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Resumen

En la actualidad, son más y más los robots móviles que conviven con nosotros
en nuestra vida diaria. Como resultado, el comportamiento de estos robots, que
comparten espacio con los humanos en entornos dinámicos, es un tema de intensa
investigación en el campo de la robótica. Los robots deben respetar las conven-
ciones sociales, garantizar el confort de las personas de su alrededor, y expresar
un comportamiento legible, de manera que los humanos puedan comprender las
intenciones del robot. Por lo tanto, los robots deben desplazarse en la proxim-
idad de humanos cumpliendo estas reglas ”sociales”, lo que es denominado, el
campo de la robótica, como ”human-aware navigation”. Estos comportamientos
sociales no son fáciles de plasmar en expresiones matemáticas que los describan.
En consecuencia, los planificadores de movimiento para robots clásicos que usan
restricciones pre-programadas y funciones diseadas a mano, pueden fallar a la
hora de mostrar correctamente este comportamiento social. En definitiva, es
más fácil el demostrar un comportamiento socialmente aceptable en navegacin
que el intentar definirlo matemáticamente. Por lo tanto, intentar aprender es-
tos comportamientos a partir de demostraciones parece una approximación más
adecuada.

Esta tesis aspira a dotar a los robots móviles con capacidades sociales de
navegación en espacios concurridos. El trabajo aqúı realizado se centra en en-
carar el problema de navegación social desde un punto de vista de aprendizaje
por demostración (conocido por sus siglas en inglés LfD). De este modo, se han
explorado y desarrollado diferentes técnicas y algoritmos de este campo con el
objetivo de transferir comportamientos de navegación social a un robot usando
para ello demostraciones de expertos humanos realizando la tarea que se desea
aprender.

Por lo tanto, las contribuciones de esta tesis se enmarcan en el campo del
aprendizaje por demostración aplicado a tareas de navegación social de robots
móviles. Primero, se emplea una técnica de LfD, Inverse Reinforcement Learn-
ing en particular, para el aprendizaje de una poĺıtica social de planificación de

xiii



movimiento local. Después, se presenta un novedoso algoritmo de aprendizaje
que combina conceptos de LfD y planificadores de caminos basados en sampleo.
Finalmente, se investigan otras novedosas aproximaciones, las cuales combinan
técnicas de LfD, como Deep learning entre otras, y planificadores de caminos,
para afrontar el problema de la navegación social. Todos los métodos propuestos
son comparados con aproximaciones del estado del arte, y evaluados en diferentes
experimentos con los robots reales empleados en los proyectos europeos FROG
y TERESA.
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Abstract

Today, more and more mobile robots are coexisting with us in our daily lives.
As a result, the behavior of robots that share space with humans in dynamic
environments is a subject of intense investigation in robotics. Robots must re-
spect human social conventions, guarantee the comfort of surrounding people,
and maintain the legibility so that humans can understand the robot’s intentions.
Robots that move in humans’ vicinity should navigate in a socially compliant
way; this is called human-aware navigation. These social behaviors are not easy
to frame in mathematical expressions. Consequently, motion planners with pre-
programmed constraints and hard-coded functions can fail in acquiring proper
behaviors related to human-awareness. All in all, it is easier to demonstrate
socially acceptable behaviors than mathematically defining them. Therefore,
learning these social behaviors from data seems a more principled approach.

This thesis aims at endowing mobile robots with new social skills for au-
tonomous navigation in spaces populated with humans. This work makes use of
learning from demonstration (LfD) approaches to solve the problem of human-
aware navigation. Different techniques and algorithms are explored and devel-
oped to transfer social navigation behaviors to a robot by using demonstrations
of human experts performing the proposed tasks.

The contributions of this thesis are in the field of Learning from Demon-
stration applied to human-aware navigation tasks. First, a LfD technique based
on Inverse Reinforcement Learning (IRL) is employed to learn a policy for ”so-
cial” local motion planning. Then, a novel learning algorithm combining LfD
concepts and sampling-based path planners is presented. Finally, other novel
approaches combining different LfD techniques, like deep learning among oth-
ers, and path planners are investigated. The methods proposed are compared
against state-of-the-art approaches and tested in various experiments with the
real robots employed in the European projects FROG and TERESA.
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Chapter 1

Introduction

”Roads? Where we’re going we don’t need roads.”
Back to the Future, 1985

1.1 Motivation

To endow robots with the capability of moving autonomously in a scenario is
a crucial field of research for the robotics community. A motion planner is in
charge of generating a trajectory that connects the initial robot configuration to
the goal configuration, and that can be traversed by the robot safely and without
collisions. Thus, proper motion planning is an essential tool for the autonomy
and automation of any mobile robot.

Mobile robotics in domestic and dynamic environments has gained a lot of
attention in the last few years. This increasing interest is motivated by the nu-
merous useful tasks that a robot could perform for humans in our daily lives. This
is called service robotics, where, from museum or exhibition guides to health-care
tasks or domestic assistance, the robots face an extraordinary challenge: they
have to share space with humans.

To successfully perform such tasks, robots must guarantee the safety of sur-
rounding humans besides respecting the ”social” conventions and preserve their
comfort while moving in the scene. This thesis is focused on human-aware
robot navigation, which is the research field that tackles the problem of robot
navigation in environments with humans (Kruse et al., 2013). An example of
such environment is shown in Fig. 1.1, where the robotic guide of the European
project FROG is dealing with the visitors in the Royal Alcazar of Seville, Spain.

The navigation of pedestrians in crowded environments seems to be natural
and effortless. Humans can predict the intent of others pedestrians and also to
reason about the reactions of others to their actions (Goffman, 1971). Thus,
they jointly adapt their movements at an early stage of an encounter, allowing

1
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Figure 1.1: Capture of the robotic guide of the European project FROG in the
Royal Alcazar of Seville, Spain.

smooth navigation to their destinations.
In these shared environments, the computation of navigation paths should

be not only safe but also socially acceptable. Inducing such socially normative
navigation behaviors into service robots is a problem not solved yet. This im-
plies some challenges in the field of human-aware robot navigation (Khambhaita,
2017):

• First, robots must sense the people and differentiate them from the rest
of obstacles in the scenario. Accurate detection and tracking of people
are required. The current systems fuse the data from different sensors to
estimate the person’s position, orientation, and velocity. Moreover, the
ability to predict short-term trajectories and mid-term destinations would
be desirable.

• Robots must act and comply with the social norms. A navigation scheme
has to capture the most pertinent criteria for calculating the costs or con-
straints that lead the robot to behave socially. However, determining the
valuable information involved in the tasks and the definition of the ap-
propriate costs and constraints is a key challenge. So, the study of the
human navigation behavior is required to acquire this knowledge. The
work developed in this thesis mainly addresses this issue.
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• Finally, robots must react quick regarding the continuous changes of the
dynamic scenarios and therefore, update their actions according to the new
situations. Fulfilling these real-time constraints requires to re-compute the
trajectories in a short time so that the robot behavior remains continuous
and smooth.

In a nutshell, the general motivation of this thesis is to provide service robots
with the capabilities that allow them to participate in such a natural and social
navigation behavior.

1.2 Research Problem and Objectives

To show a socially normative behavior in navigation for mobile robots is an
open field under intense investigation in the research community and even in the
industry. Many different approaches from different points of view and different
techniques have been applied to tackle the issue.

We face this research problem from the requirements of the European projects
FROG1 (Evers et al., 2014) and TERESA2 (Shiarlis et al., 2015). First, an out-
door robotic guide for crowded, touristy places, like the zoo of Lisbon and the
Royal Alcazar of Seville, was developed in the FROG project. This involved the
navigation in very challenging scenarios with different kind of obstacles and ter-
rains and very crowded situations. Later, a telepresence robot with autonomous
capabilities for elderly was built in TERESA. In this case, a quick social navi-
gation in home environments was necessary. Figure 1.2 shows captures of both
robots navigating among humans. In both cases, the development of robot nav-
igation systems with human-aware navigation skills was required.

The complexity of the human interactions that arise in navigation scenarios
is high. It involves several factors that are difficult to quantify together with
high variability in the execution of the tasks. Traditional methods for motion
planning that compute time-optimal paths to the goal are not able to commit the
different tasks of human-aware navigation. This problem was initially tackled
by including simple pre-programmed costs and constraints into motion planners
(Sisbot et al., 2007; Kirby et al., 2010). However hard-coded social behaviors
can barely capture a general social navigation behavior. Moreover, in many
implementations, like (Pacchierotti et al., 2006; Kirby et al., 2009), these costs
are grounded in Proxemics theory (Hall, 1966). However Proxemics is focused on
people interaction, and it could not be appropriate for navigating among people.

1https://www.frogrobot.eu/
2http://teresaproject.eu/

https://www.frogrobot.eu/
http://teresaproject.eu/
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Figure 1.2: Captures of the service robots developed in the European projects
FROG and TERESA. Left: FROG robot. Right: TERESA robot.

According to these observations, this thesis proposes to face the problem of
human-aware robot navigation from the point of view of Learning from Demon-
stration (LfD) (Argall et al., 2009). This idea comes from the difficulty of de-
termining the appropriate costs or constraints involved in social navigation and
also the fact that pedestrians move in efficient ways in very complex situations
with minimal effort. All in all, the socially compliant navigation behaviors are
more natural to demonstrate than mathematically defining them. So, a set of
examples of human experts performing the tasks can be used to try to capture
the underlying behavior that the expert is demonstrating. Therefore, LfD seems
an appropriate approach to learning these social behaviors and transfer them to
a robot navigation system.

We make use of LfD methods with the aim of developing novel approaches
applied to the problem of human-aware navigation of service robots. Thus, dif-
ferent LfD techniques are studied, extended and combined with other methods in
this thesis to enhance the navigation systems with human-awareness capabilities.
In particular, the approximations proposed to make use of techniques like Inverse
Reinforcement Learning (IRL) (Ng and Russell, 2000), Unsupervised Learning
based on Gaussian Mixtures Models (GMMs) (Calinon, 2009) and Supervised
Learning through Deep Networks (Goodfellow et al., 2016) in combination with
sampling-based path planners.

The most of the proposed learning methods make use of demonstrations in
static scenarios, in which dynamic features of the human movement are not taken
into account or the pedestrians are considered still. Then, this learned behavior
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is applied to real dynamic scenarios by re-planning at high frequency. However,
the methods are general enough, and the possible modifications and extensions
to learn from demonstrations with dynamic characteristics are discussed.

In summary, the complexity and variability of the human navigation interac-
tions makes the problem difficult to define and describe mathematically. Thus,
the primary objective of this thesis is to try to capture the underlying ”rules”
followed in navigation by observing examples of human navigation in crowded
environments, and then, transfer them to robot navigation systems. Therefore,
this thesis proposes a set of novel approaches based on Learning from Demon-
stration to tackle the problem of human-aware navigation for service robots.

1.3 Thesis Contributions

All in all, the main contribution is a set of novel methods that make use of dif-
ferent techniques of Learning from Demonstration, like IRL, GMMs, and FCNs,
combined with different motion planners to endow service robots with socially-
acceptable navigation behaviors. In particular, the main contributions can be
summarized as follows:

• The application of the Inverse Reinforcement Learning technique to learn
human-aware navigation behaviors and their integration into reactive mo-
tion planners for robot navigation.

• A novel combination of a Programming by Demonstration (PbD) tech-
nique, Gaussian Mixture Models (GMMs), with a sampling-based algo-
rithm, Optimal Rapidly-Exploring Random Trees (RRT∗), that is success-
fully applied to social navigation tasks like approaching a person or group
or avoiding people.

• Development of a new Inverse Reinforcement Learning algorithm that
learns the weights of a cost function employed by a sampling-based planner
(RRT∗) leading the planner to behave similarly to the expert demonstra-
tions. Experiments of social navigation confirm the ability to learn these
normative behaviors.

• A novel approach to learn human-aware path planning that makes use of
Fully Convolutional Networks (FCN) to learn from expert’s path demon-
strations and allows to overcome the problem of manually designing (or
identifying) the cost-map and relevant features for the task of robot navi-
gation.
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The contributions of this thesis are strongly linked to the work developed
in the European projects FROG and TERESA, as commented previously. As
a result, the methods developed in the thesis have been deployed in two robots
in two realistic scenarios for several weeks. Most of the techniques and software
developed is publicly available on the Github of the Service Robotics lab3. Also
the datasets collected during the experiments in such environments are available
for the research community4. Furthermore, the collaboration with other research
entities in the mentioned projects gave rise to two research stays:

• Framed in the European FROG project, the deployment and testing of
the navigation system with the real robot in real environments was devel-
oped as visiting researcher at the University of Twente, Netherlands, in
collaboration with the Human Media Interaction group (HMI) under the
supervision of Professor Vanessa Evers. The duration was one month and
six days split into two stages in January 2014 and May 2015.

• As part of the European TERESA project, collaborative research on ma-
chine learning techniques was conducted as visiting PhD student in the
research group of Intelligent Autonomous Systems (IAS), at the Informat-
ics Institute of the University of Amsterdam, Netherlands, for 3 months
(from January to April 2015), under the supervision of Dr. Simon White-
son.

These contributions have led to the following publications in journals, con-
ference proceedings, and workshop proceedings:

• (Ramón-Vigo et al., 2014). R. Ramón-Vigo, N. Pérez-Higueras, F. Ca-
ballero, and L. Merino. Transferring human navigation behaviors into a
robot local planner. In Proceedings of the IEEE International Symposium
on Robot and Human Interactive Communication, RO-MAN, 2014. doi:
10.1109/ROMAN.2014.6926347.

• (Pérez-Higueras et al., 2014). N. Pérez-Higueras, R. Ramón-Vigo, F. Ca-
ballero, and L. Merino. Robot local navigation with learned social cost
functions. In Proc. of the 11th International Conference on Informatics
in Control, Automation and Robotics, ICINCO, volume 02, pages 618-625,
2014.

3https://github.com/robotics-upo
4FROG datasets: http://robotics.upo.es/datasets/frog/upo/

TERESA datasets: http://robotics.upo.es/teresa/teresa-d43.html

https://github.com/robotics-upo
http://robotics.upo.es/datasets/frog/upo/
http://robotics.upo.es/teresa/teresa-d43.html
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• (Shiarlis et al., 2015). K. Shiarlis, J. Messias, M. van Someren, S. White-
son, J Kim, J Vroon, G. Englebienne, K. Truong, V. Evers, N. Pérez-
Higueras, I. Pérez-Hurtado, R. Ramon-Vigo, F. Caballero, L. Merino, J.
Shen, S. Petridis, M. Pantic, L. Hedman, M. Scherlund, R. Koster, and H.
Michel. Teresa: A socially intelligent semi-autonomous telepresence sys-
tem. In Workshop on Machine Learning for Social Robotics at the IEEE
International Conference on Robotics and Automation (ICRA), May 2015.

• (Ramón-Vigo et al., 2016). R. Ramón-Vigo, N. Pérez-Higueras, F. Ca-
ballero, and L. Merino. A framework for modelling local human-robot
interactions based on unsupervised learning. In International Conference
on Social Robotics, pages 32-41. Springer International Publishing, 2016.

• (Pérez-Higueras et al., 2016a). N. Pérez-Higueras, F. Caballero, and L.
Merino. Learning robot navigation behaviors by demonstration using a
RRT∗ planner. In International Conference on Social Robotics, pages 1-
10. Springer International Publishing, 2016a.

• (Pérez-Higueras et al., 2016b). N. Pérez-Higueras, R. Ramón-Vigo, Ig-
nacio Pérez-Hurtado, J. Capitán, F. Caballero, and L. Merino. A social
navigation system in telepresence robots for elderly. In Workshop Using
Social Robots to Improve the Quality of Life in the Elderly at International
Conference on Social Robotics, 2016b.

