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Abstract— This paper presents a methodology for mapping
and localization of Unmanned Aerial Vehicles (UAVs) based
on the integration of sensors from different modalities. Par-
ticularly, we integrate distance estimations to Ultra-Wideband
(UWB) sensors and 3D point-clouds from RGB-D sensors.
First, a novel approach for environment mapping is introduced,
exploiting the synergies between UWB sensors and point-clouds
to produce a multi-modal 3D map that integrates the estimated
UWB sensors position. This map is further integrated into a
Monte Carlo Localization method to robustly estimate the UAV
pose. Finally, the full approach is tested with real indoor flights
and validated with a motion tracking system.

I. INTRODUCTION

Unmanned Aerial Vehicles (UAVs) have attracted great
interest in recent years as a viable, low-cost technology
for performing tasks in indoor environments in the context
of several applications such as surveillance, inspection or
mapping. These applications usually demand precise UAV
self-localization in the environment, which is also needed
for achieving a safe performance during the flight. Outdoor
positioning has greatly benefited from the use of Global Po-
sitioning System (GPS) coupled with inertial measurements
[1]. However, GPS-based localization is impractical indoors
due to the high attenuation of satellite signals. Therefore,
alternative technologies have been proposed and developed
in the past years in order to achieve robust indoor positioning
for UAV applications.

Motion capture systems are one of the most common
methods for indoor positioning. They are based on visual
markers and a network of cameras strategically positioned
in order to have overlapping fields of view in the operating
area. Several testbeds for UAV robotics research are based
on such systems, like Vicon1 [2] [3] , or OptiTrack2 [4] [5].
Nevertheless, these solutions are not cost-effective for scaling
to larger or other indoor scenarios, and the line of sight
requirement of such systems is difficult to meet in cluttered
environments, such as in manufacturing plants. Furthermore,
in order to achieve a robust and scalable UAV localization
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solution, it seems reasonable to compute the pose estimations
on-board the aerial robot, unlike the aforementioned off-
board motion capture systems.

Due to the availability of low-energy sensors and radio
frequency circuitry, there is a research trend on radio-
based localization systems [6], [7]. This technology uses
the received signal to estimate the position of the receiver
with respect to fixed emitters. The use of WLAN access
points effectively exploits the existing infrastructure in place,
making it an easier solution to adopt. However, it does
not provide enough accuracy to achieve safe autonomous
operation of UAVs [8]. Ultra-Wideband (UWB) is a wireless
communication technology which has attracted interest as a
promising solution for precise target localization and tracking
[9], [10], [11]. It is particularly well suited for short-distance
indoor applications, where the position of the on-board
sensor can be obtained with an accuracy of a few centimeters.
However, estimations can suffer from attenuation across
materials, interference from other wireless devices and multi-
path propagation. As motion capture systems, this solution
needs an associated infrastructure to be installed in the
environment and properly calibrated. Besides, these sensors
are poorly suited to constitute a full localization system due
to the lack of bearing information.

Other approaches do not rely on existing infrastructure, but
on the successful detection of features in the environment by
on-board sensors. Probably the most extended approaches
for UAVs are based on cameras, due to the amount of
provided information versus their low weight. Algorithms
for UAV pose estimation based on visual odometry or
Simultaneous Localization And Mapping (SLAM) have been
widely considered, either using monocular cameras [12],
[13] or stereo-vision [14], [15], and more recently RGB-D
sensors [16], [17]. The latter solution exhibits an important
advantage since its performance does not depend on the
scene texture in order to estimate the depth, and is less
reliant on lighting conditions while indoors. Visual odometry
approaches demonstrate good results in the short term, but
are not reliable in the long term due to cumulative drift.
SLAM approaches work very well when we repeatedly visit
the same area, but usually fail at high-speed UAV motions in
unknown scenarios. The computational complexity of these
approaches is also an important issue regarding usability and
robustness, given the common on-board restrictions in UAVs.

