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Abstract— Radio signal-based localization and mapping is
becoming more interesting in robotics as applications involving
the collaboration between robots and static wireless devices are
more common. This paper describes a method for mapping
with a mobile robot the position of a set of nodes using radio
signal measurements. The method employs Gaussian Mixtures
Models (GMM) for undelayed initialization of the position of
the wireless nodes within a Kalman filter. Moreover, the paper
extends the method to consider active sensing strategies in order
to map the nodes. Entropy variation is used as a measurement
of information gain, and allows to prioritize control actions of
the robot. However, as there is no analytical expression for the
entropy of a GMM, upper bounds of the entropy, for which
close form computation is possible, are used instead. The paper
describes simulations that show the feasibility of the approach.

I. INTRODUCTION

Range-only mapping in wireless sensor networks is an
active research area that poses a number of challenges, from
range computation to map building. One of the key issues
is the lack of bearing information in the measurements.
This means that the real position of the emitter cannot be
estimated based on a single measurement. The receiver must
receive information in different positions (trilateration) to
properly localize the emitter.

Initial results on wireless sensor localization using sig-
nal strength were conducted by Ladd et al. in [1], where
Ethernet devices were used to localize and track a human
operator inside a building using pre-computed probabilistic
maps . Other approaches use delayed initialization through
trilateration or employ other means to determine the bearing.
For instance, in [2], radio-frequency (RF) transponders are
used to build a range-only SLAM approach. An estimation
of the time of flight is used to compute the distance between
transmitter and receiver. Also, the partial directivity of the
transponders simplifies the problem and allows undelayed
gaussian initialization of the position. [3] also considers time
of arrival and direction of arrival to successfully localize a
wireless sensor network. [4] employs delayed initialization
through trilateration. The authors proposed in [5] a solution
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Fig. 1: Two examples of range-only localization. The robot
(red triangle) receives range data from the beacon (green
square) at three different positions. Yellow areas denote
possible localizations of the beacon (as more intense is the
yellow color, more likely this localization is). (a) Result of
the node localization using a straight robot trajectory (there
are two possible solutions for the localization). (b) Results of
the node localization if the robot trajectory is adapted from
active sensing considerations (the localization converges to
single correct solution)

for range-only mapping based on particle filtering over
the received signal strength. However, it is not possible
to integrate the estimation of the filter into more complex
localization architectures such a SLAM until the particle
filter has converged to a single solution, and thus it uses
a delayed feature initialization.

The problems related with multiple hypotheses in the early
steps of the estimation in range-only localization approaches
have been recently addressed in [6]. The paper describes an
algorithm that allows delayed initialization of the node posi-
tion by means of tracking the most probable two hypotheses.
Subsequent measures provide enough information to discard
the wrong hypothesis, then including the correct one into
the SLAM filter. This problem has been also addressed and
generalized by the authors to n-hypotheses in [7], where an
undelayed initialization for wireless network mapping using
range-only measurements is proposed. The paper makes use
of Gaussian Mixtures Models (GMM) to represent the non-
Gaussian prior distribution of the node position, allowing
easy integration of the localization process into Kalman
filters from the very first range measurement.

Most of the previous approaches do not take into account
the possibility of controlling the robot, and the robot is
just commanded a predefined path. However, active sensing
strategies may lead to more efficient exploration and mapping
using radio-signals. The robot can adapt its trajectory, avoid-
ing for instance non-observable motions or following those



paths which are most informative, in the sense of reducing
the uncertainty on the nodes’ positions. Fig. 1 illustrates the
benefit of considering active sensing strategies. Thus, the
robot trajectory of Fig. 1.(a) results in two hypotheses with
very similar uncertainty (bimodal distribution of the node
position). On the other hand, Fig. 1.(b) shows how adapting
the robot trajectory benefits the localization of the node.