• (Pérez-Higueras et al., 2017). N. Pérez-Higueras, F. Caballero, and L.
Merino. Teaching Robot Navigation Behaviors to Optimal-RRT planners.
International Journal of Social Robotics, Nov 2017. ISSN 1875-4805. doi:
10.1007/s12369-017-0448-1.

• (Pérez-Higueras et al., 2018). Noé Pérez-Higueras, Fernando Caballero
and Luis Merino. Learning Human-Aware Path Planning with Fully Con-
volutional Networks. In IEEE International Conference on Robotics and
Automation (ICRA), Brisbane, Australia, May 2018. To appear.

1.4 Thesis Outline

The manuscript starts with a review of state of the art, in Chapter 2, about
human-aware robot navigation, pointing out first the classical methods for robot
navigation, and then the techniques and approaches in the literature employed
to tackle the problem of human-awareness navigation.

Then, Chapter 3 presents an approach based on Inverse Reinforcement
Learning (IRL) to learn from expert demonstrations a local control policy for
socially-acceptable robot motions.
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Chapter 4 presents the European project FROG, in which an outdoors
robotic guide for touristy, crowded places was developed. The method shown in
the previous chapter is employed here to extend a state-of-the-art local motion
planner for robot navigation by including a ”social” cost term. The experiments
performed with the robot in real controlled and uncontrolled scenarios are also
presented.

In Chapter 5, an unsupervised learning approach based on Gaussian Mix-
ture Models (GMMs) is employed to learn particular tasks of human-aware navi-
gation, like approaching a person to interact with. Then, these Gaussian models
are used to partially bias the sampling state space of a sampled-based path
planner to generalize the behavior and overcome the possible obstacles in the
scenarios.

Chapter 6 presents a novel learning algorithm that combines IRL concepts
and sampling-based planners, to learn the weights of a cost function that leads
the planner to behave similarly to the demonstrations provided.

In Chapter 7, the integration of the methods and techniques developed in
Chapters 5 and 6, among others, in the TERESA European project are presented.
They are applied to the navigation system of the real telepresence robot of the
project and the results and evaluations obtained in different experiments are
shown.

Chapter 8 proposes a novel learning method for human-aware path planning
based on Fully Convolutional Neural Networks (FCNs). With this approach, we
try to overcome some of the drawbacks encountered in the previous methods.

Finally, Chapter 9 presents the conclusions and the open issues to be ad-
dressed in future work.



Chapter 2

State of the Art

”Wax on, wax off.”
The Karate Kid, 1984

The focus of this thesis is robot navigation in spaces shared with humans.
To navigate, a robot needs algorithms to plan a path from its current position to
the goal in the scenario and compute the control commands that steer the robot
to that goal. These algorithms must take into account the surrounding obstacles
(static and dynamic) and, in case of human-aware navigation, the presence of
people, to calculate a feasible, safe path to the goal without hitting any obstacle.

In this chapter, we first introduce the problem of the human-aware navigation
for mobile robots. Then, we overview the classical motion planning methods to
finally review the techniques employed in the literature to extend the motion
planners to deal with the human-awareness issue.

2.1 Introduction to human-aware navigation

To endow robots with the capability of moving autonomously in a scenario is a
crucial field of research in robotics. First, the robot has to be able to localize its
configuration in the scenario and the configuration of the goal to reach; where we
express a configuration as the position and orientation of a point the configura-
tion space. Then, a motion planner is in charge of generating the trajectory that
connects the initial robot configuration to the goal configuration, and that can
be traversed by the robot safely and without collisions. So, proper motion plan-
ning is an essential tool for the autonomy and automation of any mobile robot.
The localization problem is not addressed in this thesis so that we focus on the
motion planning problem. Moreover, some human-aware navigation tasks may
not require global localization, like following a person or approaching a person
in the vicinity of the robot.

9
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The traditional robot navigation systems try to compute paths to the goal re-
garding performance criteria as path length and time efficiency (Latombe, 1991b;
Siciliano and Khatib, 2008). Therefore, they are may not be able to perform so-
cially acceptable navigation in spaces shared with humans. It is clear that they
have to treat people as agents different from obstacles and fulfill the requirements
associated with the social norms. That means the robot must respect the social
conventions and guarantee the safety and comfort of the surrounding people, be-
sides showing an intelligible behavior. That is the basis of correct human-robot
interaction in navigation (Kruse et al., 2013).

Many social robots for challenging applications in human environments have
arisen from the research community in the last years. From the pioneers tour
guides RHINO (Burgard et al., 1999) and its sister Minerva (Thrun et al., 1999)
to the Fun Robotic Outdoor Guide FROG (Evers et al., 2014) or the passenger
guide and assistant in airports SPENCER (Triebel et al., 2015). Or passing by
the pedestrian assistant Obelix (Kummerle et al., 2015), the shopping assistant
TOOMAS (Gross et al., 2009) or the museum guide Robotinho (Behnke et al.,
2009). Also the extensive deployment of real mobile robots in shopping malls in
Japan (Satake et al., 2013, 2015). Some captures of some of them can be seen
in Fig 2.1.

Even nowadays, we can find different commercial service robots acting as
hotel receptionist, robot bartender or client assistant among others. Some ex-
amples are the Softbank robot Pepper1, the Sandbot robots2, the Relay robot
of Savioke3 for hotels or the robotic bartender of MaccoRobotics4.

All of them have faced the social challenges to a greater or lesser extent.
Human-aware robot navigation is an intense field of research in the robotics
community so that several publications can be found in the literature. In the
following sections, we first present an overview of the different motion planning
techniques that are relevant to this topic. Then, we focus on the evolution
of these methods to include human-awareness skills in robot navigation. We
emphasize the Machine Learning methods and techniques successfully applied to
this problem and that are relevant to the work developed in this thesis.

2.2 Robot motion planning: an overview

Several methods and techniques have been successfully employed to generate the
shortest path (or the quickest solution) without collisions from the initial robot

1https://www.ald.softbankrobotics.com/en/robots/pepper
2http://en.sanbot.com/index.html
3http://www.savioke.com/
4https://www.maccorobotics.com/1

https://www.ald.softbankrobotics.com/en/robots/pepper
http://en.sanbot.com/index.html
http://www.savioke.com/
https://www.maccorobotics.com/1
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(a) Rhino robot. (b) Obelix robot.

(c) Toomas robot. (d) Spencer robot.

Figure 2.1: Captures of some successful service robots arisen from research
projects.
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position to a goal position in configuration space.

In dynamic scenarios, the initial motion plan needs to be frequently updated
to take into account the changes in the environment. In these conditions, the
planning process is sometimes divided into two stages: global path planning
and local motion planning (also known as obstacle avoidance or reactive motion
planning). In the first stage, a path to the long-term goal is calculated. Then, a
short-term plan, updated at high frequency, is employed to follow the long-term
path and deal with previously unknown dynamic obstacles. Finally, these short-
term trajectories are transformed to motion control commands that are sent to
the robot. The original long-term path can also be re-planned, usually with a
lower frequency than the local plan because of computational cost. Thus, a two-
layered architecture is employed in many robot navigation systems, as depicted
in Fig. 2.2. A further review of different approaches and concept definitions can
be found in (Kunchev et al., 2006; Gonzalez-Bautista et al., 2015).

In this section, we follow this general planning scheme, which is not the
only one possible, to describe the most widely-used methods and algorithms
employed robot motion planning. We emphasize the significant planners related
to the work developed in this thesis, and we indicate the requirements of the
different planners to be modified and employed in human-aware navigation.

2.2.1 Global path planning

The environment of the robot (a continuous configuration space) for planning a
path to the final goal can be represented in different ways. According to this
criteria, three general approaches can be considered: combinatorial planning,
sampling-based planning, and potential fields, as explained down below.

2.2.1.1 Combinatorial planning and graph search

Combinatorial planning discretizes the configuration space by explicitly captur-
ing the connectivity of the space into a graph. This graph can be represented as
2D grids, topological maps or other valid structures that capture the connectiv-
ity of the environment. Thus, the combinatorial planning techniques find a path
to the goal by producing a roadmap, which is a graph in which each vertex is a
valid point of the configuration space, and each edge is a collision-free path that
connects the different points through space.

Initial path planners considered the environment as a polygonal world where
only the position (no orientation) was taken into account in the configuration
space, and therefore no ”social” information was considered. In these condi-
tions, techniques like Visibility graphs (Lozano-Pérez and Wesley, 1979), Voronoi
Graphs (Bhattacharya and Gavrilova, 2007; Garrido et al., 2006) or Cell Decom-
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Figure 2.2: Two-layered navigation architecture.

position (Latombe, 1991a) were employed to decompose the space in simple
regions (or cells) based on geometric characteristics and then, find the path fol-
lowing the adjacent cells from the initial cell to the goal cell.

More standard practice for path planning is to create a graph, in particular,
a 2D occupancy grid, that separates traversable and non-traversable areas and
use informed search algorithms to find the sequence of states or actions (path)
that leads to the desired end state (goal).

The first search algorithm to find the shortest path in a graph was proposed
by Dijkstra (Dijkstra, 1959). The idea was to expand vertices regarding to the so
far unvisited neighbors iteratively. Later, the Dijkstra Algorithm was improved
by using heuristics to estimate the cost from the current vertex to the goal, and
thus, selecting in each step the vertex with the least estimated cost to the goal.
This algorithm is the well-known A∗ algorithm (Hart et al., 1968), which is one
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Figure 2.3: Example of path planning on a grid with the A∗ search algorithm
implemented in ROS (Robot Operating System) (Quigley et al., 2009).

of most widely-used algorithms for robot path planning. An example can be
seen in Fig. 2.3. The unvisited cells are shown in grey color, the obstacle cells in
black and the visited cells present different colors regarding their costs (distance
to the goal).

Several applications in mobile robotics have used A∗ as basis for improve-
ment, such as the dynamic A∗ (D∗) (Stentz, 1994), and D∗ Lite (Koenig and
Likhachev, 2002), that incrementally repair the path keeping local modifications
to avoid to replan the entire path in dynamic environments. A similar approach
for efficiently replan is Field D∗ (Ferguson and Stentz, 2005) that also allows in-
terpolation of costs of points not in the center of the grid cells. Another extension
of A∗ is Theta∗ (Nash et al., 2007) where the vertices can have non-neighboring
successors based on a line-of-sight test.

Graph search algorithms have some limitations. They require discretizing
the configuration space so that the performance and time efficiency of the algo-
rithm heavily depends on the granularity of the discretization. Moreover, the
representation of the problem in the configuration space becomes infeasible when
the complexity and dimensions increases, and an analytical solution may not be
possible.

To deal with human-awareness, the graph search algorithms need to asso-
ciate costs related to human presence in the space with the nodes of the graph.
Moreover, the graph would require being frequently updated to account for the
new dynamic situations, and these operations can increase even more the com-
putational cost.
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Figure 2.4: Example of real path planning with a RRT∗ algorithm employed
in the TERESA telepresence robot. The tree is shown in white color and the
resulting path in green color. The arrows represent the presence of two people
in the scene.

2.2.1.2 Sampling-based planning

Sampling-based algorithms are powerful and popular planners that overcome
some of the limitations of the graph search algorithms from a different point of
view. Instead of characterizing the obstacles and free points of the configura-
tion space and analytically finding collision-free connectivity, the configurations
are randomly sampled from the configuration space and a collision-detection al-
gorithm checks whether the sample is collision-free or not. Then, the sampled
collision-free configuration is added as a node of a structure like a roadmap or
a tree. A local planner is in charge of the connection between nodes in the
structure.

These algorithms scale better than graph-search algorithms with large state
spaces and high dimensionality. Moreover, the local planner employed to con-
nect the nodes can take into account the kinematic and dynamic of the robotic
platform, so these algorithms are easily extensible to handle these constraints.
However, they offer weaker guarantees of optimality of the solution. Two fami-
lies of sampling-based planners can be considered: the Probabilistic Road Maps
and the Rapidly-Exploring Random Trees.

On the one hand, the Probabilistic Road Maps (PRMs) (Kavraki et al., 1996)
are referred to as multi-query algorithms, as they first create a dense-enough
roadmap and then answer queries by computing the shortest path that connects
the initial node with the final node through the roadmap. On the other hand,
the Rapidly-Exploring Random Trees (RRTs) (Lavalle, 1998; Lavalle et al., 2000)
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are the single-query counterpart to PRMs. They make use of an incremental
sampling to connect nodes in a tree structure that avoids the necessity to set
the number of samples a priori. It also returns a solution as soon as the goal is
connected to the tree, thus enabling on-line implementations. The RRT planner
has been successfully employed in many robotic applications like (Cortés et al.,
2007; Zucker et al., 2007; Kuwata et al., 2009), among many others.

Particular interest for robot path planning has the Optimal-RRT (RRT∗)
and Optimal-PRM (PRM∗) algorithms (Karaman and Frazzoli, 2011). These
algorithms are the asymptotically optimal and computationally efficient versions
of their ”standard” counterparts. These algorithms connect the nodes according
to a defined cost function and continue refining the path after the initial solution
has been found. Therefore, the behavior of the planner is determined according
to the cost function employed, which is very interesting in problems like social
navigation. Figure 2.4 shows an example of real path planning with a RRT∗

path planner using a cost function that takes into account the people in the
scene (represented by arrows in the image), and thus, induces the path to keep
some distance from the people.

Several variations of these algorithms have been presented in the literature.
A combination of RRT and Theta∗ algorithms is presented in (Palmieri et al.,
2016) for fast planning in dynamic environments. In the same context, the C-
Forest algorithm (Otte and Correll, 2013) proposes to grow multiple search-trees
in parallel; or the RRTx algorithm (Otte and Frazzoli, 2015), which shows a sub-
tree repairing method for RRT algorithms. In other sense, an approximation of
RRT combined with stochastic optimization methods that use transition tests to
accept or to reject new potential states is showed in (Jaillet et al., 2008; Devaurs
et al., 2013). In (Gammell et al., 2014), a technique for reduction of the sampling
space based on the calculation of a prolate hyperspheroid for problems that seeks
to minimize the path length is described. Finally, a denominated Risk-RRT is
presented in (Fulgenzi et al., 2010), where a RRT planner is augmented with
the prediction of the short-term trajectory of dynamic obstacles coded trough
Gaussian processes (Tay and Laugier, 2007).

To be employed in human-aware navigation, the sampling-based planners
would require a way to bias the sampling process in favor of samples of the
configuration space ”interesting” for the social task. Moreover, in case of the
planners RRT∗ and PRM∗, The use of a user-defined cost function allows us
to induce more complex behavior to the planner, which can be appropriate for
human-aware navigation among other tasks. In this thesis, we mainly make use
of a RRT∗ planner. We explore its capabilities for human-aware path planning
combined with other techniques.



2.2. Robot motion planning: an overview 17

2.2.1.3 Potential fields

All the techniques discussed so far aim at capturing the connectivity of the
configuration space into a graph. Potential Field techniques follow a different
idea (Khatib, 1986; Koren and Borenstein, 1991). The robot, represented as a
point the configuration space, is modeled as a particle under the influence of an
artificial potential field. This potential field is composed by forces created by
the environment, where the goal is an attractive force for the particle, and the
obstacles are repulsive forces. The robot is then driven along the environment
by the resultant force of the sum of the different forces involved.

Related to that, we mention the Navigation Functions (Koditschek and Ri-
mon, 1990), which are a scalar-valued analytic map (similar to a potential field).
They are constructed on a simplification of the workspace into a sphere-world (a
compact connected subset of Euclidean n-space whose boundary is formed from
the disjoint union of a finite number of (n− 1)− spheres).

Some recent approaches are the work proposed by Arslan and Koditschek
(2016a,b), where a reactive navigation vector field for a metric sphere world is
constructed based on power diagrams (generalized Voronoi diagrams with addi-
tive weights (Aurenhammer, 1987)) to identify a collision-free convex neighbor-
hood of a robot configuration. Another example is (Loizou, 2017), in which the
workspace is transformed to a spherically bounded point world where a vector
field can be efficiently computed.