Another family of localization techniques are based on
maps of the environment, exploiting the fact that UAVs
often operate in partially known scenarios. Sensor data can
be matched with the map in order to determine the UAV



pose. One of the most common map representations are
occupancy grids, introduced several decades ago [18]. An
important drawback of these grids is their large memory
requirement, but recent developments such as OctoMap
[19] provide efficient data structures particularly suited for
robotics applications in the constrained equipment usually
present on-board UAVs [20], [21]. Monte Carlo Localization
(MCL) is one of the most popular approaches that makes
use of a known map of the environment, typically in the
form of occupancy grids, and is commonly used for robot
navigation in indoor environments [22], [23]. However, most
MCL approaches are meant for wheeled robots moving in 2D
environments, requiring a 2D laser scanner for map building
and localization. Other authors presented an extension for 6D
localization based on 2D laser scanner [24], but it is meant
for 2D motion of humanoid robots in a 3D environment,
which makes it not suitable for aerial robots.

II. MAPPING AND LOCALIZATION APPROACH

The aforementioned approaches are promising in that
they can all provide solutions to the localization problem,
but important drawbacks are present using each of them
alone. Infrastructure-based positioning systems achieve re-
liable performances, but they can be expensive and might
require laborious setup and calibration processes. Vision-
based approaches demonstrate good results relying only on
on-board equipment, but are not robust when applied to
UAVs. Map-based methods are robust solutions for long-
term localization, but often demand a high computational
cost apart from the need to previously build an accurate
representation of the environment.

The main contribution of this work focuses on the com-
bination of technologies in order to achieve long-term au-
tonomous operation of UAVs in indoor environments, taking
advantage of their respective benefits to overcome their main
drawbacks. In particular, a visual odometry algorithm based
on an RGB-D camera adapted from [25] and a localization
algorithm based on UWB sensors have been merged into a
MCL algorithm that relies on a previously built multi-modal
map, which includes 3D data and UWB sensors location.
The different technologies benefit from each other:
• The visual odometry provides a reliable short-term pose

estimation, while its drift is bounded thanks to the map
matching and UWB measurements.

• The noise and outliers from the UWB sensors are
filtered thanks to the odometry prior.

• The MCL exploits the visual odometry to update the
motion of the particles, and the UWB measurements to
maintain a low dispersion on the position of the particles
whenever the map matching is not acceptable.

This solution offers reliable localization in position and yaw
angle, while roll and pitch angles can still be observable
through an IMU. Moreover, the implemented algorithms are
highly efficient so they are suitable for real-time operation
on-board the aerial robot for performing on-line localization.

The rest of the paper is structured as follows. The multi-
modal map building process is detailed in Section III. This

map is used together with RGB-D and UWB data into the
MCL approach described in Section IV to perform UAV
localization. Finally, experimental results are presented in
Section V, followed by conclusions and future work.

III. MULTI-MODAL MAPPING WITH UAVS

As previously introduced, prior to robot localization, this
approach will map the environment. The objective is to
jointly estimate the position of a set of fixed UWB sensors
(beacons) and also to 3D map the environment in the same
reference frame based on RGB-D data.

One possible approach is to solve these two problems
separately. That is, mapping the scene and accurately local-
izing the robot based on local sensors, and later on, using
this information to map the position of the UWB sensors
into the environment. However, this approach does not take
advantage of the UWB sensors for mapping, neither for
localization.

This paper follows an integrated approach in which the
positions of the UWB sensors are firstly approximated and
later on refined together with the 3D map of the environment.
This way, the first step will consider the range information
from the UWB alone to compute a globally consistent robot
trajectory in 3D and to automatically detect loop-closures
without human intervention. Then both, the computed tra-
jectory and the loop-closures, will be used in a second step
to optimize the position of the robot in 3D and also the UWB
sensors position.

Next paragraphs will give further details of both steps.