Active sensing requires a measurement on the information
gain obtained when executing a certain task or action. For
Bayesian approaches, one possibility is to use the (expected)
variation on the entropy of the beliefs on the nodes’ positions
as a measure of information gain, as for instance in [8] or [9],
[10] for exploration and SLAM. In [11], the same ideas about
active sensing are applied to a set-theoretic framework used
to represent and handle uncertainty. In [12], active sensing
strategies are applied to the problem of tracking using only
range measurements, where the target is represented by a
single Gaussian.

The main contribution of the paper is an extension of
the approach presented in [7] for node mapping based
on a weighted GMM to represent the non-Gaussian prior
distribution of the node position, with an active sensing
strategy in order to gather as much information as possible
for localizing the nodes. Entropy variation is considered in
this paper to measure the information gained by a given
robot motion considering all node position hypotheses. As
the computation of the entropy of GMM has not a closed
form, entropy bounds are used in this approach. The paper
will show how these bound provide an effective way for
active sensing.

The paper is structured as follows. First, Section II sum-
marizes the multiple hypotheses localization approach using
Gaussian Mixtures Models. Section III presents the active
sensing strategy employed. Later, Section IV shows results
in simulation, followed by the conclusions and future work
in Section V.

II. RANGE-ONLY MAPPING AND SLAM USING
GAUSSIAN MIXTURES

The objective can be summarized as estimating the posi-
tion of wireless sensor nodes based on the received signal
strength on a node attached to the robot. This process is
depicted in Fig. 1: when the robot receives the first range
information from the node to be localized, the initial position
of the node is uniformly distributed around the robot position
at the given distance.

The ability of representing arbitrary Non-Gaussian dis-
tributions as linear combination of Gaussian distributions
allows simplifying the integration of such multi-modal dis-
tributions into Gaussian filters like the Kalman Filter and,
hence, into the classical approaches for SLAM. This Section
will show how GMMs can be included into the SLAM filter
with the first measurement and how this model can be easily
update with new measurements from the beacon (the reader
is refereed to [7] for further details about the localization
approach). Of course, the same approach can be used for
WSN mapping if the robot pose is known.

A. The state vector

The state vector of the filter will be composed by the
estimated 2D position and orientation of the robot, and
the estimated 2D position of all the nodes. These positions
will be considered as static. Thus, the state vector can be
described as follows:

x = [rT ,bT1 ,b
T
2 , . . . ,b

T
n ]T (1)

where r = (xr, yr, θr)
T represent the Euclidean position

and orientation of the robot and bi represents the position
of the i-th beacon considered in the filter. The beacon
position bi will be expressed in polar coordinates with
respect to the position from which the robot received the
very first range information (xi, yi). Thus, if the beacon
position was completely known, it would be expressed as
bi = [xi, yi, ρi, θi]

T , where ρi is the distance between the
robot and the beacon position and θi is the angle.

However, this paper assumes non prior information about
the angle of arrival of the beacon information, so the value of
θi is unknown. We propose quantizing the space of possible
values of θi into k possible hypotheses. Thus, each beacon
will be expressed as follows:

bi = [xi, yi, ρi, θi0, θi2, . . . , θi(k−1)]
T (2)

All the hypotheses θij , together with their weights wij , will
compose a GMM such as the probability mass functions of
θi, fθi(x), will be uniformly distributed from 0 to 2π, that
is:

fθi(x) = U(0, 2π) '
k∑
j=1

wijN (θij , σij) (3)

Then, it can be seen how the state vector presented in
(1) will consist of the robot position/orientation estimation
and the hypotheses of every beacon considered into the filter.
Of course, the number of hypotheses will evolve, reducing
its number as range information is integrated from different
robot positions.

B. Node initialization

As previously introduced, after the first range information
of a beacon is considered, the probability mass function of
its position will be uniformly distributed around the robot
location. This probability function will be approximated by a
GMM using (3). Each of these Gaussians will be considered
as an independent hypothesis into the localization filter.