In general, this method is fast and computationally efficient. However, the
robot can get stuck in local minima, what makes it not recommendable for global
motion planning. To use it in global motion tasks, to create a local-minima-free
navigation function is necessary, and then perform gradient descent. Also, the
configuration space needs to be explicitly represented what can be very costly.
Therefore, this technique is adequate for local motion planning in general.

Finally, with the aim of adapting this technique to human-aware navigation,
new forces related to the pedestrians in the vicinity of the robot could be added,
as will be commented in Section 2.3.1.2.

2.2.2 Local motion planning

In highly dynamic environments, where the path planner does not takes into
account the shape and the kinematic and dynamics of the robotic platform and
a new path cannot be calculated at the required frequency for safe collision
avoidance, the reactive motion planners (also known as local motion planners)
become necessary.

These local planners are in charge of planning possible collision-free trajecto-
ries as fast as possible by accounting for the shape and kinematic constraints of
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the vehicle. Several obstacle avoidance methods are proposed in the literature.
The most extended approaches are summarized here.

• Dynamic Window Approach (DWA). Probably one of the most used
and well-known local planners is the DWA (Fox et al., 1997; Brock and
Khatib, 1999), as it is implemented as a default local planner in the
move base framework for robot navigation of ROS (Robot Operating Sys-
tem)5. ROS is the set of software libraries and tools for building robot
applications most used in the robotics community. DWA runs by choos-
ing a velocity (linear and angular) from a set of velocities that maximizes
certain objective function in a dynamic temporal window where the robot
trajectory is simulated. The objective function accounts for distance to
the goal, distance to the obstacles and distance to the path that is trying
to follow. This way, DWA can generate smooth collision-free trajectories.

Very similar to DWA is the Trajectory Rollout approach (Gerkey and
Konolige, 2008), which is also implemented in the default navigation sys-
tem of ROS. These algorithms only differ in how the robot’s control space
is sampled. Trajectory Rollout algorithm searches in the space of possi-
ble controls instead of searching the space of feasible trajectories. This
means that DWA is a more efficient algorithm because it samples a smaller
space, but maybe outperformed by Trajectory Rollout for robots with low
acceleration limits because DWA does not forward simulate constant ac-
celerations.

• Potential fields. Another approach employed as local motion planner
is the potential fields, as commented in section 2.2.2. Some examples of
robotic applications can be found in (Khatib, 1986; Brooks, 1986; Boren-
stein and Koren, 1991).

• Elastic band. In (Quinlan and Khatib, 1993; Khatib et al., 1997) a de-
nominated ”elastic band” approach is developed. The local planner com-
putes an elastic band within a local area. The idea is to represent the
path as a series of ”bubbles” that feel repulsive forces from obstacles. This
process in turn elastically modifies the robot path to balance the repulsive
force of the obstacle and internal contraction force of the bubble-band.
These bubbles are added or removed to keep the whole path fully covered
by overlapping bubbles. Various heuristics are used to connect the center
points of the bubbles and determine the distance to obstacles. A more re-
cent approach (Rosmann et al., 2013, 2015) augments the elastic band with
a series of time-difference values between each successive poses, instead of

5http://www.ros.org/

http://www.ros.org/
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a purely geometric path. This allows the band to be also deformed in time,
that means to vary the robot velocity between two consecutive poses.

• Velocity Obstacles algorithm (VO). Finally, a different approach is the
family of the VO algorithms, originally presented in (Fiorini and Shiller,
1993, 1998). Instead of computing possible collisions based on positions
as functions of time, they use velocity information. This consists of se-
lecting avoidance maneuvers to avoid static and moving obstacles in the
velocity space, based on the current positions and velocities of the robot
and obstacles. Thus, the avoidance maneuvers are generated by selecting
robot velocities outside of the Velocity Obstacles, which represent the set
of robot velocities that would result in a collision with a given obstacle
that moves at a given velocity, at some future time.

These local motion planners can also be extended/modified to include some
”social” constraints. Some of the approaches proposed in the literature will be
explained in the following section.

2.3 Human-aware navigation approaches

As previously commented, the classical motion planning methods need to be ex-
tended and combined with other techniques to achieve socially-acceptable robot
navigation in spaces shared with humans.

Hereafter, we distinguish the work on human-aware navigation in the liter-
ature between different points of view. On the one hand, we summarize the
approximations that manually design and code human-awareness behaviors into
the robot navigation systems. On the other hand, we review the approximations
that make use of techniques of Machine Learning, as Reinforcement Learning and
Learning from Demonstration, to try to capture the socially normative behaviors
and transfer them to the motion planners commented.

2.3.1 Hand-crafted social navigation

The objective of these approaches is to induce some socially-acceptable behavior
by hard-coding functions into the motion planners. These functions are usually
based on easily-measurable variables like distances to the near pedestrians, ori-
entations, and velocities. This way, the robot is forced, for instance, to keep
a predefined distance to pedestrians or to use a determined range of speeds in
particular situations.

Several and different approaches to tackle this problem by hard-coding func-
tions into the motion planners have been proposed in the literature. Here, we
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try to classify some of these relevant approaches in groups that have used similar
techniques or ideas to face this issue.

2.3.1.1 Proxemics

Many navigation systems include social components based on the Proxemics
theory of Hall (1966). This approach classifies the distances that people keep
between them in different personal areas of interaction depending on the rela-
tionship and intention.

Figure 2.5 shows an illustration of these areas. In general terms, the inti-
mate distance (distance shorter than 0.45 m) is reserved for interactions like
embracing, touching or whispering. The personal distance (0.45 − 1.2 m) is
usually employed by friends. The social distance (1.2 − 3.6 m) is reserved for
acquaintances and strangers. Finally, the public distance (> 3.6 m) is used for
public speaking. Thus, the robots calculate their paths and movements based on
the distances to near people, and, in general, trying not to invade the intimate
spatial area of them.

Some examples of such social navigation systems based on Proxemics can be
found in (Kirby et al., 2009; Barnaud et al., 2014; Mead and Matarić, 2016).
Another example is (Truong and Ngo, 2016), where the formation of groups of
people is also taken into account. A study of the formation of the different
groups, called F-formations, in robotics applications can be found in (Cristani
et al., 2011; Setti et al., 2015). In (Rios-Martinez et al., 2011; Spalanzani et al.,
2012), the Risk-RRT approach is augmented with the concept of disturbance
risk also based on Proxemics and F-formations of groups of people. However, the
Proxemics theory is focused on people interaction, and it could not be suitable
for navigation in crowded places, as shown in (Luber et al., 2012).

2.3.1.2 Social forces

The potential fields technique, as a reactive motion planner, have also been mod-
ified to include social skills. Helbing and Molnár (1995) employed this method
to derive to the technique known as Social Forces Model (SFM). Besides the
attractive force of the goal and the repulsive forces from the obstacles, the idea
for social navigation is to include new repulsive forces between the robot and the
people around based on distances and velocities. The aim is to obtain a resultant
force that leads the robot to keep a comfortable distance to the people while still
showing a desire to reach the goal.

An extended version of the social forces model is used in (Ferrer and Sanfe-
liu, 2014) for kinodynamic planning in urban environments. An illustration of
the Extended Social Forces Models can be seen in Fig. 2.6, in which the differ-
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Figure 2.5: Illustration of the spaces for human interaction defined by Hall
(1966). Image taken from Wikipedia.

ent repulsive and attractive forces are indicated with arrows. This model is also
employed in (Ferrer et al., 2016, 2013) for the task of accompanying people walk-
ing side by side by including attractive forces to the person to be accompanied.
Moreover, SFM has been successfully employed in simulators of highly-populated
pedestrian environments too. However, the local forces are prone to lead to lo-
cal minima and present difficulties to navigate narrow passages, as indicated in
(Koren and Borenstein, 1991).

2.3.1.3 VO algorithms

Furthermore, some approaches have extended the Velocity Obstacles algorithm
(VO) (Fiorini and Shiller, 1993), to deal with dynamic obstacles as pedestrians.
In (Kluge and Prassler, 2004), a probabilistic variant of the VO algorithm (PVO)
is developed to deal with uncertainty in the position predictions and measure-
ments. Moreover, the concept of reflective navigation is presented as the idea
that the mobile platform should reflect on the intentions of other dynamic agents
to improve its navigation. Another extension, called Reciprocal Velocity Obsta-
cles (RVO), is shown in (van den Berg et al., 2009). The main idea is to model
the navigation as a collaborative task. There, the mutual evasion maneuvers of
two agents are considered. So, both agents compute the RVO regarding the other
agent producing collision-free motions. These techniques are mainly employed
in multi-robot systems to avoid collisions. However, the RVO concept can be
employed to model the behavior of groups of pedestrians. This latter is done in
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Figure 2.6: Illustration of the extended Social Forces Model. The repulsive forces
are provoked by the people (fp1, fp2) and the obstacles (fobs) are indicated with
red arrows. the attractive force to the goal is showed with a green arrow (fgoal).
The final resultant force is indicated with a blue arrow (Fr).

(Kim et al., 2015), in which an online method to predict pedestrian trajectories
for improved human-robot interaction and collision-free navigation is presented.
Ensemble Kalman Filtering is applied to estimate the parameters for the human
motion model based on RVO in a crowded scene that optimally matches the data
observed thus far. Then, using these RVO parameters adaptively computed, the
crowd motion can be simulated to estimate the future trajectory of all individuals
in the scene and estimate factors, such as their current goal.

2.3.1.4 Heuristics and other approaches

Other authors have manually derived functions for social behaviors as a collabo-
rative task based on distances and approaching angles that have been hard-coded
into motion planners. For instance, a heuristic for avoiding people is obtained
in (Guzzi et al., 2013), or simple reasoning in crossing and overtaking situations
is included in (Zanlungo et al., 2012). Another example is the work proposed by
Khambhaita and Alami (2017a,b), in which a timed elastic band local controller
is extended with social constraints based on Proxemics, time-to-collision and
movement directions. The aim is to balance and tune the efforts between the
human and the robot to solve a co-navigation task. In this sense, a probabilistic
predictive model of cooperative collision avoidance and goal-oriented behavior
is developed in (Trautman et al., 2015; Trautman, 2015) to tackle the ”freezing
robot” problem in very crowded environments.

A more sophisticated approach is the use of decision-making techniques. For
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instance, a multi-policy Decision-Making approach is employed in (Mehta et al.,
2016) to select among three pre-defined behaviors for social navigation. An-
other example that combines different techniques is (Ferrer and Sanfeliu, 2015),
where a multi-objective cost-to-go function for a kinodynamic RRT planner is
presented. This cost function also includes sub-costs related to social forces.
Another different approach is followed in (Turnwald et al., 2016) where non-
cooperative game theory is applied to formulate the problem of predicting the
decisions of multiple humans that interact which each other during navigation
and avoidance maneuvers.

Besides that, other works are based on observation of people moving in con-
trolled experiments to extract conclusions that can be transferred into a robot.
For instance, a crossing situation between two people is considered in (Pac-
chierotti et al., 2006) to perform a user study of passing distance in a corridor.
A similar situation is evaluated in (Kruse et al., 2012) to extract the changes
in the pedestrians’ velocities to extend the HANP planner for social navigation
employed in (Sisbot et al., 2007). Another interesting approach is presented in
(Stein et al., 2013, 2014), where the human-aware navigation in very populated
environments is accomplished by a probabilistic approach for selecting a human
leader to follow, according to the robot’s desired destination. In this way, the
robot can take advantage of the humans’ paths and behavior.

2.3.2 Reinforcement Learning

An interesting Machine Learning technique in robotics is Reinforcement Learning
(RL), in which the problem or task is framed as a Markov Decision Process
(MDP). Then, a policy (a map from the state of the system to the action to
perform) is learned through trial-and-error interactions with its environment.
Instead of explicitly detailing the solution to a problem, in RL the designer of
a control task provides feedback regarding a scalar objective function (reward
function) that measures the one-step performance of the robot. A complete
review of RL techniques can be found in (Kober et al., 2013).

RL techniques has been extensively applied to robotic manipulation tasks
but not very employed in robotic navigation. In (Hester et al., 2010), RL is
employed with humanoid robots for the task of soccer penalty kick. A navigation
task with obstacle avoidance is considered in (Smart, 2002); or the control of
autonomous vehicle is tackled in (Hester et al., 2011). Basic navigation tasks
combined with neural networks are learnt in (Thrun, 1995) and (Duan et al.,
2008). More recently, a deep reinforcement learning approach for human-aware
collision avoidance is presented in (Chen et al., 2017b,a), where a value function
represented by a deep network is learned to implicitly encode cooperative and
socially aware behaviors in a RL framework.
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The RL framework presents some drawbacks when is applied to the human-
aware navigation task. First, the use of discrete MDPs shows the difficulty of
solving the MDP at each learning step in large state spaces and high dimensional-
ity, which leads to high computational complexity. This limits the applicability
of most of these approaches to small states spaces. Secondly and more rele-
vant, the social navigation behavior is too general and complicated, so a reward
function for such task is not easy to determine. The manually-designed reward
functions may only capture some simple navigation situations leading to not very
complex and human-like navigation behavior. For that reasons, RL is more used
in more concrete and well-defined tasks where the design of the reward function
remains simple.

2.3.3 Learning from Demonstrations

All the previous methods and techniques described so far try to code some
socially-compliant behaviors into manually-designed heuristics or cost (or re-
ward) functions that can be added to the path planners or reactive planners
to fulfill the human-aware navigation issue. However, human-aware navigation
implies social rules difficult to quantify and many variations in the execution
of them. Thus, the manual design of such cost functions becomes hard. All in
all, it is easier to demonstrate socially acceptable behaviors than mathematically
defining them.

A different approach to overcome these issues is Learning from Demonstration
(LfD). Within LfD, the translation from world states to actions (this mapping
is called policy), is learned from examples, or demonstrations, provided by an
expert performing the task to be learned. These examples are defined as a
set of sequences of state-action pairs and are employed to derive a policy that
reproduces the demonstrated behavior (Argall et al., 2009). This approach is
in contrast to other techniques like Reinforcement Learning, where the policy
is learned from experience and exploration of the environment. Therefore, LfD
seems to be an appropriate technique for tackling the human-aware navigation
problem.

LfD encompasses different techniques and methods. A review of various
general LfD methods can be found in (Billard et al., 2008; Calinon, 2009). Here
we present some social navigation approaches based on LfD according to their
classification in other families of machine learning techniques like supervised
learning and unsupervised learning. We also pay special attention to a particular
supervised-learning method very employed in robot navigation, such as Inverse
Reinforcement Learning.
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2.3.3.1 Unsupervised Learning

The goal of this family of machine learning methods is to infer a function to
describe a hidden structure from ”unlabeled” data. This means that the avail-
able observations for learning do not include any classification or categorization.
Therefore, the accuracy of the output structure of the algorithms cannot be
evaluated.

Prediction of the human motion is a useful insight that can be employed in
robot social navigation. This issue has been addressed in an unsupervised learn-
ing fashion. Bennewitz (2004) and Bennewitz et al. (2005) describe how to learn
a set of motion patterns for a given map of an environment from observations of
human motion, using the Expectation-Maximization Algorithm.

Another example is (Luber et al., 2012), in which a set of dynamic motion
prototypes is learned from observations of relative motion behavior of humans
found in publicly available surveillance data sets. The learned motion prototypes
are then used to compute dynamic cost maps for path planning using an any-
angle A∗ algorithm. Also (Growing) Hidden Markov Models are employed by
Vasquez et al. (2009) to learn motion patterns incrementally and, at the same
time, it uses its current knowledge to predict human motion.