A. Step 1: Range-only localization and mapping

The objective of this step is to compute an initial guess
of the UWB sensors’ positions, based on distance mea-
surements from the sensors to the robot, and to use this
information to obtain a globally consistent trajectory of the
UAV. This is generally referred a Range-Only Simultaneous
Localization and Mapping (or RO-SLAM)

Most of the approaches for RO-SLAM in the state of the
art are based on time filtering and probabilistic frameworks
as EKF-SLAM, UKF-SLAM, FatSLAM and others [26],
[27]. In [26] it is shown how the unscented FastSLAM
presents better results over other classical methods based on
EKF or UKF. However, FastSLAM solutions do not preserve
the correlation between different landmarks of the map in
those applications in which it might exist. Other landmark-
based SLAM algorithm is considered in [28], where the
authors use a particle filter to initialize the EKF filter for
each new landmark. The main drawback of the previous
approaches lies in the delayed initialization of the landmarks
into the filters which significantly reduces the optimization
of the robot localization until the solution position of the
range sensors have converged.

This problem is solved in [29] where a batch solution is
proposed to estimate the mobile robot and landmarks position
using a singular value decomposition (SVD) of the observa-
tion matrix. A batch processing solution is also presented in
[30] based on optimization. However, these methods assume



measurements from all the UWB sensors at every robot
position, otherwise the measurement must be interpolated.
This is a hard constraint in realistic implementations where
the visibility of all the UWB sensors cannot be guaranteed
all the time.

This paper proposes a new optimization approach for the
RO-SLAM problem that follows the batch processing ideas
but generalizes to a more common situation in which the
range measurements from the UWB sensors might arrive at
the robot independently, even having robot poses without
related range measurements.

1) Problem definition:
We denote a robot trajectory with N poses as X =
{x1,x2, ...,xN} and the positions of a set of M UWB range
sensors as B = {b1,b2, ...,bM}, where each robot pose is
represented as xi = [xi, yi, zi, ψi]

T and the UWB sensor
position as bj = [bxj , byj , bzj ]

T . Given a set of observations
D = {dij}, where each dij is the Euclidean distance
between the position corresponding to pose xi (defined as
xp
i = [xi, yi, zi]

T ) and sensor position bj , the objective of
the RO-SLAM optimization problem is to compute the robot
trajectory X and UWB sensors positions B that best fit the
measured distances.

Notice how the robot roll and pitch angles are not included
into the robot pose definition. We assume these angles
are available and accurate enough in an UAV. They are
fully observable and they are usually accurately computed
in aerial robots because they are the most basic control
variables (together with the rotation rates) for the system
stability. While it is true that roll and pitch estimation
based on accelerometer and gyroscope integration might be
biased under constant acceleration (like loitering in fixed-
wing UAVs), these scenarios are very rare to occur indoors.

In addition, we will assume we can estimate the bz
parameter of every UWB sensor position in B by just
measuring the distance to the floor. This is an easy process
that can be implemented accurately. This assumption allows
reducing the number of unknown parameters of the UWB
sensor position to two, but we still do not have enough
information to initialize the UWB sensor position into the
optimization.

We model the observations at pose xi as the set of
measurements zi = {di1, di2, ..., diM} with arbitrary length
from 0 (no measurements) to M (measurements to all UWB
sensors). Thus, the resultant robot trajectory and UWB
sensors positions will be the ones that minimize the following
expression:

arg min
{X,B}

 N∑
i=1

M∑
j=1

cij(‖xp
i − bj‖−dij)2

 (1)

where cij is a variable that takes value 1 if there is a mea-
surement from pose xi to UWB sensor bj and 0 otherwise.

However, due to the nature of the problem addressed,
there exists the possibility that a number of poses have not
measurements at all (the robot is out of range of all UWB
sensors) and, more frequently, that the number of range

Fig. 1. Multiple hypotheses for the localization of three UWB sensors.
The robot performs a 3D trajectory, but it is shown an orthogonal view for
easy visualization of the position hypotheses. Triangles are robot poses and
circles are UWB sensor position hypotheses

measurements in a pose is below four (minimum number of
range measurements to compute the robot position in 3D).
These limitations are overcome by including the odometric
constraints into Eqn. (1), obtaining the final expression to
minimize:

arg min
{X,B}

 N∑
i=1

E(xi,xi−1) +

M∑
j=1

cij(‖xp
i − bj‖−dij)2


(2)

where E(...) stands for the squared error function between
pose xi and xi−1 according to the odometry information.
This function transforms the pose xi−1 according to the
odometry and computes the error with respect xi in each
pose dimension. We make use of the stereo-vision odometry
algorithm presented by the authors in [25] (which is publicly
available3), adapted to the particularities of RGB-D sensors.

