighbors of robots i, j. In case there is a collision be-
tween the two paths, gi,j(Di,l,Dj,m) will take a value equal
to infinite. Let us remark that this definition of the util-
ity function allows the robot to find a collision-free solution
that minimizes the total traveled distance for subnetworks
of arbitrary topology. For example, let us consider a sub-
network of 3 robots where robot 1 is connected to 2, robot 2
is connected to 1 and 3, and robot 3 is connected to 2. This
results in |N1| = 1, |N2| = 2, |N3| = 1. We can then easily
check by substituting those values in equations (2) and (1)
that function (1) is equal to the total distance traveled by
all robots.

We have mentioned in the previous subsection that it is
possible that there exists no solution given the domain pro-
posed by the robots. Therefore, we have introduced a re-
planning step. This will be also triggered if Adopt does not
converge before an user-defined time threshold. Since agents
are already ordered in a DFS tree, we can exploit this hi-
erarchy for the replanning process. This is triggered by the
tree root, which will send its best path to all its descen-
dants. Let us remark here that there is only need to send a
path to descendants because constraints between robots are
only defined within a DFS subtree. Once a node receives
the path proposed by its father it will calculate a path that
does not collide with the ones proposed by its ancestors; i.e.
all nodes that link it to the root. Specifically, we calculate
the path using the RRT algorithm and considering the an-
cestors’ paths as spatial-temporal obstacles. This process
continues till we reach the robots at the leaves of the DFS
tree. After planning their paths, they will send through the
tree a message back to the root informing that the replan-
ning process is completed. Once this message reaches the
root, the Adopt algorithm terminates.

Finally, the robots execute the synchronization procedure.
As we have previously mentioned, collisions between paths
are checked both in the spatial and temporal dimension. On
the one hand, the consideration of the temporal dimension
reduces the number of potential collisions, as we are adding
an additional dimension. On the other hand, this requires
that the robots are synchronized; i.e. they must start fol-
lowing their paths at the same time instant. The root of the
DFS tree is the one that will trigger the path following pro-
cedure. This message will be sent through the tree. Once
a node receives this message it will start following its path.
Since the message must travel through the network, we as-
sume there will be a small delay between different nodes that
will increase with the tree’s depth. Let us remark that this
can be taken into account by increasing the safety distance



proportionally to the expected delay, which can be calcu-
lated given the communication protocol and the DFS tree
topology.

In Section 2, we have introduced a simplifying assumption
that limits the maximum distance between two stations; this
corresponds to assumption 5. This is motivated by the fact
that Adopt can only accept binary constraints. Then, by
limiting the planning horizon to rc

2
we can guarantee that

robots that are not in communication range will never col-
lide. This assumption could be easily removed by defining
intermediate stations, separated a maximum distance of rc

2
,

between the two considered stations. The robot would plan
sequentially to the intermediate stations till it reaches the
final destination. Let us add that assumption 5 could be
also removed by adding multi-hop communication between
robots.

5. SIMULATIONS AND DISCUSSION OF
RESULTS

We validate our proposed algorithm in two steps. First,
we validate the algorithm for a connected subnetwork (Sec-
tion 4.2) by performing Monte-Carlo-Simulations. Specifi-
cally, we evaluate the performance of the leader election, the
DFS tree creation, and the distributed assignment of paths.
Second, we illustrate with an example the algorithm’s be-
haviour for a complex system – composed of several sub-
networks – as described in Section 4.1. Here, and without
loss of generality, we consider a holonomic robot in order to
abstract the robot’s motion from the algorithm’s behavior.
We carry out all simulations in an eight cores 3.60 GHz cen-
tral computer but in a decentralized fashion using the robot
operating system (ROS)1. This decentralization is possible
because of the nature of ROS, where nodes run in different
threads.

5.1 Leader Election and Depth-First Search
Tree Creation

First we evaluate the convergence time of both the leader
election and DFS tree creation algorithms as we increase
the number of agents in the subnetwork. This is crucial to
understand the scalability of the proposed algorithm.

We perform simulations for two types of subnetworks: (i)
a fully connected subnetwork where all robots can commu-
nicate with each other; (ii) a sparsely connected subnetwork
where each robot has a maximum of 5 neighbors. This last
one corresponds to a more realistic scenario that we could
encounter in a mission that takes place within a large envi-
ronment. For each of the simulated number of agents, we
repeat the simulation 100 times. Let us add that for the
sparsely connected case a new random network is generated
each time. Figure 3 shows the resulting average and variance
for the different scenarios.