Other approximations are the LfD methods based on Gaussian Mixture Mod-
els (GMMs). GMMs have been successfully applied in robotic manipulators
(Calinon et al., 2007). They are also employed in the Cross-Entropy method for
motion planning proposed by Kobilarov (2011, 2012). There, GMMs are em-
ployed to encode multiple trajectories across multiple homotopies classes that
reach the goal. Then, these learned density distributions are employed to bias
the sampling process or a sampling-based planner algorithm to reduce the sam-
pling space to interesting areas for reaching the optimal trajectory to the goal.
This approach does not include social navigation components, though some so-
cial behavior could be induced if the trajectories employed to be encoded through
GMMs were socially-acceptable paths. We explored this idea in (Ramón-Vigo
et al., 2016), in which social navigation tasks are encoded through GMMs, as
explained in Chapter 5.

2.3.3.2 Supervised Learning

Supervised learning is a general method for training a parametrized function
approximator. This method requires training samples of input-output pairs from
the function to be learned. The output of the algorithms is compared against
the corresponding demonstrated output to iteratively refine the parameters of
the function being approximated.

Inferring the pedestrians’ movement has also been addressed from the point
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of view of supervised learning. In several cases, Gaussian Processes (GPs) are
employed for that (Rasmussen and Williams, 2006a). An example is (Wang et al.,
2008) in which the pedestrians’ movement is inferred from observed movements
using Gaussian Processes. This method was extended for intention inference in
human-robot interactions (Wang et al., 2013). This latter was not employed
in human-aware navigation, but the method is general. Another example is
(Trautman et al., 2015), where human demonstrations are employed to code
into Gaussian Processes a cooperative navigation behavior to face the problem
of robot navigation in very crowded environments.

Other techniques like neural networks have also been applied to tackle some
human-aware navigation tasks. In (Shiarlis et al., 2017b), the authors employ
a deep learning approach to directly infer a control policy for cloning social
behaviors from demonstration. That is, the demonstrated actions are treated
as labels for the corresponding observations, and a mapping from observations
to actions is learned. They employ this method to learn two social behaviors:
first, keeping a correct position and orientation while interacting with a group
of people of dynamic size and position, and second, following two people as their
relative positions change.

We also explore a supervised learning approach based on deep learning for
human-aware path planning (Pérez-Higueras et al., 2018). This technique is
presented in Chapter 8.

2.3.3.3 Inverse Reinforcement Learning

One successful technique applied to robot navigation tasks is Inverse Reinforce-
ment Learning (IRL) (Ng and Russell, 2000): the observations of an expert
demonstrating the task are used to recover the reward (or cost) function the
demonstrator was attempting to maximize (minimize). Then, the reward can
be used to obtain a similar robot policy. An interesting characteristic of IRL
techniques is that they try to learn the underlying behavior that the demonstra-
tor is showing, and therefore, they allow to generalize to different scenarios or
situations where to perform the learned task. Furthermore, the learned reward
functions can be transferred to different planners.

On the one hand, most of the IRL approaches frame the problem as a Markov
Decision Process (MDP), just like Reinforcement Learning approaches. So IRL
also faces the same issues of MDPs: poor scalability with large state spaces (and
typically continuous spaces) and high dimensionality. On the other hand, the
IRL goal is to learn the reward function of the MDP. Thus, it frees the designer
of manually tuning the parameters of this function, what is very pertinent for
socially compliant navigation.

The IRL problem has been tackled from different points of view in the litera-
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ture. The projection method proposed by Abbeel and Ng (2004) was followed by
other well-known approximations. A probabilistic method based on the principle
of maximum entropy is presented in (Ziebart et al., 2008), or a maximum margin
structured prediction based on subgradients is employed in (Ratliff et al., 2006,
2009). In (Ramachandran and Amir, 2007), a Bayesian perspective is taken to
solve the problem.

Furthermore, learning robot navigation tasks from an IRL perspective has
been considered by several authors. In (Vasquez et al., 2014) an experimental
comparison of different IRL approaches is presented. In (Henry et al., 2010),
IRL is employed in a path planning task in crowded environment. In (Kim and
Pineau, 2016), the densities and velocities of pedestrians observed via RGB-D
sensors are used as features in a reward function learned from demonstrations
via IRL techniques for local robot path planning. Also in (Herman et al., 2015),
different levels of social acceptability of the navigation behaviors are learned by
using IRL. Then, the proper level of social behavior is selected under constraints
on expected time-limits and reliabilities.

Moreover, different solutions have been considered to deal with the main
MDP drawbacks. The computational cost is managed in (Michini et al., 2013)
by using a Bayesian nonparametric mixture model to divide the observations
and obtain a group of simpler reward functions to learn. In (Levine and Koltun,
2012), deterministic MDPs with large, continuous state and action spaces are
handled by considering only the shape of the learned reward function in the
neighborhood of the experts demonstrations. Furthermore, the power of deep
neural networks as function approximators is applied by Xia and Kamel (2016) to
learn non-linear policies. Also, the well-known Maximum Entropy IRL (Ziebart
et al., 2008) algorithm is extended by Wulfmeier et al. (2015) to use deep net-
works, and its application to path planning in urban environments is presented
in Wulfmeier et al. (2016).

Others authors tried to use different representations instead of MDPs. In
(Ratliff et al., 2006), the MDP can be replaced by an A∗ search algorithm. A
graph-based approximation is employed in (Okal and Arras, 2016a) to represent
the underlying MDP in a socially normative robot navigation behavior task.
Another example is (Kuderer et al., 2015) where IRL is used to learn different
driving styles for autonomous vehicles using time-continuous splines for trajec-
tory representation. In (Kretzschmar et al., 2016) the cooperative navigation
behavior of humans is learned regarding mixture distributions using Hamilto-
nian Markov chain Monte Carlo sampling.

In this thesis, the IRL technique is employed to learn socially compliant
navigation behaviors that can be transferred to different motion planners. This
method is explored and combined with other techniques as explained in Chapters
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3 and 6.



Chapter 3

Transferring human navigation behaviors
into a robot local planner

”You’re gonna need a bigger boat.”
Jaws, 1975

We face the general problem of endow mobile robots with socially-acceptable
navigation behaviors in spaces shared with people. So, in this chapter, a first
approach to Learning from Demonstration a ”social” control policy for a mobile
robot is presented.

The approach makes use of an Inverse Reinforcement Learning technique
based on a discrete Markov Decision Process (MDP) to learn a local reactive
planner that leads the robot to show a socially normative behavior.

Two publicly-available datasets of person motion in different scenarios are
employed here to learn the cost functions. Furthermore, we propose different sim-
ple sets of features for capturing in the MDP models a correct socially compliant
behavior. Finally, we analyze and compare these approaches with a Proxemics-
based cost function and comment the limitations of the approach.

3.1 Introduction

Classical path planners will not solve the social navigation problem, as plan-
ners try to minimize time or length, which does not translate to social paths
in general. This requires determining costs related to social compliance. More-
over, the benefits of human motion go beyond collision avoidance approaches.
It provides cues about the intentions of the subjects that can be used to decide
when and where to move. Learning and imitating motion behaviors of people
can also bring benefits regarding navigation efficiency for the robot. Besides
that, the robot’s motion can become more predictable, improving acceptance by
pedestrians (Kruse et al., 2012).

29
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Thus, we take an approach of Learning from Demonstration (Argall et al.,
2009), in which we can learn these costs and models from human motion data.
This approach is appropriate in problems that are complex to describe mathe-
matically, like human-aware navigation, and therefore are easier to demonstrate.

An example is (Kretzschmar et al., 2013), in which the behavior of pedes-
trians is learned from observed trajectories composed of observations of pedes-
trians and also trajectories obtained by teleoperating the robot. One way to
implement learning from demonstrations successfully is through Inverse Rein-
forcement Learning (IRL) (Ng and Russell, 2000). The observations of an expert
demonstrating the task that we want to learn to perform, are used to recover
what reward (or cost) function the demonstrator was attempting to maximize.
Then, the reward can be used to obtain a corresponding robot policy.

Many different general IRL algorithms have been proposed in the literature
by tackling the problem from different points of view, as we reviewed in Chap-
ter 2. The initial projection method proposed by Abbeel and Ng (2004), the
probabilistic method proposed by Ziebart et al. (2008) based on the principle of
Maximum Entropy, or the approach presented in (Levine et al., 2011), in which
Gaussian Processes are employed to represent reward function instead of a linear
combination of a set of features.

An interesting approach applied to human-aware navigation is (Henry et al.,
2010). There, the authors present a path planner where they employ IRL to learn
typical social behaviors from exemplary human trajectories moving in crowd
environments. However, while in (Henry et al., 2010) the costs are used to path
plans, here we employ these techniques to learn a local reactive planner. This
is a control policy that maps from states to robot motion commands (linear
and angular velocities), thus providing direct control of the robot. This can be
combined with other planning techniques at higher levels while alleviating the
complexity associated with learning.

In this chapter, we present an IRL approach, in particular, the Gaussian Pro-
cess Inverse Reinforcement Learning (GPIRL) approach (Levine et al., 2011), to
learn a reactive motion planner that leads the robot to have a socially normative
behavior. A thorough analysis of the learning procedure is described, as well as
the data used for learning. Two datasets of person motion in different scenarios
are employed here to learn the cost functions. We study the generalization of
the obtained reward functions by comparing the motion behavior learned from
one scenario when applied in the other one. We also explore if the combination
of the two training sets improves the general behavior. Furthermore, we propose
an MDP model with a simple set of features on which the reward function is
depending on. Then, we augment the proposed model adding high-level features
based on person densities in different regions around the robot. Finally, we ana-
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lyze and compare these approaches with a Proxemics-based cost function (Hall,
1966).

3.2 Inverse Reinforcement Learning

The Inverse Reinforcement Learning problem deals with finding a reward func-
tion that can explain observed behavior. This function is represented, in many
cases, as a weighted linear combination of terms or features defining the task.
The motivation of this is twofold: in many problems (like human-aware naviga-
tion) it is hard to determine the relative weights of the terms involved in a correct
reward function a priori. Moreover, the field is founded on the presupposition
that the reward function, rather than the policy, is the most succinct, robust
and transferable definition of the task (Abbeel and Ng, 2004). Hence, it seems
likely that IRL may, in some domains, provide an effective form of apprenticeship
learning (Ng and Russell, 2000).

In this section, we introduce the notation and definitions of the MDP-based
IRL methods, and the particularities of the two IRL approaches employed here.
First, the Maximum Entropy IRL approach, and second, the Gaussian Process
IRL which is an extension of the former approach.

3.2.1 MDP-based IRL

IRL assumes that the behavior of expert in the environment from which we
want to learn can be modeled by a Markov Decision Process (MDP). Formally,
a (discrete) MDP is defined by the tuple 〈S,A, T,R,D, γ〉:

• The state space S is the finite set of possible states s ∈ S;

• The action space A is defined as the finite set of possible actions a ∈ A.

• the state transition function T , which indicates how the state evolves when
executing action a, and that is modelled by the conditional probability
function T (s′, a, s) = p(s′|a, s).

• R(s, a), the reward obtained for executing action a at state s.

At every step, an action is taken and a reward is given (or cost is incurred). A
function a = π(s) that maps a state to an action is called a policy (or controller).
To each policy, it can be associated a value Vπ, the expected cumulative reward
following that policy for D steps, E[

∑D
t=0 γ

tR(s, a)|π]. The value function can
be expressed in recursive form as:
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Figure 3.1: General diagram of Inverse Reinforcement Learning.

Vπ(s) = R(s, π(s)) + γ
∑
s′∈S

p(s′|s, π(s))Vπ(s′) (3.1)

Associated to the value function is also the Qπ(s, a) function for each action
a:

Qπ(s, a) = R(s, a) + γ
∑
s′∈S

p(s′|s, a)Vπ(s′) (3.2)

To ensure that the sum is finite when D → ∞, rewards are weighted by a
discount factor γ ∈ [0, 1)

A policy π∗ that maximizes the value V ∗ is called an optimal policy. The
optimal value function is the fixed point of the recursion:

V ∗(s) = max
a∈A

[
R(s, a) + γ

∑
s′∈S

p(s′|s, a)V ∗(s′)

]
(3.3)

and the optimal policy is thus:

π∗ = arg max
a∈A

[
R(s, a) + γ

∑
s′∈S

p(s′|s, a)Vπ∗(s
′)

]
(3.4)

The optimal value function is also related to the optimal Q∗ function as
V ∗(s, a) = maxaQ

∗(s, a).
The objective of IRL is to determine the reward function R(s, a) that the

expert is following by observing the expert acting in the real world (demon-
strations), and assuming that the expert is executing an (unknown) policy π
according to the given MDP. In many cases, the reward function can be assumed
to depend on a set of features θ(s), which are functions of the state. A general
diagram of the IRL technique can be observed in Fig. 3.1.
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Once the MDP model is defined, and given a set of examples in the form of
expert demonstrations, D = {ζ1, · · · , ζN}, where each demonstration consists of
a path of state-action pairs ζi = {si,t, ai,t}Tt=0, the IRL objective is to recover the
unknown reward function R(s, a).

3.2.2 Maximum Entropy Inverse Reinforcement Learning

This IRL approach uses a probabilistic model of the expert’s behavior based on
the principle of Maximum Entropy (Ziebart et al., 2008). The key considera-
tion is that the demonstrated behavior is prone to noise and imperfect (human
demonstrations are often suboptimal), so this uncertainty needs to be taken
into account. This consideration fits perfectly in our problem of human-aware
navigation, in which the set of human demonstrations are suboptimal.

Instead of assuming that the examples are sampled from the optimal policy
π∗, this model considers that the probability of an expert path ζi (the sequence
of states and actions visited) is proportional to the exponential of the differences
of the rewards encountered along the path with respect to the optimally expected
reward (the value V ∗). Thus, maximizing the entropy of the distribution implies
we maximize the likelihood of the observed data under the maximum entropy
distribution (exponential family). Under this model, the paths with equivalent
rewards have equal probabilities, and the paths with higher rewards are expo-
nentially more preferred. Thus, given a reward function R, and denoting by Q∗R

and V ∗R the optimal Q and value functions for this particular reward R:

p(ai,t|si,t, R) ∝ exp[Q∗R(si,t, ai,t)− V ∗R(si,t)] (3.5)

The probability for a episode is then:

p(ζi|R) =

T∏
t=0

p(ai,t|si,t, R) (3.6)

and for the full demonstration

p(D|R) =
N∏
i=1

T∏
t=0

p(ai,t|si,t, R) (3.7)

Thus, the log-likelihood for the full demonstration is given by:

log p(D|R) =

N∑
i=1

T∑
t=0

[
Q∗R(si,t, ai,t)− V ∗R(si,t)

]
(3.8)
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Gradient-based optimization can be applied to obtain the optima of the func-
tion. Thus, this log-likelihood can be differentiated to obtain the reward R that
maximizes it.

This approach will also be employed as the basis in the development of the
learning algorithm presented in Chapter 6.

3.2.3 Gaussian Process Inverse Reinforcement Learning

We consider the algorithm Gaussian Process IRL (GPIRL) (Levine et al., 2011)
for solving the IRL problem. It employs the maximum entropy IRL model,
described in the previous section, as the model for the demonstrations. And
it extends that model by applying Gaussian Processes (GP) (Rasmussen and
Williams, 2006b) to learn a non-linear reward function over the feature space
f(s).

Many IRL approaches represent the reward function R as a weighted linear
combination of a set of provided features f describing the task, R(s) = ωT f(s)
(Abbeel and Ng, 2004; Ziebart et al., 2008; Ramachandran and Amir, 2007). In
contrast, GPIRL makes use of Gaussian Process models to learn the reward as
a highly non-linear function of features values that capture the demonstrated
behavior.

A Gaussian process is a particular kind of statistical model where obser-
vations occur in a continuous domain, such as time or space and provides an
alternative approach to regression problems. It is a non-parametric approach, in
that it finds a distribution over the possible functions that are consistent with
the observed data. As with all Bayesian methods it begins with a prior distri-
bution and updates this as data points are observed, producing the posterior
distribution over functions.