2) Optimization:
Solving Eqn. (2) is straightforward if we have an good initial
guess about the robot poses and the UWB sensor positions.
However, in RO-SLAM we have no information about the
position of the range sensors. We can of course initialize
B to random positions and let the optimization process to
estimate the correct ones, but the optimizer will be stack in
a local minimum almost for sure.

Instead, we re-parameterize the UWB sensor position so
that we can have several hypotheses of the estimation into the
optimizer as done in [31]. Thus, when the robot at pose xi

receives the first range measurement dij to sensor j, we know
the sensor is in circle at altitude bzj around the current robot
pose (see Fig. 1 as example). This paper proposes sampling
this circle with multiple position hypotheses and letting the
optimizer to choose the better one. Thus, assuming Hj

different hypotheses for sensor j, the UWB sensor position
will be parametrized as follows:

bj = [bj1,bj2, ...,bjHj
] (3)

3http://wiki.ros.org/viodom



where each single position hypothesis is represented as
bjk = [bxjk, byjk, bzj ]

t. Notice how bzj is the same for
all hypotheses because it is actually a known parameter.

With this parameterization in mind, we can reformulate
Eqn. (2) as follows:

(4)

arg min
{X,B}

 N∑
i=1

E(xi,xi−1)

+

M∑
j=1

1

Hj

Hj∑
k=1

cij(‖xp
i − bjk‖−dij)2


Notice how the contribution of a single UWB sensor j
is scaled by 1/Hj for every pose xi so that we do not
double-count the information provided by a single range
measurement.

3) Initialization:
In summary, the parameters of the optimization process are
the position of the robot in each pose xi, which are initialized
according to the odometry values, and the different position
hypotheses for every UWB sensor.

When we receive a range measurement dij from UWB
sensor j for the first time, we use the current robot position
estimate xi to initialize the Hj position hypotheses according
to the following equations:

bxjk = xi + dijcos(2π(k − 1)/Hj) (5)
byjk = yi + dijsin(2π(k − 1)/Hj) (6)
bzjk = bzj (7)

for k = 1, . . . ,Hj . The value of Hj is initialized to Hj =
10dij , so that the number of hypotheses adapts to the sensor
distance.

B. Step 2: 3D Mapping and pose refinement

The outcome of Step 1 will be a globally consistent trajec-
tory and an initial estimation of the UWB sensors positions.
If the robot motion is rich enough to let the optimizer
disambiguate the horizontal flip ambiguity [32], then it will
converge to a single solution and all the hypotheses will be
localized in one position.

Now that we have good guess about the UWB sensor
positions and also a coherent trajectory, we can perform
automatic loop-closing detection on the RGB-D data based
on different approaches as visual place recognition or scan
matching. This paper implements a massive scan-matching
process among all the poses that fall within a given search
radius.

Given the sensor point-cloud pci at pose xi and the point-
cloud pcj and pose xj in a closed-loop, the scan-matching
process establishes the transform that best aligns both point-
clouds. In the literature, this transform is typically used as a
constraint between both poses and its associated information
matrix allows tuning the importance of the such constraint
into the nonlinear optimization process [33]. Instead, we
propose to include the alignment error into the optimization
process, as we aim to build an accurate 3D map.

To this end, we transform each point-cloud to the global
reference frame according to its associated pose (pcgi ) and
compute the alignment error between point-clouds as the
averaged Euclidean distance between their individual 3D
points. Then, Eqn. (2) (because now we have a single
hypotheses for each UWB position) can be enlarged with
this new constraint as follows:

(8)arg min
{X,B}

 N∑
i=1

E(xi,xi−1)

+

M∑
j=1

cij(‖xp
i − bj‖−dij)2 +

Pi∑
l=1

D(pcgi ,pc
g
l )


where the function D(pcgi ,pc

g
l ) computes the squared av-

erage distance between the given point-clouds in the global
frame and Pi is the number of loop-closures that affect pose
i.