The number k of hypotheses will be manually setup de-
pending on the computational resources, because the length
of the state vector depends on the number of nodes n and the
number of hypotheses per beacon k through the expression
L = 3 + 3n+ nk. Using a very large number of hypothe-
ses could be overfitting, while reducing this number too
much could lead to inconsistencies. In this particular case,
experimental results showed that 8 hypotheses are enough to
provide a good balance between results and efficiency.

Known the number of hypotheses k, the next step is to
estimate the values of wij , θij and σij that better approximate
the GMM of (3) to an Uniform Distribution between 0 and



2π. The value of the hypothesis weights is equal to all of
them, and is set as wij = 1/k.

Estimating the mean value θij of each hypothesis is also
simple considering that they have to be uniformly distributed
from 0 to 2π. Thus, depending on the number of hypotheses,
the values of the mean will be defined as:

θij = 2πj/k, j = 0, . . . , k − 1 (4)

The value of σij employed in the filter is:

σi0 = σi1 = . . . = σi(k−1) = 2π/(1.5k) (5)

C. Incorporating measurements

Once the beacon has been initialized into the filter with
the first range information, next measurements will be used
to update the estimation of each hypothesis and also to refine
the weights wij associated to them.

The measurements provided by the system are the dis-
tances of the robot to the set of nodes that are in com-
munication range. Thus, let ρ̂i be the measured distance
from the robot to the beacon i and σ2

i the measurement
error variance. Considering (1), the following measurement
equation is applicable for each of the hypotheses j of beacon
i:

ρ̂i =
√

(xi + ρicos(θij)− xr)2 + (yi + ρisin(θij)− yr)2

(6)
The question now is how to deal with the variance asso-

ciated with the measurement, σ2
i . A single measurement is

available but it has to be applied to all the existing hypotheses
for beacon i. Notice that the measurement cannot be simply
applied to all the hypothesis separately because then the
same information would be counted k times in the filter
which finally would lead to the filter divergence. In [13], the
solution to this problem is shown for the case the information
comes from a unique source, as it is our case. It is stated
that the correction of the estimate of a random variable by a
set of measurement pairs (z,Rij) is equivalent to the unique
correction by (z,Ri) if:

R−1
i =

k−1∑
j=0

R−1
ij (7)

This means that the original information can be divided
into k new measurements with the same mean and with
covariances according to (7). Sharing the information ac-
cording to the likelihood lij of each hypothesis is proposed
in [13]. Thus, if we are able to compute a weight λij
proportional to the likelihood of each hypothesis of beacon i
such as

∑k−1
j=0 λij = 1, the measurement variance associated

to each hypothesis could be computed as σ2
ij = σ2

i /λij .
Then, once the likelihood lij of each of the hypotheses
has been computed, it is normalized using the following
expression to obtain the values of λij :

λij = lij/

k−1∑
j=0

lij (8)

Algorithm 1 Build Measures and Update Weights
{{ρ̂i, σ2

i0}, ..., {ρ̂i, σ2
i(k−1)}} ← {{xr, yr,bi}, {ρ̂i, σ

2
i }}

1: /*Compute likelihood of each hypothesis */
2: for j = 1 to k do
3: lij = p(ρ̂i|xr, yr, xi, yi, ρi, θij)
4: end for

/* Compute measurement variance of each hypothesis */
/* Update weight of each hypothesis */

5: for j = 1 to k do
6: λij = lij/

∑k−1
j=0 lij

7: σ2
ij = σ2

i /λij
8: wij = wij lij
9: end for

10: Normalize weights wij such as
∑k−1
j=0 wij = 1

Following this procedure, all the range measurements are
applied to the corresponding beacon hypotheses.

Finally, it is necessary to properly update the weight
associated to each hypothesis, wij . The key idea is to
make evolve the weights according to the closeness of the
hypotheses with the real beacon position. For doing this,
the likelihood is used again according with the following
equation:

wij = wij lij (9)

Later, the new weights are normalized.
The whole procedure is summarized in Algorithm 1 for

the beacon i. Once the weights have been updated, all the
measurement pairs {ρ̂i, σ2

ij} are arranged into the measure-
ment vector and its covariance matrix (which is diagonal),
and used to update the hypotheses into the Extended Kalman
Filter (EKF) using the standard EKF updating equations. The
conditional probability p(ρ̂|xr, yr, xi, yi, ρi, θij) is modeled
as a Gaussian distribution, with mean obtained evaluating
eq. (6) at the current hypothesis j, and propagating the
corresponding state covariances through the Jacobian of the
cited equation.