GPs are used to introduce some structure into the reward R, which can now
be expressed as a non-linear function of features. The structure of this function is
determined now by its kernel function; whose learned hyperparameters θ include
the relevance of each feature besides capturing the structure of the reward.

The algorithm directly learns the output u of the induction points of the
GP, which represent the rewards associated with feature coordinates Xu (these
coordinates may simply be the feature values of all states or a subset of them).
Then, the most likely values of u and the kernel hyperparameters θ are computed
by maximizing their probability under the expert’s demonstrations D:
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P (u, θ|D, Xu) ∝ P (D, u, θ|Xu) = (3.9)∫
R
P (D|R)︸ ︷︷ ︸
IRL term

P (R|u, θ,Xu)︸ ︷︷ ︸
GP posterior

dR

 P (u, θ|Xu)︸ ︷︷ ︸
GP probability

(3.10)

where the IRL term corresponds to the one expressed in (3.8), the GP posterior
is the probability of a reward function under the current values of u and θ, and
GP probability is the prior probability of a particular assignment to u and θ.
Further details of the GP regression performed can be found at (Levine et al.,
2011).

3.3 Learning a social cost function

This section describes the cost functions devised to model the navigation task.
In particular, we are interested in learning a socially normative behavior in nav-
igation in spaces shared with humans. This means that the robot should cross
and avoid people in a socially-acceptable manner while navigating to its final
goal in the space.

The most relevant aspect of the approach is to define the MDP model, and, in
particular, the state and the features on which the reward function is depending
on. This constitutes the central hypothesis considered here.

Small state space and a small set of features are considered here to keep the
MDP solving process easily tractable. A first model based on features related
to pairwise relative motions between two people is presented. Then, a second
model considering more general aspects associated with the surrounding people
is also shown.

3.3.1 Model 1

In principle, the actions of a person navigating among other people will depend
on the state of all the persons close to the robot, plus other factors like obstacles
and the person’s goal. However, considering all the persons will lead to a large
(and time-variant in size) state space. In (Henry et al., 2010), this is tackled by
considering the density and flow direction as features, using them at the path
planning level.

Here, the proposed model considers the generation of the velocity controls of
the vehicle, and thus the action space corresponds to the linear and angular ve-
locities of the robot a = (v, ω). Contrary to (Henry et al., 2010), we parametrize
the state on the local robot/expert frame. This allows reducing the complexity
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Figure 3.2: MDP model 1. The state is defined as the relative pose of the person
with respect to the robot, encoded as the relative position of the person in polar
coordinates (d, θ), and the approach angle ϕ. The actions (linear, v, and angular,
ω, speeds) affect how this state evolves.

of the problem. Furthermore, in the model, we consider just pairwise relative
motions between two persons (a robot and a person). The state is then defined
by the relative position and orientation of the person with respect to the robot,

encoded as s =
(
d θ ϕ

)T
(see Fig. 3.2). As the parameterization is local, the

pose of the robot is not considered by the state.

The effects of the actions on the state are modeled by using simple kinematic
equations, which are considered to be deterministic. Uncertainties are added to
the person motion part, sampling several variations on the speed and angular ve-
locity of the person and determining its future position. This way, the transition
function T (s′, a, s) is determined.

One hypothesis that will be analyzed in this work is whether the model can be
extended to cases with more persons utilizing the cost function learned applied
to all the persons in the scene.

3.3.2 Model 2

The second MDP model is based on high-level features to define the reward
function. In particular, the person densities in different regions in front of the
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Figure 3.3: MDP model 2. The state is defined with the densities (persons/m2)
in the three regions in front of the robot.

robot are considered to parametrize the state on the robot frame. We use the
same area as Model 1, but in this case, we divide it into three independent
regions; one in front of the robot and two on the left and right sides (see Fig.
3.3).

Therefore, the state is encoded as s =
(
ρ1 ρ2 ρ3

)T
, where ρi is the person

density of the area i. Then, the transition function T (s′, a, s) is determined by
considering how the densities in the regions are affected by the robot motion,
and introducing at the same time uncertainties in the new density values due to
the motion of people and the inflow of persons out of the field of view.

The development of this model aims at easily complementing the first model.
The idea is to capture other navigation behaviors in crowded environments that
the first model does not consider taking into account only the closest pedestrian.
We alleviate the complexity of the problem and the computational cost by di-
viding the learning process into different reward functions. Thus, we do not add
the new densities features to the previous model state to obtain a more signifi-
cant and complete model. Instead, we develop a new model considering only the
densities features and then obtaining the corresponding reward function. Then,
we can use the reward function learned from model 1 and mix it with the new
reward function obtained for the model of densities. The results will be shown
in Section 3.6.
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Figure 3.4: Example images of the BIWI Walking Pedestrian dataset used for
learning (Pellegrini et al., 2009). Left: Sidewalk close to a hotel entrance. Right:
entrance to the ETH main building.

3.4 Datasets for learning

As indicated above, it is hypothesized that learning the mentioned cost func-
tions by observing how humans navigate among themselves will lead to socially
normative behaviors.

As a source of examples on which the pedestrians motion is extracted, the
public BIWI Walking Pedestrians dataset1 (Pellegrini et al., 2009) has been used
(see Fig. 3.4). The dataset consists of a set of detected targets of people walking
in a two outdoors urban environments:

• The first proposed scenario (DS1) is a busy sidewalk next to a hotel en-
trance in Zurich (see Fig. 3.4, left).

• The second one (DS2), at the same dataset, is a bird view of the entrance
to the ETH main building, in Zurich as well (see Fig. 3.4, right).

The global data covers about 25+ minutes of observation which has resulted
in about 785 observed trajectories. Each of them consists of a set of positions
and velocities of all persons and the corresponding timestamps, that are manu-
ally annotated at a rate of 0.4 seconds, which is a reasonable time step for the
smoothness of the trajectories.

In the first scenario (sidewalk), the people are walking along the sidewalk
crossing with people walking in the opposite direction, resulting in two in-
put/output flows of pedestrians in both sides of the images. In this dataset,
almost 64% of the captured frames contain at least one pedestrian. In more

1http://www.vision.ee.ethz.ch/datasets/

http://www.vision.ee.ethz.ch/datasets/
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detail, there is 1 pedestrian in the 4% of the total frames, 2 pedestrians in the
5%, 3 : 8%, 4 : 11%, 5 : 8%, 6 : 5%, 7 : 6%, 8 : 3%, 9 − 18 : 14% of the
frames. By contrast, in the second dataset (ETH entrance), the people flow may
appear from anywhere of the top and merge into the narrower entrance corridor,
situated on the down part of the images. In this case, only about the 17% of
the total captured frames contain at least 1 pedestrian (1 : 2%, 2 : 3%, 3 : 1%,
4 : 1%, 5 : 3%, 6 : 1%, 7− 11 : 6%).

3.4.1 Analysis of the data

A qualitative evaluation of the data provided in the datasets from the features
employed in the two proposed MDP models is described here.

3.4.1.1 Features analysis of MDP model 1

Here we analyze the values of the features from the MDP model 1 for the data
points of the datasets (DS1 and DS2). It should be recalled that all the features
are computed locally to the expert.

Figure 3.5 shows the values obtained from the data set DS1. The bottom
plot shows the polar coordinates of the closest person in the local frame. Several
aspects can be highlighted. First of all, the most intimate person can be as
close as 0.5 meters, well within the personal space according to Proxemics (Hall,
1966). It can also be seen that if the person is below 1 meter, it is typically
located at the sides of the robot (θ ∼ 0 or θ ∼ π).

The upper-left and upper-right plots in the Fig. 3.5 show the distance vs.
approach angle ϕ, and θ vs. ϕ respectively. As can be observed, the closest
person is moving in the same direction ( ϕ ∼ 0 or ϕ ∼ 2π), which indicates that
they are walking in a group; while there are fewer cases in which the person cross
in the opposite direction (ϕ ∼ π). There are almost no examples in which persons
cross with different angles, which indicates that persons try to follow the flow
of people locally regarding direction. Also, it can be noticed how approaching
persons (ϕ ∼ π) are located at the sides of the robot.

Similar conclusions can be extracted from the training data set DS2, shown
in Fig. 3.6.

3.4.1.2 Features analysis of MDP model 2

The densities in the three regions in front of the robot used in the MDP model
2 are analyzed here for the data points of the datasets DS1 (see Fig. 3.7) and
DS2 (Fig. 3.8).

It is noteworthy that, in the DS1 case (sidewalk scenario), the density region
1 (left side of the person) is more populated than the other regions. This is
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Figure 3.5: Annotated data of scenario DS1. Left: Approach angle ϕ vs. distance
d in the local frame. Right: approach angle ϕ vs. θ. Bottom: polar coordinates
(d, θ) of the closest person in the local frame.

Figure 3.6: Annotated data of scenario DS2. Left: Approach angle ϕ vs. distance
d in the local frame. Right: approach angle ϕ vs. θ. Bottom: polar coordinates
(d, θ) of the closest person in the local frame.
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because the pedestrians tend to form two flows on the sidewalk, where the people,
in general, maintain some space on their left side for the pedestrians walking in
the opposite direction.

Finally, it might seem that densities features are discretized, but this effect
is due to the number of persons inside each area is always an integer, so the
density evolves in steps of 1/area. Notice that for density values in region 2, ρ2,
the x-axis takes from 0 to 0.5 in contrast with ρ1 and ρ3, that spreads from 0 to
1 per/m2. That is because the central region of the model reaches double space
(see Fig. 3.3). Thus, each consecutive horizontal edge to the right corresponds
with an increment of one person, up to maximum six simultaneous for these
datasets. It may occur that some of these edges are missing, so the next edge
counts for an increment of two persons.

3.5 Description of the learning process

The details about the data used as expert demonstrations required by the GPIRL
algorithm to learn the reward function and solve the related MDP are explained
here.

3.5.1 Expert demonstrations

In our case, we employ the dataset to gather the examples from experts in the
task of navigating among persons. Some persons are selected as ”experts” among
the pedestrians that are moving in the dataset. For each point in the trajectory
followed by the person we extract:

• For Model 1, the state si =
(
d θ ϕ

)T
of the closest person within the

local planning zone. This local environment (see Fig. 3.2) is defined as
the region used for local planning on the robot, and it is defined as a
rectangular region of 4x4 meters (4 meters in front and 2 meters at each
side of the robot).

• For Model 2, the state si =
(
d θ ϕ ρ1 ρ2 ρ3

)T
is completed with the

values of person densities of the three regions considered (see Fig. 3.3).
Here a rectangular region of 4x6 meters is defined (6 meters in front of the
robot to gather more pedestrian information).

• The action performed by the expert at the same time step (for both mod-
els). In the particular implementation considered, the action space consists

on the linear and angular velocities ai =
(
v ω

)T
, in order to easily trans-

fer them to the robot. The angular velocity ω is computed by measuring
the change of orientation between consecutive poses of the expert.
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Figure 3.7: Density values in the three regions used in the MDP model 2 (ρ1,
ρ2, ρ3) for dataset DS1

When the closest person abandons the local planning region, the trajectory
{si, ai}Ni=1 is stored as one episode for the training phase. A new episode is
created for the next person. To have similar experiments, the number of samples
is equalized for each episode, by dividing them in several if needed.

From each dataset, only moving pedestrians for which at least one person is
within the local planner region for at least six time steps are selected as ”experts”.
Furthermore, we impose that these pedestrians have to move at least 2 meters
from their start point. Both conditions allow us to focus on interesting samples
of pedestrians making social navigation. As a result, a training set per dataset is
obtained. One of them is a set of 103 episodes from 51 different persons of a total
of 420 tracked persons, and the other is a set of 47 episodes from 28 different
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Figure 3.8: Density values in the three regions used in the MDP model 2 (ρ1,
ρ2, ρ3) for dataset DS2

persons of a total of 365 tracked persons. They are used to learn the reward
function, and the rest of persons will be used in the evaluation to validate the
estimated function.

3.5.2 Space discretization

The GPIRL algorithm uses a discrete MDP as a model. Therefore, the state and
actions spaces need to be discretized. The local space used for the local planner
is discretized as follows:

• The distance d is discretized into 11 bins of 0.5 m.
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Figure 3.9: Actions (linear and angular velocities) of the training samples for
both scenarios DS1 and DS2. The discretization bins employed are also shown.

• The relative angle θ ∈ [0 π] is discretized into 6 bins of 0.62 rad.

• The person relative orientation ϕ ∈ [0 2π) is discretized into 8 bins of
0.69 rad.

• The density value ρ ∈ [0∞) is discretized into 5 bins of 0.25 persons/m2,
starting at zero value that means there is no person into the region con-
sidered and grouping greater values than 0.75 persons/m2 at a single bin.
This could be seen as a coarse approximation, but it is enough to enclose
a valid behavior to avoid those regions with high-density values.

Figure 3.9 shows the linear and angular velocities for all the persons consid-
ered as experts in the dataset, for both scenarios DS1 and DS2. The angular
velocity is computed by looking at the change of orientation of the linear velocity
vector between two time instants. The action space is discretized considering the
behavior of experts in the dataset (see Fig. 3.9). As we are learning how to move
among other people, only persons moving over certain velocity are selected as
experts; the linear velocity is discretized into 8 values in v ∈ [0.7 2.1] m/s. The
angular velocity is discretized in other 11 values in ω ∈ [−0.5 0.5] rad/s. Finally,
in our case, the state is used directly as features to learn the reward function.
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3.6 Evaluation

By using the previous examples and the IRL algorithm, a reward function is
obtained that associates a scalar value to each state. As a first evaluation of
the learned reward function, we compare the actions taken by a person of the
dataset with the commands given by the optimal policy obtained by solving the
MDP model described above using the learned reward function.

The comparison is performed as follows: at each point of the trajectory of
the selected person, the state is computed, as well as the action that should be
applied according to the policy, and the actual action performed by the person.
If the policy fits perfectly with the person’s behavior, the actions of the MDP will
be very similar to the actual ones. The actions from the MDP are not applied
so that in the next point the state is the same in both cases.

In order to obtain the action given by the policy for Model 2, in which the

state is divided into two substates, i.e.
(
d θ ϕ

)T
and

(
ρ1 ρ2 ρ3

)T
(see Sec-

tion 3.3.2), the following procedure is applied: the two substates are computed
at each point so both policies are indexed by its own. This results in two vectors
that contain actions likelihood, so they are multiplied among them and normal-
ized, and finally, the most probable action is selected.

We compute the mean errors in the linear and angular velocities of each
person of the dataset that was not used for training. Also, the actual actions
carried out by the person are discretized to perform a fair comparison with the
policy actions. Furthermore, the calculations are performed in 6 different cases
based on the scenario used to obtain the expert demonstrations and the scenario
used to test the policy obtained by solving the respective MDP. The first case is
training with the data of scenario DS1 and evaluating in the same scenario (E1).
The same case, but with scenario DS2, is denoted E2. The two next experiments
evaluate the behavior obtained by training in one scenario and testing in the
other one (Experiments E3 and E4). The last two experiments (E5 and E6),
perform a training mixing training samples from scenarios DS1 and DS2 and
evaluating the results in both scenarios respectively.

3.6.1 Policy comparison

To evaluate the results of the model presented, we first compare it with a heuristic
cost based on Hall’s Proxemics (PRX) theory (Hall, 1966). A cost function
modeling the personal space is implemented as two Gaussian distributions as in
(Kirby et al., 2009). The first function is asymmetric and placed in the front of
the person with σx = 1.20 m and narrower space in the sides σy = σx/1.5. The
second Gaussian is placed in the back of the person with σ = 0.5σx.

A new reward function is then obtained from this cost and used to determine
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Table 3.1: Mean velocity errors committed by the MDP Models 1 and 2 and
Proxemics-based policy regarding the expert actions. The standard errors are
also showed.