We can conclude that the complexity of both algorithms
grow exponentially for a fully connected subnetwork. How-
ever, the complexity is linear for a sparsely connected sub-
network, which makes both algorithms suitable for real world
missions.

5.2 Distributed Assignment of Paths
Second, we analyze the performance of the Adopt algo-

rithm as we vary the number of robots in the subnetwork,

1ROS - Robot Operating System. http://wiki.ros.org/.
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Figure 3: Leader election and DFS tree creation. Fully and
sparsely connected subnetworks.
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Figure 4: Distributed Assignment of Paths. (a,c) Perfor-
mance with the number of paths in the domain for a net-
work with 3, 5 and 10 agents. (b,d) Performance with the
number of agents given a fixed domain composed of 4 paths.

and the number of paths in the robot’s domain. In both
cases, we consider a sparse subnetwork with the same prop-
erties as in the previous subsection. We repeat each simula-
tion 100 times.

Figures 4a,4c and 5a,5c show the time and the total num-
ber of exchanged messages that the Adopt algorithm re-
quired to converge to the optimal solution. We present the
average and a box plot representation of the data. These
simulations were carried out for a domain size – number of
paths – ranging between 2 and 10, and we considered 3, 5
and 10 robots. We observe that for a small number of robots
the algorithm’s complexity remains quasi-constant respect
to the domain size. However, for a large number of robots
(10) the performance increases linearly.

The explanation for such behavior can be understood by
analyzing Figures 4b,4d and 5b,5d. Here we show the algo-
rithm’s complexity as we vary the number of robots given a
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Figure 5: Distributed Assignment of Paths. (a,c) Number of
exchanged messages with the number of paths in the domain
for a network with 3, 5 and 10 agents. (b,d) Number of
exchanged messages with the number of agents given a fixed
domain composed of 4 paths.

fixed domain composed of 4 paths. We can confirm that the
algorithm’s complexity grows exponentially as the theoreti-
cal analysis of the algorithm points out [15]. Moreover, the
box plot representation confirms that the algorithm’s com-
plexity is highly dependent of the network topology. This is
one of the main reasons why we have introduced the replan-
ning process in our algorithm; if the Adopt takes too long
to converge, the replanning method will be triggered to find
a feasible solution.

Attending to results we can conclude that: (i) the use of
Adopt within a small subnetwork results in a low computa-
tional complexity, and (ii) for a large subnetwork we should
either consider alternative algorithms [12] or introduce ad-
ditional constraints into the algorithm’s design to avoid the
creation of such large networks.

5.3 Multi-Robot Path Planning for a Complex
System

Finally, we show one example of the whole system’s be-
havior for a typical scenario with 10 agents. In a typical
situation, given a limited communication radius, the agents’
communication topology is divided into several subgraphs
(subnetworks), and agents cannot communicate with all the
rest of the agents that compose the system. In this case,
agents will execute the algorithm described in Section 4.1.

We show in Figure 6 the initial configuration of the robots.
In concrete, we depict: (i) resulting communication network,
(ii) DFS tree that corresponds to each of the subnetworks,
and (iii) agents’ location in the environment.

Given the agents’ configuration depicted in Figure 6, we

Figure 6: Agents’ initial configuration. We show the com-
munication network, DFS tree of each of the subnetworks,
and agents’ location in the environment.

assign several stations to each of the agents and then simu-
late the agents’ behavior as they try to reach the stations.
We show in Figure 7 the evolution with time of the number
of subnetworks and maximum number of agents per subnet-
work that results as the agents move. We observe that the
maximum number of agent’s per subnetwork is 4, although
we have a system of 10 agents. This property allows us to
keep the number of agents per subnetwork low and therefore
reduce the computational load of each of the agents. At-
tending to the results, we can conclude that the algorithm
is scalable with the number of agents as in a real situation
agents will be in general sparsely distributed on the environ-
ment as shown in Figures 1 and 6.
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Figure 7: Number of subnetworks and maximum number of
agents per subnetwork for a typical scenario with 10 agents.