D. Pruning hypotheses

The algorithm is completed with a rule to remove hypto-
heses from the filter. Loosely speaking, two main rules are
employed. Hypotheses with very low weights are eliminated
from the filter. Moreover, hypotheses that are closer (in
Mahalanobis sense) than a certain threshold are merged.
More details can be found in [7].

III. ACTIVE SENSING FOR WSN MAPPING

The benefit of using a mobile robot to estimate the position
of a set of nodes is that its motion can be adapted in order
to take the most informative actions. In one hand, from the
set of possible motions of the robot, it should take those that
allows to estimate the position of the nodes more accurately.
On the other hand, the robot should try to avoid motions that
decrease the observability of the node position.

Our robot uses a combination of behaviors: basically the
robot tries to follow a given path as accurately as possible,



but at the same time minimizing a combined cost related
to obstacle avoidance, etc. The idea is to include, in the
computation of the control commands, a cost related to the
gain of information. This gain of information is estimated
using the expected variation of entropy of the GMM that
represents the likelihood of the node position.

A. Entropy-based active sensing strategy

A general measure about the information of a probability
distribution is its entropy. The entropy H of a probability
distribution p(x) is defined as the expected value of the
information − log[p(x)]:

H(p(x)) = Ex[− log p(x)] = −
∫
p(x) log p(x)dx (10)

The information gain is defined as the variation in the
entropy of the distribution after carrying an information
gathering action ut. When executing this action, a new
distribution p(xt+∆t|ut, zt+∆t) will be obtained from the
future measurement zt+∆t, by using the filtering algorithm
described in Section II. The entropy of this new distribution
will be denoted by H(p(xt+∆t|zt+∆t,ut)).

However, only the action ut can be controlled. Then, we
should take the expectation of the entropy for all potential
measurements zt+∆t that can be obtained after executing the
action. Therefore, the (expected) information gain associated
to action ut is defined as follows:

∆(ut) = H(p(xt))−Ezt+∆t [H(p(xt+∆t|zt+∆t,ut))] (11)

This metric can be used to establish preferences among
actions, favoring those that maximize the value ∆(ut).

B. Entropy of a Gaussian Mixture

The entropy, as defined in equation (10), can be obtained
analytically for certain distributions, including the Gaussian
distribution. However, there is no analytical solution for the
case of Gaussian Mixtures, defined by eq. (3).

One option is to numerically integrate (10), for instance
using Monte Carlo methods. However, this is computa-
tionally demanding, as a high number of samples may be
required (the accuracy depends on the number of samples).
The proposed approach uses upper bounds of the entropy as
an approximation to the actual entropy value. Thus, instead
of analyzing the expected variation in entropy for a particular
action, the expected variation of the entropy bound will be
considered.

In [14], Huber et al. derive analytical approximations to
the entropy of a Gaussian mixture; moreover, some analytical
upper and lower bounds of the entropy of a Gaussian Mixture
are presented as well. Among them, the following expression
gives an upper bound of the entropy of a Gaussian Mixture
f(x) =

∑k
i=1 wiN (µi,Σi), which is very cheap to compute:

H(f(x)) ≤
∑
i

ωi(− logωi +
1

2
log((2πe)N |Σi|)) (12)

Algorithm 2 ∆(φk)← active searching(p(xt), ∆t)

1: Φ = {φ1, · · · , φk, · · · } A set of L orientations
2: Ht ←entropy bound (p(xt))
3: for all φk ∈ Φ do
4: rt+∆t ← predict robot (rt, φk,∆t)
5: for all (µi,Σi) in f(xt) do
6: zt+∆t ← simulate measurement(rt+∆t, µi,Σi)
7: p(xt+∆t|zt+∆t)← update (p(xt), zt+∆t)
8: Hi,k ← entropy bound (p(xt+∆t|zt+∆t))
9: end for