PRX closest Model 1 closest Model 2 closest

Linear Vel(m/s)

E1 0.363± 0.021 0.267± 0.018 0.217± 0.020

E2 0.371± 0.034 0.329± 0.031 0.231± 0.029

E3 0.367± 0.031 0.300± 0.029 0.249± 0.036

E4 0.279± 0.015 0.255± 0.018 0.269± 0.021

E5 0.361± 0.021 0.280± 0.019 0.248± 0.022

E6 0.269± 0.026 0.258± 0.023 0.218± 0.025

Avg 0.335± 0.025 0.282± 0.023 0.239± 0.026

Angular Vel(rad/s)

E1 0.094± 0.007 0.078± 0.006 0.074± 0.006

E2 0.102± 0.012 0.100± 0.012 0.102± 0.011

E3 0.094± 0.011 0.086± 0.009 0.096± 0.009

E4 0.111± 0.009 0.074± 0.007 0.073± 0.006

E5 0.095± 0.008 0.074± 0.005 0.091± 0.005

E6 0.089± 0.012 0.069± 0.008 0.058± 0.008

Avg 0.098± 0.010 0.080± 0.008 0.082± 0.008

a proxemics-based policy by solving the proposed MDP model over this reward.
This way, we can compare both policies in the same framework.

The errors committed in the actions in all those approaches are presented
in Table 3.1. It can be seen how the learned policies for Model 1 and Model
2 obtain, in mean, a closer behavior to the human experts than the Proxemics
approach. The main difference can be observed in the linear velocity commands.
In the comparison of the Model 1 and Model 2, the addition of density values
to derive the policy improves the expected behavior regarding linear velocities,
while angular velocities remain similar. However, there is, in general, a large
deviation from the errors, so probably the models proposed cannot account for
all the information used by humans to navigate among others. These results
encourage us to keep tracking a better description of the social navigation task
regarding feature and state spaces. We address these issues in following chapters.
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3.6.2 Generalization of the model to all pedestrian

In the real world, people do not move considering just the closest pedestrian
when walking through the streets. Usually, we take into account all the persons
in front of us up to some meters. This is why the reward function presented
previously must be completed with the information from other pedestrians in the
local planning area of the robot. Although Model 2 was conceived considering
the spatial distribution of people around the robot, the experimental results
show that its behavior is poor concerning Model 1 (single person). This Section
will evaluate another approach based on a generalization of the Model 1 to all
the pedestrian in the vicinity of the robot. Thus, the previous algorithms are
modified such as the action taken by the robot, in this case, is the one that
maximizes the sum of the value function of the MDP for all the pedestrians on
the local navigation area.

In Table 3.2, the comparison between the Model 1 considering just the closest
pedestrian (closest) and its generalization to all pedestrians (all) is shown. As
can be seen, there are no significant differences concerning the previous cases,
and the performance is even worse in some of the cases. These results suggest
that just a linear combination of features of the proposed one-pedestrian model
does not account for all the necessary features to be generalized to all pedestrians
case and new features should be taken into account.

In case of considering the Model 2, the generalization from one to all pedes-

trians is computed over the first substate si =
(
d θ ϕ

)T
, since density values

are always evaluate over all pedestrians. Taking that into account, the gener-
alization slightly improves the results for linear velocities, whereas the angular
velocity error does not improve.

Finally, Fig. 3.10 summarizes the mean errors graphically (along with the
standard errors) for all the policies in the six evaluation groups. As a general
conclusion, we can say that the presented models improve the results of the
model with a pre-defined reward function based on Proxemics, but the differences
between them are not very significant.

3.6.3 Transference to different scenarios

Another aspect that we evaluate is how transferable the reward function is be-
tween different scenarios (DS1 and DS2) with different conditions such as space,
crowd or crossing directions of pedestrians. So, various combinations of the
scenarios employed for learning and the scenarios used for testing the behavior
learned are evaluated to assess the dependency on the scenario used for learning.

Table 3.3 shows the mean errors and standard deviations committed by the
policy obtained with the best model (Model 2 closest). In this case, the scenario
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Table 3.2: Comparison in mean errors of the policies of MDP Models 1 and 2
for the closest pedestrian and their generalization to all the pedestrians. The
standard errors are also showed.

Linear Vel(m/s) Angular Vel(rad/s)

Model 1 closest Model 1 all Model 1 closest Model 1 all

E1 0.267± 0.018 0.271± 0.019 0.078± 0.006 0.097± 0.008

E2 0.329± 0.031 0.325± 0.032 0.100± 0.012 0.097± 0.011

E3 0.300± 0.029 0.298± 0.028 0.086± 0.009 0.085± 0.010

E4 0.255± 0.018 0.303± 0.020 0.267± 0.007 0.271± 0.008

E5 0.280± 0.019 0.316± 0.019 0.074± 0.005 0.077± 0.006

E6 0.258± 0.023 0.316± 0.030 0.069± 0.008 0.096± 0.012

Avg 0.282± 0.023 0.305± 0.024 0.080± 0.008 0.121± 0.009

Model 2 closest Model 2 all Model 2 closest Model 2 all

E1 0.217± 0.020 0.215± 0.017 0.074± 0.006 0.075± 0.006

E2 0.231± 0.029 0.229± 0.030 0.102± 0.011 0.108± 0.007

E3 0.249± 0.036 0.225± 0.028 0.096± 0.009 0.089± 0.007

E4 0.269± 0.021 0.198± 0.019 0.073± 0.006 0.087± 0.006

E5 0.248± 0.022 0.258± 0.019 0.091± 0.005 0.072± 0.005

E6 0.218± 0.025 0.200± 0.029 0.058± 0.008 0.073± 0.010

Avg 0.239± 0.026 0.221± 0.024 0.082± 0.008 0.084± 0.007
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(a) Errors in linear velocity.

(b) Errors in angular velocity.

Figure 3.10: Mean error bars and standard errors in the actions for all the
policies considered in the groups of evaluation. 3.10a Errors in linear velocity.
3.10b Errors in angular velocity.

used for testing is the DS1, and we evaluate the policies obtained by training
in different scenarios. Similar results are presented in Table 3.4, in which the
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Table 3.3: Comparison of mean errors when using different scenarios for learning
and scenario DS1 for evaluation.

Model 2 closest Policy DS1 Policy DS2 Policy DS1+DS2

Linear Vel(m/s) 0.217± 0.020 0.269± 0.021 0.248± 0.022

Angular Vel(rad/s) 0.074± 0.006 0.073± 0.006 0.091± 0.005

Table 3.4: Comparison of mean errors when using different scenarios for learning
and scenario DS2 for evaluation.

Model 2 closest Policy DS1 Policy DS2 Policy DS1+DS2

Linear Vel(m/s) 0.249± 0.036 0.231± 0.029 0.218± 0.025

Angular Vel(rad/s) 0.096± 0.009 0.102± 0.011 0.058± 0.008

scenario used for testing is the DS2.

It can be observed that there are no relevant differences in the errors between
scenarios, and moreover, the policy obtained from the mixed samples (DS1+DS2)
does not improve the results significantly. So, the policy trained in one scenario
can be correctly transferred to the other one. However, as can be observed in the
data plotted in Fig. 3.5 and 3.6, the scenarios DS1 and DS2 are quite similar,
so a further analysis with other different scenarios is required to evaluate the
transferability of policies to other scenarios.

3.7 Conclusions

In this chapter, we analyzed the use of Inverse Reinforcement Learning based on
discrete Markov Decision Processes to learn cost/reward functions from human
demonstrations. We applied the method for the task of socially-acceptable robot
navigation in spaces shared with humans.

Two different discrete-MDP models were proposed and the methodology to
extract the cost function from a public dataset was described. Furthermore, these
cost functions have been used to derive direct control policies (linear and angular
velocities) for reactive motion planning of the mobile robot. These policies have
been compared to the original human behavior and a policy derived from a cost
function based on Proxemics theory.

The results of the derived policies comparison showed that IRL could be
used to transfer some human navigation behaviors into the low-level navigation
controllers of a mobile robot. The local robot controller improved the Proxemics
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performance lightly and can anticipate smooth avoiding maneuvers when people
are walking in opposite or almost parallel directions.

However, the general improvements were not very significant, and the social
costs did not retrieve all the key-insight involved in social navigation in crowded
environments. This may indicate that a richer set of features, probably including
velocity features, maybe more adequate when crowds are present. However,
solving a MDP becomes computationally intractable when the state space and
the dimensionality are high. That led us to gross space discretization and to
keep a low number of features for characterizing the task. These drawbacks
found in the application of discrete MDP-based IRL techniques to the human-
aware navigation problem are discussed in following chapters, and some solutions
are proposed.





Chapter 4

FROG: a robust and social navigation
system for crowded environments

”To Infinity and Beyond!”
Toy Story, 1995

Part of the work developed for this thesis was developed within the European
FP7 project FROG (Fun Robotic Outdoors Guide)1 (Evers et al., 2014). FROG
proposed to develop a guide robot with a winning personality and behaviors that
will engage tourists in a fun exploration of outdoor attractions (see Fig 4.1). The
work encompassed innovation in the areas of vision-based detection, robotics
design and navigation, human-robot interaction, affective computing, intelligent
agent architecture and dependable autonomous outdoor robot operation.

In this chapter, the FROG project is presented, in which the work explained
in Chapter 3 was integrated into the navigation system. We also emphasize the
challenges in robot navigation and show the results obtained in real uncontrolled
situations.

4.1 FROG project overview

The FROG project proposed the use of robotic characters in the exploration of
outdoor historical and cultural sites. In particular, the Lisbon City Zoo and the
Royal Alcazar of Seville were employed as a working environments for the de-
ployment of the FROG robot. Figure 4.2 shows some pictures and characteristics
of these environments.

• Lisbon City Zoo. The zoo of the city of Lisbon (Portugal) gathers around
2000 animals of 332 different species. This scenario is mostly outdoors,
including non-well structured buildings and roads, slopes, grass and other
challenges for robot localization and navigation.

1https://www.frogrobot.eu/
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Figure 4.1: Picture of the FROG robot in the Royal Alcazar of Seville.

• Royal Alcazar of Seville. The Alcazar is a monumental complex located
in Seville (Spain) dating from the Muslim period. It consists of a series of
historical palaces from different times and styles. The Royal Alcazar has
around 1.500.000 visitors per year, which means a highly crowded place
combining indoors and outdoors environments.

Regarding navigation, the deployment of the FROG robot in the commented
environments posed a difficult challenge. On the one hand, a very robust navi-
gation system is required to deal with slopes, holes, changes in the terrain and
several kinds of obstacles in indoor and outdoor environments. On the other
hand, the system must be able to behave in a socially-acceptable manner in such
crowded places with thousands of visitors.

Therefore, the objective is the development of socially acceptable, robust and
efficient path planning and execution in such crowded scenarios. By efficient,
we mean minimizing the amount of time when the robot is stuck due to the
complexity of the scenario. By socially acceptable, human-like kind of motions
when the robot is wandering or moving between way-points and objectives.

The method presented in the previous Chapter was implemented into the
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(a) Lisbon city Zoo

(b) Royal Alcazar of Seville

Figure 4.2: FROG project deployment scenarios. (4.2a) The Lisbon Zoo. This
scenario is mostly outdoors, including less structured buildings and roads, slopes,
grass and other challenges. (4.2b) The Royal Alcazar of Seville. This scenario
consists of a combination of outdoor and indoor places on man-made structures.
The Royal Alcazar is a very crowded scenario.
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FROG system to learn a social cost function for the robot motion. This cost
function was integrated into a reactive motion planner as is explained in the fol-
lowing sections. The experiments and evaluations performed with the integrated
system are also shown.

4.2 Navigation system

A brief description of the FROG robotic platform and the navigation tasks re-
quired in the project are described here. Moreover, the robot navigation system
developed to fulfill those requirements and the integration of the social cost de-
rived in Chapter 3 into the system is also explained in more detail.

4.2.1 Robot platform

The FROG robot consists of a skid-steering platform, with 4 wheels adapted to
the scenarios considered in the project. It has an autonomy of two to four hours
depending on the type of ground and the number of embedded PCs running, up
to three. The robot weights 80 kg approximately and its maximum velocity is
1.6 m/s (software limited to 0.8 m/s).

The robot is equipped with a wide range of sensors for safety, localization
and navigation (see Fig. 4.3):

• Odometry is computed by reading wheel encoders and angular velocities
from an MTi-G IMU from XSens.

• Three laser rangefinders are considered. Two deployed horizontally for-
ward and backward (30 m range), employed for localization and obstacle
avoidance. The third laser is placed in front of the robot and tilted 45;
it is used for 3D obstacle avoidance. The two horizontal lasers are also
employed for people legs detection.

• A stereo camera pair is employed for person detection, pose estimation and
3D perception.

• An additional camera is used for low-range affective computing of the in-
teracting persons.

• A sonar ring surrounding the robot.

4.2.2 Robot navigation stack

The navigation stack of the FROG robot (see Fig. 4.4) follows the classical
separation between a global path planner and a local path execution module, as
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Figure 4.3: Robot platform and placement of sensors. Approximate localization
and field of view of the sensors mounted in FROG robot. Green planes denote
the front and rear laser scanner planes; it can be seen how the scanners cover
360 approximately around the robot. Orange plane stands for the 45 tilted laser
scanner for obstacle detection. Red fields denote the field of view of the front
stereo camera and back camera. Blue areas stand for sonar sensing areas.

we introduced in Section 2.2. The global planner employs the global robot pose
and global models of the obstacles and potentially other models to determine
a path to the goal. The local planner receives the global path and tries to
follow it, by considering the most up to date sensorial information on the robot
frame. This local planner generates the controls (angular and linear velocities)
commanded to the robot platform.

The implementation of the navigation stack extends the navigation archi-
tecture of the Robot Operating System (ROS)2, included in the ”Fuerte” dis-
tribution. We are mainly concerned with adapting the local planner, although
significant modifications were carried out to adapt the global planner to the
FROG requirements.

2http://wiki.ros.org/navigation

http://wiki.ros.org/navigation
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Figure 4.4: FROG navigation architecture. The navigation stack consists of a
global planner, acting on global models; and a local planner acting on the most
up to date information at a higher frequency.

4.2.2.1 Global path planner

The global planner is based on an A∗ algorithm (Hart et al., 1968) to search
through the available map area and find the best path.

Many adaptations have been implemented in the global planner to fulfill
FROG requirements mainly regarding efficiency. The ROS global planner3 works
well with small and medium size global maps but becomes slow when large
maps (or with high resolution) are considered. Thus, persistent methods as map
cleaning have been refactored and improved to work with large maps. Also, the
recovery actions (actions that are taken when the robot do not find a solution for
going from the current position to the specified way-point) have been refactored
to perform faster and efficient actions. Also, some aspects of the global map
update policy were changed.

To compute the global path and to evaluate the different trajectories to follow
the path locally, two 2D grid maps are used. Each map cell of the grid map
contains relevant information for motion, such as the presence of an obstacle,
or membership in a recognized path. For global planning, the grid map is built
from the information of the predefined navigation map along with the sensors
data. This navigation map is similar to the localization map, but we include some
limits in the map to restrict the areas where we do not want the robot to navigate
and other information. This way, a global path is never calculated crossing these
no-go areas. Further details about the mapping process and the localization
system, which is not directly addressed in this thesis, can be consulted in Pérez

3http://wiki.ros.org/global_planner

http://wiki.ros.org/global_planner
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et al. (2015).

4.2.2.2 ”Social” local motion planner

We consider as local planner an extension of the Dynamic Window Approach
(DWA) algorithm (Fox et al., 1997). The algorithm has been almost reimple-
mented considering computational efficiency as a major constraint. This con-
troller predicts possible trajectories with a discrete-time simulation over a re-
ceding horizon. To ensure safe and feasible motion, the robot’s kinodynamic
constraints and acceleration limits have to be indicated correctly.