The computation of D(pcgi ,pc
g
l ) could have a significant

computational cost if the involved point-clouds are large
because it needs to compute the match between the 3D points
of both clouds each time, slowing down the optimization
process. However, assuming the poses to be optimized are
not far from the final estimates thanks to the RO-SLAM
step, we can pre-compute the 3D point data association step
between point-clouds. This way, function D(pcgi ,pc

g
l ) only

needs to recompute the average distance between 3D points
because the association is known.

IV. MAP-BASED LOCALIZATION

As previously introduced in Section I, we present a MCL
method for 6D localization that integrates visual odometry
from an RGB-D camera, 3D point clouds from such camera,
distance measurements to several UWB sensors installed in
the environment, and the 3D map which was built using the
approach described in Section III. The particle filter consists
of N particles pi, each of them with the following state
vector:

pi = [x, y, z, ψ]T (9)

where ψ refers to the yaw angle of the UAV. Even though
a 4D state vector is used, we are able to provide 6D local-
ization estimations since roll and pitch angles are observable
through the on-board IMU. Each particle has an associated
weight wi such as

∑N
i=1 wi = 1.

We assume that the initial state of the robot pose is known,
which is usually the case since UAVs often take off from a
designated location. We use a motion model to propagate
the current state of all the particles according to the visual
odometry estimation computed from RGB-D data (we use the
same odometry algorithm as in Section III). The state of the
particles will evolve according to the following expressions:

xt+1
i = xti + ∆x ∗ cos(ψt

i)−∆y ∗ sin(ψt
i) (10)

yt+1
i = yti + ∆x ∗ sin(ψt

i) + ∆y ∗ cos(ψt
i) (11)

zt+1
i = zti + ∆z (12)
ψt+1
i = ψt

i + ∆ψ (13)



The increments ∆x, ∆y, ∆z and ∆ψ provided by the vi-
sual odometry are drawn randomly with standard deviations
proportional to each increment itself.

A filter update is launched when the translation or rotation
thresholds are accomplished. Then, we make use of the
latest 3D point clouds from the RGB-D camera and distance
measurements to the UWB sensors to update the filter. Each
particle pi evaluates its accuracy by checking how likely it
would receive such sensor reading at its current pose, thus
computing a new weight value wi that is influenced by the
two sensors readings (RGB-D and UWB).

Thus, the point clouds are transformed to each particle
pose in order to find correspondences against the map. Since
this is computationally costly, we use a static 3D probability
grid in which each cell indicates its probability of being
an occupied point of the map. Such probability grid only
needs to be computed once, relieving extensive distance
computations for each particle, since each point from the 3D
point cloud must be evaluated. The particle weight associated
to the map matching is calculated as follows:

wmap
i =

1

M

M∑
k=1

grid(pi(ck)) (14)

where M is the number of 3D points ck that conform the
RGB-D point cloud, pi(ck) is the point transformed accord-
ing to the particle state and grid(pi(ck)) is the value of the
probability grid in such transformed position. Assuming each
3D point in the cloud is independent, we can also compute
this weight as wmap

i =
∏M

k=1 grid(pi(ck)), however we opt
for the weight average of (14) to avoid numerical errors.

On the other hand, distance measurements between UWB
sensors are used to compute another weight value for each
particle according to how well their state fits to the distribu-
tion of fixed radio beacons. The measured radio-based dis-
tance dij from the UAV to the j-th beacon is compared to the
actual Euclidean distance between pi and bj . The product
is used to aggregate the values from the measurements of
different beacons, since they are conditionally independent
probabilistic processes. The weight value from range sensing
wrange

i is calculated feeding this difference dij −‖pi−bj‖
in a Gaussian probability distribution with zero mean and
the UWB sensor standard deviation.