10: H(φk) =
∑
i ωiHi,k

11: ∆(φk) = Ht −H(φk)
12: end for
13: Normalize ∆(φk)

with N the dimension of x.
Moreover, this bound is exact when only one hypothesis

remains, or when the hypotheses are separated.Therefore, a
possible strategy is to compare actions taking into account
how they affect not the entropy itself, but the upper bound.
While in theory a decreasing in the bound could not reflect on
a decreasing of the actual entropy, in the experiment section
it will be seen that the procedure is effective reducing the
actual entropy of the distributions.

C. Active sensing controller

The robot considered here is a non-holonomic electric car.
The controlled variables are the linear velocity v and the
steering angle φ of the vehicle. The car uses a combination
of distributed behaviors communicating with a centralized
arbiter by sending votes in favor of actions that satisfy its
objectives (as in [15]). This combination associates a set of
weights for all the potential contributions of the different
behaviors.

Algorithm 2 shows the strategy to compute the votes
associated to the active sensing behavior. Only the steering
angle will be considered, which is discretized into a set of
L orientations {φ1, · · · , φL}. For each potential angle φk, it
is possible to predict the future position of the robot for a
certain time horizon ∆t. At that future position, the potential
range measurements to the known nodes are considered. The
basis of the algorithm is given by lines 6, 7 and 8. Within
the for loop, each hypothesis within the Gaussian mixture
about the position of the known nodes is considered correct,
and a measurement zt+∆t is simulated for that hypothesis at
line 6. Then, the filter described in Section II is applied by
the function update to estimate the future belief, and the
upper bound of the entropy is computed.

The final expected upper bound is computed as the mean
of these upper bounds, taking into account the weight ωi
associated to each hypothesis. That is, taking the expecta-
tion with respect to all the potential measurements, which
corresponds to the second term of the right hand side of
(11).

Although not depicted in Algorithm 2, the final algorithm
applies the same operation for all the currently known



Fig. 2: Behaviors combination. On the left, it can be seen a
simple graphical representation of the hypotheses (ellipses)
and the robot position (red small square). On the right, it can
be seen the votes on the steering angle imposed by the active
sensing (top) and path tracking (middle) behaviors, and the
resultant combination. The active sensing behavior presents
two maxima that will deviate the robot from the straight line
path.

(a) (b)

Fig. 3: Values of the weights associated to the hypotheses
of node 27. The weight value range from 0 to 1. (a) No
active controller. (b) Active contoller is considered. Notice
how usually after some measuremens only two hypotheses
remain. The active controller is able to converge to a single
solution.

beacons that are within communication range. Therefore, the
final vote ∆(φk) for a particular angle is the sum of the
variations of the entropy for each of these beacons.

The final votes for all steering angles are normalized.
These votes are then combined with the votes indicated by
other behaviors. Figure 2 shows an example of particular
interest. It shows how the strategy not only can lead to re-
ductions on the uncertainty, but also to avoid non-observable
motions, like straight lines. In this example, it can be seen
how there are two symmetric entropy variation maxima when
computing the active sensing votes; both of them are far from
the steering angle of 0 degrees that would maintain the car
on a straight line.

IV. RESULTS

A set of simulations has been carried out in order to test
the approach for active mapping using range-only informa-
tion. The setup consists of a car-like mobile robot equipped
with a wireless sensor node. The robot moves in an area in

(a) (b)

Fig. 4: (a) Estimated value of θ (solid line) and its 3σ
confidence interval (dashed) for node 27. (b) Estimated value
of ρ (solid line) and its 3σ confidence interval (dashed line)
for node 27. The active sensing strategy in green, and the
non-active in red.

which a wireless sensor network composed by other fifteen
static nodes has been deployed. The robot is assumed to
be localized with a certain accuracy. Each time a message
arrives at the sensor node onboard the robot, the distance
to the emitter is calculated based on the Received Signal
Strength Information (RSSI), and this information is used to
update the node position into the filter. In the simulation,
the signal propagation model described in [16] has been
used to generate random samples of the distance between
the robot and the sensor node. The maximum transmission
range and the rate of messages sent by each node of the
network (about one per second) have been also considered
into the simulation to be as realistic as possible. The robot
is commanded a predefined trajectory.