Another 2D grid map is built just from sensors data for local planning. This
is a rectangular grid map of 8x8 meters around the robot. The portion of the
global path to follow is mapped onto this area, and the grid cells are marked
with distance 0 to a path point, and distance 0 to the goal. Then, a propagation
algorithm efficiently marks all other cells with their Manhattan distance to the
closest point marked with zero. Moreover, the sensors data is used to mark (insert
obstacle information into the grid map) and clear (remove obstacle information
from the grid map) merely changing the value of the corresponding cells.

The grid map information is then used by the DWA controller to choose
the best trajectory among the predicted trajectories by evaluating different cost
functions to balance the different robot goals. The map grid is updated with a
frequency of 10 Hz to score trajectories efficiently. Therefore, the idea is to use
this local motion planner, successfully employed in robot navigation, and extend
it with a social cost function to endow the planner with social navigation skills.
The reward cost function learned from data for the joint MDP model (model 1
+ model 2), as presented in Chapter 3, is employed here as a social cost.

DWA runs by choosing a velocity (linear and angular) from a set of velocities
that maximizes certain objective function in a dynamic temporal window where
the forward robot movement is predicted and evaluated according to the different
velocities of the set. This objective function accounts for distance to the goal
(c1), distance to the obstacles (c2) and distance to the path that is trying to
follow (c3), as expressed in Eq. 4.1. The new social cost is also added to this
objective function in this way: the features regarding the people in the robot’s

vicinity (
(
d θ ϕ

)T
and

(
ρ1 ρ2 ρ3

)T
, see Section 3.3) are computed for the

projected robot positions and the corresponding reward is obtained. Then, this
value is inverted and added as a new weighted term to the objective function,
Eq. 4.1. Thus, the motion commands performed by the robot are modified. The
weights to balance the function (W = [ω1, . . . , ω4]) need to be tuned. In our
approach, these values have been hand-tuned.

Cost = ω1 ∗ c1 + ω2 ∗ c2 + ω3 ∗ c3 + ω4 ∗ social cost (4.1)
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4.2.3 Navigation tasks

The FROG robot is in charge of offering guided tours to tourists in cultural
places. This requires a set of different behaviors and tasks that the robot has
to be able to perform. A finite state machine (FSM) controls the robot be-
havior, including the different tasks involving navigation. A communication
system to receive and send data between the different components of the over-
all FROG platform has been implemented. It is based on JSON lightweight
data-interchange format.

In particular, the navigation and localization system, besides continuously
publishing the location of the robot to the other modules, needs to receive the
navigation commands from the top-level FROG behavior tree (FSM). Moreover,
it has to communicate the execution state of the navigation action commanded.

The interface defined by the navigation stack involves the following actions:

• Going to a defined goal. The location and the desired orientation of the
goal point are received. Then, the path to the goal is calculated and the
navigation is initiated.

• Rotating to reach a specific orientation. This behavior is similar to the
previous one, but in this case, the location of the goal is the current location
of the robot causing only a turning movement.

• Approaching to a particular person. The identification number of the tar-
geted person is used instead of the goal coordinates. Moreover, a value
of safety distance is also indicated to stop the robot in front of the per-
son keeping the stated range between them. The approaching maneuver is
done taking into account the orientation of the person, so the robot tries to
face the person. Furthermore, we perform a simple tracking of the person
by using a time window. This way, we can change the navigation goal if
the person is moving.

• Rotating to face a particular person. We only consider the orientation of
the targeted person to rotate the robot to face the person.

• Cancel the current navigation execution and stop the robot. In this case,
the navigation to the current goal is aborted, and the robot movement is
stopped.

• Docking and undocking. It commands the robot to look for visual markers
placed on the charging station and perform the docking (or undocking)
maneuver.
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Also, a specific navigation behavior has been programmed to approach the
desired goal with the best accuracy permitted. This behavior consists of de-
creasing the velocities approaching the goal point. Similar behavior has been
included to initiate the robot movement smoothly, starting with low velocity
and increasing it to reach the commanded velocity.

4.3 Navigation experiments

This section shows all the experiments and evaluations of the integrated naviga-
tion system in real controlled scenarios and the final environments such as the
Zoo of Lisbon and the Royal Alcazar of Seville.

4.3.1 Quantitative experiments

A differential-drive Pioneer robot platform is employed to perform a set of con-
trolled experiments in real environments with human confederates. Figure 4.5
shows an image of the outdoor scenario at the Pablo de Olavide University where
the experiments were performed. In these tests, the robot autonomously navi-
gates from a starting point to a given waypoint, encountering persons in its path
during the execution.

We compare the traditional ROS navigation system without any social com-
ponent (we call it ”No social”) with the following approaches that add an extra-
cost to the DWA objective function:

• Cost based on Proxemics (PRX closest).

• Cost based on the cost function learned with the MDP model 1 (Model 1)

• Cost based on the cost function learned with the MDP model 1 and ex-
tended to all the pedestrians in the robot’s vicinity (Model 1 all).

• Cost based on the cost function learned with the MDP Model 2 of people
densities in regions in front of the robot (Model 2).

• Cost based on the combination of the cost function learned with the MDP
models 1 and 2 (Model 1 - 2).

Finally, the following metrics are employed for comparison: the total distance
traveled towards the goal (TD), the time employed to reach the waypoint (T)
and the minimum and medium distance to the persons (Min PD and Mean PD
respectively) along the path. By computing the execution time and total distance
traveled we can assess the effectiveness to reach the goal, while the distances to
persons let us know how the personal space is conserved and its effect in the
deviation distance from the global path.
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Figure 4.5: Capture of the outdoor scenario for experiments at the Pablo de
Olavide University.

4.3.1.1 Experiments with static pedestrians

In this experiment setup, the robot has to cross a controlled scenario with pedes-
trian standing, talking to each other. It is assumed a static scenario in the sense
that people do not move from their initial position (see Fig. 4.5). We have
performed four runs for each approach, keeping the same configuration among
the different runs.

The spatial disposition of the three static pedestrians employed in the exper-
iment is presented in Fig. 4.6. An example of the trajectories performed by the
robot by using different approaches is also showed. At first sight, it can be seen
some differences between the trajectories depending on the approach employed.
However, we will better explain the results by analyzing all the tests performed
in the experiments, which are presented in the table 4.1:

• No social. This navigation system without the social component tries to
optimize time and distance traveled. So, the average distance and minimum
distance to the pedestrians is the lowest of all the approaches.

• PRX closest. This classical approach improves a bit the results of the
”No social” navigation. However, it performs a too significant avoidance
when the robot is close to pedestrian which is considered unnecessary. The
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Table 4.1: Experimental results in a static scenario.

T (s) TD (m) Mean PD (m) Min PD (m)

No social 50.65± 0.21 21.76± 0.29 2.82± 0.06 0.82± 0.03

PRX closest 71.00± 1.55 21.09± 1.04 3.69± 1.69 1.05± 0.18

Model 1 54.28± 3.39 20.50± 0.22 5.19± 1.06 1.29± 0.18

Model 1 All 58.85± 0.21 22.68± 0.19 5.22± 1.69 1.69± 0.04

Model 2 51.05± 0.92 24.53± 0.01 4.50± 0.21 0.87± 0.02

Model 1 - 2 53.27± 3.17 21.19± 1.56 4.00± 1.82 1.01± 0.29
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Figure 4.6: Example of the trajectories performed by the robot according to the
different DWA objective functions.

excessive execution time may be due to inefficient programming of the
evaluation of the possible trajectories, which is a critical point regarding
execution time.

• Model 1. The application of the reward function derived from this MDP
model improves the results of the Proxemics approach. It can smoothly
modify its trajectory to cross a walking person in the opposite direction.
The behavior of this model can be suitable for no-crowded scenarios, but
the performance can decrease if several people are surrounding the robot.

• Model 1 All. According to the results, the generalization from one pedes-
trian to all has a similar performance to the model for one pedestrian.
These results can be different in experiments with more people. Never-
theless, we think that this generalization cannot retrieve the necessary key
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Table 4.2: Experimental results in a dynamic scenario

T (s) TD (m) Mean PD (m) Min PD (m)

No social 59.22± 0.06 20.38± 0.29 2.31± 0.15 0.20± 0.09

PRX closest 68.44± 0.02 20.99± 0.68 2.59± 0.10 0.38± 0.04

Model 1 69.45± 7.01 21.85± 1.89 4.46± 0.19 0.20± 0.17

Model 1 All 61.20± 0.0 20.50± 0.0 2.49± 0.16 0.60± 0.12

Model 2 65.26± 10.08 20.75± 0.24 2.56± 0.17 0.47± 0.16

Model 1 - 2 60.20± 1.81 20.36± 0.35 2.46± 0.10 0.33± 0.02

aspects for good navigation in crowded environments.

• Model 2. As we can observe in the table, in this case, the distances to
pedestrians are lower than the case of model 1 and its generalization. How-
ever, it is not taken into account aspects of the orientation or movement
direction of the pedestrian what can bring unwanted avoiding behaviors.

• Model 1 - 2. This approach can anticipate the crossing maneuvers bet-
ter than Proxemics, and therefore, without performing excessive avoiding
movements. Moreover, it keeps a shorter distance to the pedestrians than
model 1 approaches without being uncomfortable for them. We consider
that this behavior can be the more appropriate for crowded environments.

4.3.1.2 Experiments with dynamic pedestrians

In the dynamic scenario, we use the same scenario than before, but in this case,
the pedestrians are moving and crossing the area. Moreover, we will show results
over another non-controlled scenario as the main corridor at Pablo de Olavide
University.

First, we show the results in a controlled scenario, where we can repeat the
experiment in equal (or nearly equal) and controlled conditions. We performed
4 runs on each navigation approach. Secondly, we run the joint model (model
1 and model 2) approach in an uncontrolled scenario. This place is the main
corridor of the Pablo de Olavide University, where a lot of students cross every
day.

The set up of the controlled experiment is as follows. Two pedestrians walk
opposite to robot direction forcing it to avoid them. Then, other pedestrian
crosses in diagonal in front of the robot. Finally, two new pedestrians pass the
robot on the left walking in the same direction as it.
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Figure 4.7: Left: FROG guiding the reviewers and project members at Lisbon
Zoo. Right: an overall view of the performed tour on the map.

The metrics values are presented in Table 4.2. As can be seen, the results are
very similar to those obtained in case of static pedestrians (Table 4.1). Again,
all the ”social” approaches suggested improved the ”no social” behavior. In this
case, the model 1 seems to make some excessive avoiding maneuvers. Although
the results are not very conclusive and some approaches obtain similar metrics
values, we think the mixed approach (Model 1- 2) shows a balanced behavior.
It can plan a good path regarding time efficiency and distance traveled (T, TD)
as well as keeping acceptable distances to pedestrians (Mean PD, Min PD).

Regarding the experiment in the corridor of the University. It lasted about
12 minutes, and the traveled distance was 221.18 m. The average distance to the
pedestrians was 4.2 m. The behavior of the navigation approach was satisfactory
according to the results obtained in the controlled experiments. The actions
taken to avoid the crossing pedestrians were smooth and sociable well-accepted
by the pedestrian.

4.3.2 Qualitative experiments in final scenarios

The data collected during the different experiments and demonstrations per-
formed in the working environments of the project are presented here.

4.3.2.1 Experiments in Lisbon Zoo

In the second-year demo (2013), the FROG robot guided visitors around in the
Lisbon City Zoo, showing the animals, and telling about the species, their normal
behavior and the natural environment (see Fig. 4.7). The demo involved a
route of 750 meters, with different points of interest, and it lasted 45 minutes
approximately.
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The whole demo week the robot was navigating autonomously for more than
4 kms. This demo, where the navigation functionalities were not using the social
component, demonstrated its robust and accurate localization for navigation in
such challenge outdoor scenario.

4.3.2.2 Experiments at the Royal Alcazar

During the third and last year of the FROG project, additional navigation ex-
periments were performed at the final demo site, the Royal Alcazar in Seville,
during June and September of 2014.

Figure 4.8 shows the typical mission performed. It involves an undocking
maneuver, a tour including 7 Points of Interest, the way back to the charging
station and docking again onto the charging station. In these experiments, all
the social navigation functionalities were activated.

In the experiments, the robot was performing the complete tour, navigating
to all the Points of Interest and showing the proper content. In June, the guided
tour had an average distance of 460 meters approximately, including the return
path to the initial point, which involves a slightly different route. During 8 days
of continuous testing, the tour was performed twice a day on average, which gives
a total of nearly 7.4 kms of autonomous navigation in a very crowded scenario.
A summary of the data collected along these tours is presented in Table 4.3.
The total duration of the tour in minutes, the total distance traveled by the
robot (meters), and the average distance between the robot and the pedestrians
(meters), are shown.

Table 4.4 shows the collected data of some missions completed or nearly
completed that were performed in the experiments in September 2014 at the
Royal Alcazar of Seville. The tour was slightly modified concerning the tours
performed in June. The location of some points of interest was changed and new
content was added. The tour had an average distance of 500 meters, although
some slightly different routes were also tested. This explains the differences
in total time and distance traveled between some tests, besides the different
crowd densities encountered. Furthermore, the person tracking with lasers was
improved and integrated, so a new data column expressing the total number of
pedestrians detected by the laser-based tracker is included in the Table. These
values are higher than the real number of pedestrians due to some false positives
and person re-entering in the detection area.

Finally, a summary of the total number of missions performed in the experi-
ments performed in June and September, along with the percentage of successfully-
completed tours is shown in Table 4.5. Regarding the robustness of the naviga-
tion stack (81% of success), only in 1 case of the 26 missions, manual intervention
was required to recover the robot from a blocking situation. The main patio was
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Figure 4.8: An overall view of the performed tours in the Royal Alcazar of
Seville. Three different examples of the trajectories for the tour are shown in
red, green and blue (the tour details depend on the time of the day, leading
to some differences in the trajectories). Different photographies illustrate the
different zones in the trajectory.

occupied with tables and tablecloths for a special gala dinner at the Royal Al-
cazar. Normally this patio is free, and there are no permanent obstacles. The
robot was able to negotiate the (previously unmapped) obstacles of the place,
even though the remaining space was quite narrow, reaching the corresponding
Point of Interest in the square. When leaving the tables zone, the wind provoked
the tablecloths began flapping, coming into the robot safety buffer zone, and
even touching the robot. The robot thus got stuck, and a manual control was
required to overcome the situation. The rest of failures were caused by hardware
problems (mainly related to the inertial sensor (IMU)).
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Table 4.3: Data from several of the tours performed at the Royal Alcazar with
the FROG robot in June 2014.

Complete tour

Date and Time T (min) TD (m) Mean PD (m)

19/06/14 15:02 24.70 223.30 3.42

20/06/14 17:52 21.92 258.23 2.65

26/06/14 11:53 26.60 257.91 2.09

26/06/14 17:35 27.73 275.46 2.25

Complete tour and trip back to charging station

21/06/14 12:40 38.03 460.22 2.23

22/06/14 16:52 37.39 453.40 2.16

23/06/14 11:55 37.08 468.25 2.30

23/06/14 16:46 35.93 453.77 2.24

25/06/14 18:08 36.51 458.40 2.36

26/06/14 11:08 36.02 434.97 2.20

4.4 End-users evaluations

Besides the quantitative results presented previously, here we show a qualitative
sociological evaluation. In particular, to gain an understanding into how people
experience a robot guided tour, some visitors to the Royal Alcazar who followed
(parts of) a tour given by the FROG robot were observed and interviewed.
These studies were conducted by the Human-Media Interaction group, from the
University of Twente, as a partner of the FROG project (Karreman et al., 2014;
Karreman, 2016).