In order to combine the weights of both sensing ap-
proaches (map and range), all the weights must first be
normalized within their categories. This prevents merging
values which usually are in different orders of magnitude. A
weighted average is used to obtain the final weight of each
particle such that

wi = α ∗ wmap
i + (1− α) ∗ wrange

i (15)

Although both sensor measurements are conditionally in-
dependent and the weight product is the adequate way to
perform the update, we choose the approach in (15) to better
deal with the outliers commonly present in indoor UWB
sensors. If an outlier in the distance measurement from a
UWB sensor is received, this would result in very low values

Fig. 2. The UAV with the two RGB-D sensors (Orbbec Astra), left image
shows the front view and right image the rear view. The UWB sensor is
placed on top of the aerial robot. The passive markers are used by the
motion capture system to acquire ground truth data.

for wrange
i ; in this case the resampling would only depend

on the associated weights calculated from the point cloud
matching, and the relative scoring among the set of particles
would remain unaffected.

The next step of the algorithm involves a redistribution
of the particles to new poses that are more likely to be
accurate, according to their weight. The algorithm employed
for resampling is the low variance sampler [34]. The updated
state vector for the aerial robot is then calculated as the
weighted sum of all the particles.

V. EXPERIMENTAL RESULTS

An experimental setup has been conceived in order to test
the proposed approach. An UAV has been equipped with
two RGB-D sensors, one in the front and another one in
the rear side of the robot, as depicted in Fig. 2. An UWB
sensor has been also installed into the robot and a set of three
UWB sensors have been placed in the scenario. The UWB
distance measurements have a standard deviation of 20cm
approximately, but they are subject to further distortions due
to reflexions or sigma attenuation.

The experiments have been carried out in CATEC’s
Testbed, a flying arena with dimensions 15x15x5 m equipped
with a motion tracking system able to estimate positions with
sub-millimeter accuracy. Thus, we can obtain the ground
truth of the robot position and also the position of the UWB
sensors in the scene.

Two different flights were recorded. The UAV first flown
in the area to gather sensor information with the purpose
of building a map of the environment. Later on, a new
flight was done to gather ground-truth information so that
we can compare the motion tracking localization with our
MCL localization using the previously computed map.

The following paragraphs detail each of the experiments.

A. Map building

With the data gathered in the mapping flight, a pose graph
was built and the multiple hypotheses for the three unknown
UWB sensors. As previously introduced, we measured the
heights bzj of each of the M UWB sensors with respect the
ground, so that we only needed to estimate the bxj and byj
position of the sensors.

The graph build based on the odometric information was
optimized to obtain a globally coherent robot localization and
also to have a good guess about the UWB sensor localization.
The solution of the optimization process is shown in Fig. 3



Fig. 3. Results of the Step 1 optimization. We can see how the total RMS
error in position is below 0.3m and 0.18rad in yaw. The errors per axis
are presented (red) and the RMS error (blue)

Fig. 4. Results of the Step 2 optimization. We can see how the total RMS
error in position is below 0.16m and 0.04rad in yaw. The errors per axis
are presented (red) and the RMS error (blue)

where the error for each of the robot poses is shown. We
can see how the error in the robot trajectory is reduced to
less than 0.5m in position. The three UWB converged to a
single solution with an RMS error of 1.1m. Although this is
a significant error, they helped the optimizer to compute a
globally consistent robot trajectory, improving the close-loop
detection for Step 2.

Finally, Fig. 4 shows the results after Step 2 optimization.
We are able to reduce the localization error to 0.16m RMS
in total, while yaw error is reduced to 0.04rad. In addition,
the localization error of the UWB sensors is reduced down
to 0.4m RMS, in the order of the sensor noise.

Once the full robot trajectory was optimized, the 3D point-
clouds from each pose can be projected into a single map
to reconstruct the robot environment. Fig. 5 shows the map
obtained using the proposed optimization approach and the
map computed using the ground-truth poses from the motion
tracking system. It can be seen that there are some errors due
to inaccuracies in the trajectory, but the the general structure
and details are captured in the reconstruction.

Fig. 5. Top view of the map reconstruction using the point-cloud associated
to each robot pose. (Top) Reconstruction using the motion tracking ground-
truth for the robot poses. (Bottom) Reconstruction based on the results of
the optimization

B. Map-based localization

The second flight took place with the same scenario layout
in order to use the previously built map for localization. Fig.
6 shows the estimated position and yaw angle provided by
our MCL method during this flight, along with the ground-
truth values provided by the motion capture system. Roll and
pitch angles were acquired directly from the on-board IMU
and hence are not shown in the plots, since they are directly
integrated in the algorithm.