6. EXPERIMENTS AND DISCUSSION OF
RESULTS

We also validate the proposed algorithm in an experiment
with three holonomic robots (see Figure 8). The robots are
a modified version of the commercially available Slider plat-
form by Commonplace Robotics. Due to its four mecanum
wheels, the platform is able to perform omnidirectional move-
ments following input commands for forward, lateral and ro-
tational velocities. Let us remark that more complex motion
models could be considered within this framework. However,
we choose a holonomic robot to abstract the robot’s motion
from the algorithm’s capabilities. Like we did for the simula-



si,1 → si,2 si,2 → si,3 si,3 → si,4

|Ni| 2 1 0
tp[s] 0.06 0.18 0.17
tl[s] 0.42 0.12 -
td[s] 0.74 0.31 -

Dis[s]
Dis(Di,1) = 6.87
Dis(Di,2) : 10.51

Dis(Di,1) = 5.01
Dis(Di,2) = 5.92

-

ta[s] 0.58 0.9 -
D∗i Di,1 Di,1 -

Table 1: Summary of algorithm execution of agent i = 1.

si,1 → si,2 si,2 → si,3 si,3 → si,4

|Ni| 2 1 0
tp[s] 0.16 0.47 0.12
tl[s] 0.51 0.03 -
td[s] 0.43 0.01 -

Dis[s]
Dis(Di,1) = 7.91
Dis(Di,2) = 10.33

Dis(Di,1) = 1.94
Dis(Di,2) = 1.1

-

ta[s] 0.58 0.8 -
D∗i Di,1 Di,2 -

Table 2: Summary of algorithm execution of agent i = 2.

tions, here we also run the algorithm in a central computer in
a decentralized fashion, and then we send the corresponding
waypoints to the robot using ROS with a WiFi connection.
Each robot is equipped with a Raspberry Pi that runs the
robot’s controller to guide the robot to the desired position.
We employ a commercial motion capture system (Vicon) to
provide positioning information to the robots.

Figure 8: The three holonomic robots employed to carry out
the experimental validation of the proposed algorithm.

We assume the robots initially conform a connected net-
work. Agents one and two must visit three stations (si,2 to
si,4, i = 1, 2), while agent three must only visit two (s3,2 and
s3,3) from their initial locations (si,1 , i = 1, 2, 3). We set
a domain size of two for each of the agents; i.e. each agent
will propose to its neighbors two possible paths to travel
between stations.

Tables 1,2,3 show a summary of the algorithm’s execution
for the three robots. We use the following notation: |Ni|
is the number of neighbors of robot i at the origin station;

si,1 → si,2 si,2 → si,3

|Ni| 2 0
tp[s] 0.31 0.13
tl[s] 0.5 -
td[s] 0.21 -

Dis[s]
Dis(Di,1) = 3.35
Dis(Di,2) = 4.52

-
-

ta[s] 0.58 -
D∗i Di,1 -

Table 3: Summary of algorithm execution of agent i = 3.

tp, tl, td, ta is the time to calculate the path, leader election,
DFS tree, and Adopt, respectively; Dis is the path length,
calculated in seconds, needed to traverse the path towards
the goal station; D∗i is the choice of agent i resulting from
Adopt. According to the results, we can conclude that the
robots were able to perform the assigned tasks. In addition,
the cooperation between robots took, in the worst case, less
than 2 seconds.

A video that includes the experiment together with a sim-
ulation showing the algorihtm’s behaviour can be found un-
der https://vimeo.com/184840217.

7. CONCLUSIONS AND FUTURE WORK
This paper has presented a novel approach for multi-robot

path planning. We propose an algorithm that formulates the
problem as a distributed constraint optimization problem
(DCOP). The algorithm works as follows: first, the robots
that can communicate through the network plan different
paths towards their next stations, and then they employ
the DCOP solver Adopt to determine the best assignments
of paths among the robots that compose the team. This
assignment is made according to a user-defined objective
function. Specifically, in this paper, we seek to find the
best combination of collision-free paths that minimizes the
total traveled distance by the robots. However the proposed
method is more general; i.e. it could be used to optimize
alternative utility functions and to incorporate additional
constraints.

The experiments illustrate how our approach is able to
obtain the best solution in small teams of robots, which is
also corroborated by the simulations. At the same time,
the simulations show that, while Adopt is a distributed al-
gorithm, the number of messages and the time to converge
to a solution grows more than linearly with the number of
robots involved in the optimization process.

As future work we plan to apply our approach to the in-
formative path planning problem for exploration tasks [24].
Moreover, we aim to compare the results of the Adopt so-
lution with other approaches for multi-robot coordination,
like the max-sum algorithm [4].
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