The simulations are carried out using the active controller
and without the active controler. The same path tracking
behavior is considered in both cases. Fig. 3 shows the typical
evolution of the weights associated to each of the hypotheses
related to a node (node 27) of the WSN. Three main stages
can be seen in the evolution of the hypotheses’ weights: First,
most of the hypotheses are removed quickly after the inte-
gration of the new measurements. Later, another hypothesis
is removed and only two possible solutions remain in the
filter. In this case, the active controller moves the robot in
favor of a better triangulation and the wrong hypothesis can
be removed from the filter, converging to a single solution
of the node localization.

For the case of node 27, Fig. 4 shows the estimated mean
and standard deviation of θ and ρ. It can be seen how the
estimated θ slowly converges to the correct solution together
with the estimated range ρ. The final uncertainty in ρ is
due to the noisy distance measurements obtained from the
RSSI. The active strategy is able to discard all but one of
the hypotheses regarding θ.

Figure 5 shows the evolution of the entropy of the GMM,
and the number of hypotheses for a different node. The
entropy is estimated by Monte Carlo integration, using 10000
samples. Moreover, the evolution of the entropy bound (12)
is also shown. Interestingly enough, the simulations show
how the entropy bound converges to the actual entropy value



(a) (b)

Fig. 5: (a) Estimated value of the entropy (solid lines) and
entropy bounds (dashed lines) for Node 28. (b) Evolution on
the number of hypothesis for Node 28. The active sensing
strategy in green, and the non-active in red.

(a) (b)

Fig. 6: (a) Trajectory and estimations on the nodes for a real
experiment. (b) Estimated value of θ (solid line) and its 3σ
confidence interval (dashed) for node 1.

when the number of hypotheses is reduced. Therefore, it is
possible to use the variations on the bound for active sensing.

Finally, Figure 6 shows the results obtained in a actual
experiment using our autonomous car Romeo. In this exper-
iment, the nodes are simulated, while the active controller
is running on a laptop (1 GB of RAM, 1,2 GHz processor)
and actually controlling the real robot. The figure shows the
actual trajectory followed, and the estimated angle θ for one
the simulated nodes in the environment. The active sensing
controller was running at 20 Hz with a temporal horizon (∆t
in Algorithm 2) of 5 seconds.

V. CONCLUSIONS AND FUTURE WORK

This paper presented a Gaussian Mixture approach to
solve the mapping problem in presence of radio signal-
based range-only measurements. The Mixture Model can
be integrated into a Kalman Filter, leading to a multiple
hypotheses filter able to deal with the range-only mapping
problem, and allowing undelayed use of the information.

The main contribution of the paper is an active sensing
strategy to control the mapping robot, in order to select
the most informative control actions. Variation in entropy
is considered as a measure of information gain. However, as
there is no analytical expression for computing the entropy
of a GMM, entropy bounds are used instead to obtain an
estimation of the information gain. Simulations show that
the approach is feasible for localizing wireless sensor nodes
based on range measurements. The simulations also show

that this procedure is effective producing efficient motions
for node mapping. Moreover, the controller has been tested
in a real robot.

Actual results with a WSN of Mica2 nodes will be
carried out in the short future. Moreover, future research will
consider an analytical study of the non-observable motions
that can arise in this problem; for instance, pure straight lines
are non-observable motions (in the sense that two hypothesis
can generate the same sequence of measurements and robot
positions). The active sensing strategy presented allows to
avoid this, but a rigorous theoretical study is required.
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