The results of this experiment have been included
into a video, which can be accessed at the URL
https://grvc.us.es/staff/caba/share/iros2017.avi.

As it can be seen, the estimations closely follow the
ground-truth during all the experiment, and do not exhibit
drift with time while keeping the errors approximately
bounded. Consistent errors of less than 0.2m were obtained
for x and y during the whole trajectory. Errors in z were a
bit higher but this could be solved through the use of a low-
weight altimeter for robust estimations integrated into the
MCL. RMS errors in ψ of 0.07 radians (around 4◦), with
peaks up to 0.26 radians (15◦), are considered acceptable.
It is also worth to mention that the UAV traversed not
mapped areas during the experiment. The use of UWB
sensors greatly helped when the UAV visited previously
unexplored regions, or with different yaw angles that led to
unknown viewpoints, such as depicted in Fig. 7. In contrast,
the map matching allowed a better estimation in z since the
radio anchors did not exhibit much difference in height (due
to practical reasons in the installation), and especially in ψ
since this angle cannot be estimated from the radio sensors

https://grvc.us.es/staff/caba/share/iros2017.avi
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Fig. 6. Estimated UAV position and yaw angle. (Red line) Ground truth
data from the motion capture system. (Green line) Localization estimations
from our approach.

Fig. 7. Distribution of particles (red arrows) around the ground-truth UAV
pose (green arrow), showing a moment of the flight in which the RGB-D
point cloud barely matched the existing 3D locations of the map in which
the MCL relied for localization.

measurements.

In order to quantify the contribution of each sensor
modality, we have analyzed the same flight data modifying
the contribution of map matching and UWB sensors into
the MCL in Eqn. (15). Fig. 8 presents a comparison of
the errors between ground truth and the estimations of our
approach using different values of α. Table I summarizes the
RMS errors in position and yaw angle for the experiment
flight. As expected, x and y positioning is better when using
UWB sensors, while ψ estimations are stronger from the
map matching. In this case z values exhibit a significant
error in the map matching because as explained before,
there were many areas without occupancy data and the
particles weighting did not show major differences in order
to resample them accordingly.

Table I summarizes the RMS errors in position and yaw
angle for the experiment flight. It can be seen how the
proposed combined approach improves the range-only and
the map-only MCL implementations.
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Fig. 8. Estimated UAV position and yaw angle. Left plots show the
comparison between the UAV ground-truth (red line) and the estimations
from our approach (green line). Right plots include the errors when
comparing with the ground-truth (red line) and the overall RMS error for
each axis (blue line).

TABLE I
RMS LOCALIZATION ERRORS

x (m) y (m) z (m) ψ (rad)
α = 1 Only map 0.34 0.38 0.46 0.13
α = 0 Only range 0.20 0.17 0.24 0.18
α = 0.5 Combined 0.16 0.15 0.22 0.07

VI. CONCLUSIONS AND FUTURE WORK

This paper presented an approach for multi-modal envi-
ronment mapping using an UAV, and a localization system
that integrates such map and the sensor readings from UWB
beacons and RGB-D cameras to build a robust approach.

The mapping algorithm exploits the synergies between
UWB and RGB-D to build an accurate 3D map of the
environment and to localize the UWB sensors into such map.
Thus, the proposed optimization scheme allows using the
range measurements to the UWB sensors to build a globally
consistent robot trajectory that helps to detect loop closures
in order to refine the trajectory based on optimization from
point-cloud alignment. The localization approach success-
fully integrates both sensor types to overcome the limitations
of each sensor modality by its own.

The approach has been tested with two UAV flights, one
for mapping and another one for localization, and validated
using a motion capture system as UAV position and orien-
tation ground-truth.

Future work will consider the integration of other modal-
ities such as visual place recognition. In addition, opti-
mization approaches will also be considered for map-based
localization of UAVs in order to increase the estimation
accuracy.
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