The evaluations of user experience with the FROG robot were performed
in the last week of June 2014. The FROG robot gave 16 autonomous tours
in seven days, many of which were previously presented in Table 4.3. Four of
the 16 tours were with recruited visitors, and the other 12 were given to naive
visitors of the Royal Alcazar. The study focused on the four tours with recruited
visitors. People participating in these tours evaluated the user experience of the
robot throughout the tour. However, we also evaluated the tours of non-recruited
visitors. For these tours, observations were made during the tours and interviews
after the tour had ended.

We show here only the comments and information received from the visitors
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Table 4.4: Data from several of the tours performed at the Royal Alcazar with
the FROG robot in September 2014.

Date and Time T (min) TD (m) Mean PD (m) Pedestrians

18/09/14 10:22 40.09 440.22 2.89 1881

22/09/14 11:20 53.49 558.74 2.52 3599

22/09/14 18:41 59.22 685.33 2.51 2942

23/09/14 10:25 53.57 540.96 2.47 3108

23/09/14 15:18 46.59 492.84 2.37 2246

23/09/14 17:33 39.59 461.94 2.37 2202

24/09/14 09:49 57.02 456.52 3.01 3283

24/09/14 16:57 43.96 510.28 2.53 2799

25/09/14 10:27 40.25 390.46 2.46 2628

25/09/14 16:41 49.63 592.93 2.62 3104

26/09/14 11:00 35.98 354.47 2.49 1464

26/09/14 18:47 56.16 520.76 2.05 3918

Average 47.96± 7.94 500.45± 89.84 2.52± 0.24 2764.50

Table 4.5: Percentages of successful missions performed in the experiments in
June and September 2014 at the Royal Alcazar

Number of missions % successful tours

26 81



70 Chapter 4. FROG: a robust and social navigation system

related to the navigation experience. Also, one or two quotes are presented in
each paragraph to illustrate the visitors’ experiences in their own words.

”And we were flabbergasted, we thought that the man with the controller was
controlling the robot...”

At the beginning of the tour, participants walked carefully behind the robot,
because they needed to get used to the robots movements. In the interviews
they stated that the behavior of the robot was clear to them. However, most
recruited visitors mentioned during the whole tour that they were unsure where
the robot was going or if they were standing in its way when it started driving.
Participants stated that the robot drove a bit jerkily and stopped now and then,
so they had to watch out not to be hit by the robot or bump into the robot. Due
to this, some participants chose to walk next to the robot.

”You need to get used to following the robot, it is jerky and so of course, so you
need to get used to it, because where does it go?”

”Ok, to which side...”

Participants mentioned that the robot was a bit slow while driving. Some
participants mentioned that for larger groups the speed might be alright because
larger groups tend to move a bit slower. When the robot was close to the Point of
Interest, the robot needed a lot of time to find a place to settle. Also, at the Point
of Interest, participants would appreciate if the robot could turn towards them
before turning to the final position to start the story because some participants
felt ignored by the robot.

When the robot was moving, it gave too little feedback to the followers.
A map and some text were displayed on the screen, but for those people who
followed the robot and walked next to or behind the robot that information was
not visible. Therefore, it was sometimes unclear to the participants where the
robot was going. To obtain this information, visitors sometimes walked to the
front of the robot to look at the screen. One recruited participant thought that
having the robot driving backward would improve this point.

”I felt best walking beside it”

As a general conclusion, the visitors were happily impressed about being
guided by an autonomous robot. They felt safe walking with the robot, and
they did not see it as a threat. The most of negative comments posed the
difficulties of the robot to correctly show its intentions to the visitors when it
tried to initiate the navigation to the next point and the intention to stop at
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the points of interest to start a new explanation. It is worthy to mention that
these issues are not considered in the navigation function learned, which is only
referred to the navigation itself, and thereby, the navigation behavior seems to
be socially accepted by the visitors. A new social function could be considered
to improve the negative behaviors commented.

These drawbacks are also related to the robot kinematics. We detected that
the differential motion in such a big and heavy robot turned out in slow and stiff
rotations, mainly in rotations in place, in most of the ground types. This caused
a negative effect on the robot movement since the robot was not able to react
quickly and accordingly to the movements of the people crowd around it.

4.5 Conclusions

This Chapter summarizes the robot navigation system developed in the frame-
work of the European FROG project. An efficient and safe navigation system has
been implemented according to the FROG system specifications, paying special
attention to the socially-acceptable behavior of this navigation.

The approach presented in Chapter 3 is integrated into the reactive motion
planner of the navigation system of the FROG robot. It makes use of Inverse
Reinforcement Learning to learn cost/reward functions from examples for the
task of navigating among persons.

The chapter also summarizes the navigation performed by the robot during
the second year review at Lisbon Zoo. The robot was able to navigate within a
very complex scenario, with many people surrounding the system without prob-
lems. Although the social skills presented in this document were not evaluated at
the Lisbon Zoo, the rest of the navigation system (localization, collision avoid-
ance, smooth navigation, Point of Interest integration, etc.) were successfully
tested in more than 4 Kilometers of fully autonomous robot navigation. More-
over, results obtained at the Royal Alcazar planned for June, and September
2014 are included. This time, all the social navigation skills were employed.
During the sessions, more than 7.4 km in autonomous mode, guiding persons in
a very challenging and crowded environment was successfully performed.

However, throughout that extensive experimentation with the real robot in
real uncontrolled and crowded scenarios, we detected some drawbacks and ex-
tracted some conclusions:

• First, the robot kinematics was a drawback. A big and heavy platform
with a 4-wheels differential motion was not able to give a quick-enough
response in those dynamic and highly populated environments. Therefore,
a lighter robot and/or a holonomic platform that allows quicker reactions
and faster movements would be more convenient.
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• Second, the designed cost functions were not able to capture all necessary
insight to perform socially-acceptable navigation. That led the robot to
behave correctly just in some particular situations. The limitations of the
discrete MDPs commented in Chapter 3, did not allow to learn a more com-
plex cost function for the general task. This issue motivated us to employ
a different planning method, like the sampling-based planners combined
with different LfD techniques, with the aim of overcoming some of these
drawbacks. This will be addressed in the following chapters.



Chapter 5

Imitating local human-robot interactions
based on sampling-based planners

”I’m having an old friend for dinner.”
The Silence of the Lambs, 1991

This chapter continues the study of the LfD techniques applied to the human-
aware navigation problem. With the aim of overcoming some of the drawbacks
experimented in the use of MDPs, as explained in Chapter 3, we decided to
use a more flexible motion planner, like the sampling-based algorithms. Thus,
we combine this planner with LfD techniques to endow it with social normative
behavior.

In particular, we present a framework for modeling human-robot interactions
based on unsupervised learning and sampling-based planners for execution. The
approach makes use of Gaussian Mixture Models (GMMs) to model the physical
interaction of the robot and the person when the robot is teleoperated or guided
by an expert. The learned models are integrated into a sampling-based planner, a
RRT∗, at two levels: as a cost function to plan trajectories considering behavior
constraints, and as configuration space sampling bias to discard samples with
low cost according to the behaviors. The algorithm is successfully tested in the
laboratory using an actual robot and real trajectories examples provided by an
expert.

5.1 Introduction

Many novel approaches for human-aware navigation are based on Learning from
Demonstrations methods (LfD) (Argall et al., 2009), to learn socially acceptable
behaviors from real data collected under various social situations, avoiding the
need of a handcrafted explicit formulation of the behaviors.

As part of these methods, Inverse Reinforcement Learning (IRL) (Ng and
Russell, 2000), as introduced in Chapter 3, is an excellent candidate to derive

73
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such models. We made use of IRL in that Chapter and publications (Ramón-
Vigo et al., 2014; Pérez-Higueras et al., 2014) to learn local social navigation
policies. Also, it is employed in (Islas-Ramirez et al., 2016) to learn how to
approach people for interaction; a task that will be addressed here too.

However, IRL approaches typically make use of discrete Markov Decision
Processes (MDPs) as the underlying process. General problems are complex
to be encoded with MDPs due to its computational complexity (Okal et al.,
2015). Unlike the work presented in Chapter 3, we present here a first approach
that makes use of state-of-the-art sampling-based planners, as optimal Rapidly-
exploring Random Trees (RRT∗), (Karaman and Frazzoli, 2011), to be able to
work on continuous configuration spaces with higher dimensionality. These plan-
ners already reason about obstacles present in the environment, and the goal is
to incorporate into them information about the social task at hand from data.

Furthermore, we employ here a different LfD approach for human-aware nav-
igation based on Gaussian Mixture Models (GMMs). They offer a flexible frame-
work to model the relationships between the relevant features that arise when
the robot is performing a particular navigation task. GMMs are a well-suited
representation for unsupervised extraction of continuous feature distributions,
and it has also shown its utility as a model for robot skills representations in
Programming by Demonstration (PbD) settings (Calinon, 2009).

In (Claassens, 2010), the authors present a PbD framework in which GMMs
are used to retrieve the statistical constraints of several demonstrations of a
particular task, like the approach in (Calinon and Billard, 2008). After that,
these constraints are used to guide a sampled-based planner based on RRT.
Different from these approaches, we aim to go a step further and use GMM to
incorporate social navigation behavior into a cost-based RRT∗ planner. The goal
is to find a safe path which imitates a behavior by remaining within statistically
determined constraints. For doing this, we propose, first, to bias the RRT∗

random samples towards the regions of the configuration space that comply with
the model of the task extracted from data. And second, including a new cost
function into the RRT∗ planner to better account for paths that follow the learned
behaviors. At the same time, this permits better generalization to new situations
by still finding short length paths for different conditions.

In the TERESA Project1 (Shiarlis et al., 2015), telepresence robots are en-
hanced to navigate autonomously inside buildings. The project considers the
development of techniques for safe and efficient obstacle avoidance while reach-
ing navigation goals. This task becomes challenging when people are considered
and explicitly modeled into the navigation approach (see Chapter 7). We can
leverage the fact that we have the telepresence robot of the TERESA Project

1http://teresaproject.eu/

http://teresaproject.eu/
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Figure 5.1: Example pictures of the TERESA telepresence system.

so that we can extract useful information from the users controlling the robot.
An example of this setup is shown in Fig. 5.1 where the controller of the telep-
resence system and the robot interacting with other person are shown. Using
examples of (teleoperated) robot paths and the relevant configurations (features)
of the performed task open the door for extracting the relevant relations or con-
straints that best represent such kind of paths. The main hypothesis here, and
the whole thesis indeed, is that these paths enclose the social implications that a
human takes into account when he is performing such task, at least at the same
situations performed in the experiments.

In summary, this chapter proposes an approach to obtain, in an unsuper-
vised way, these human-robot interaction models from the data gathered by the
TERESA telepresence robot. Then, we employ these models combined with a
sampling-based planner to reproduce the learned behavior efficiently. While the
method is general, we present results in some particular tasks involved in social
interaction in navigation.

5.2 Interaction tasks proposed

The proposed approach of imitation learning can be employed to model specific
local interactions between the robot and the people for certain tasks. These
models will be then used by the local RRT∗ planner that will provide more
flexibility to deal with possible obstacles in real situations since obstacles are
not considered in the models learned. To illustrate the proposed approach we
focus on two particular tasks:
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Figure 5.2: Example tasks to be encoded using GMMs. The initial robot position
is indicated with a blue square and the goal with a green star. The person
position is indicated by a yellow triangle, and the trajectories are shown in green
lines. Avoiding a standing person is shown in the left image. Approaching a
person in two cases, facing the robot or back to the robot, is depicted on the
right image.

• Avoiding. The robot avoids a standing person that is facing it. The
avoidance maneuver can be performed by passing through the left or the
right side.

• Approaching. The robot approaches a standing person in an arbitrary
orientation. For the sake of simplicity, we study two particular cases: when
the person is looking to the robot, and when the standing person is back
to the robot. In this latter, the robot can approach the person by the left
or right side. This ”social” approaching task is addressed in the TERESA
project, in which the generalization of the method to cover all the rest of
possible approaching angles and the integration and use in the TERESA
telepresence system is explained in Chapter 7.

Figure 5.2 shows a graphical illustration of some example trajectories em-
ployed for model learning of the two tasks proposed.

5.3 GMMs for interaction modelling

A proper choice of the relevant features f = [f1, f2, . . . , fn]T when encoding a
particular navigation task is crucial, as it provides part of the solution to the
problem of defining what is important to imitate. For the work developed here,
we have considered as features the distance (d) and the relative angle (θ) between
the robot and the person in the scene, logged with timestamps. The angle
values are continuous measures from [−π, π), negative clockwise (concerning the
person’s gaze). Thus, a set composed by N datapoints ζ = {ζj}Nj=1 of D = 2
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Figure 5.3: Illustration of the features chosen to encode the proposed tasks
through GMMs. Representation of the features d and θ of three people rep-
resented by the blue, red and green triangles according to the robot position
represented by a pink triangle.

dimensions is considered. Figure 5.3 shows an illustrative example of the features
considered (d, θ), in which the features of three people (blue, red and green
triangles) regarding the robot (pink triangle) are depicted.

The time feature is left out because the dynamics of the tasks proposed is
not taken into account. That means that only static scenarios, in which the
pedestrians stand still in their initial positions, are considered as demonstrations
in this work. However, this is not a limitation of the method, and time could be
considered as feature describing these tasks or other tasks.

According to our work in (Ramón-Vigo et al., 2015) and the social psychology
studies of the movement and interaction of the pedestrians in (Dennis Middlemist
et al., 1976; Bitgood and Dukes, 2006), the features (d, θ) considered here allows
us to model the tasks at hand since we are considering learning from static
scenarios. However the selection of features is not a limitation of this technique,
and other features can be added for more complicated tasks, including those that
can describe the dynamics of the task execution, like time and velocities.

From the demonstrated trajectories of the features D, it is possible to extract
a GMM, so that the probability of a particular combination of feature values is
given by:
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The GMM parameters are learned from the demonstration data through the
use of the Expectation-Maximization (EM) algorithm (Dempster et al., 1977)
that is seeded with an initial estimate of density centers calculated with the k-
means algorithm. A drawback of EM is that the optimal number of components
k in a model may not be known forehand. One usual criterion for model selection
is the Bayesian Information Criterion (BIC) (Schwarz, 1978), which performs a
trade-off between how well the model fits the data and a penalty factor aiming
at minimizing the number of parameters. The main drawback of BIC is that
it requires the estimation of multiple models. So, the best number of compo-
nents that can fit the demonstrated example has been tested empirically in the
experiments performed here.

5.4 The reproduction planner

To reproduce the behavior demonstrated in the tasks, we provide a sampling-
based motion planner (a RRT∗) with the information encoded in the learned
GMMs. This RRT∗ planner is extensively used in this thesis, so we present here
a detailed description of the algorithm first. Then, we explain the modifications
performed in the algorithm to use the learned models.



5.4. The reproduction planner 79

5.4.1 RRT* planner

Optimal Rapidly Exploring Random Trees, known as RRT∗, (Karaman and Fraz-
zoli, 2011) is a technique for (asymptotical) optimal motion planning. It consid-
ers that a cost function is associated with each point x in the configuration space
X . The RRT∗ seeks to obtain the trajectory ζ∗ that minimizes total cost along
the path C(ζ). It does so by randomly sampling the continuous configuration
space and creating a tree towards the goal, indicated as G = (V,E), with V the
vertices of the tree and E the edges that connect the vertices.

The general procedure to build the tree is the following: for each new sample,
an edge is created from the tree vertex (belonging to the group of the ”closest”
tree vertices to the sample) that can be connected to the new sample along a
path with minimum cost. So, the new sample becomes a new vertex of the tree.
Then, a rewiring process of the tree is performed, in which new edges are created
from the new vertex to the vertices in the previous nearest-vertices group. If the
path through the new vertex has a lower cost than the path through the current
parent; in this case, the edge linking the vertex to its current parent is deleted,
to maintain the tree structure. The process does not finish when a path from
the start configuration to the goal configuration is found, but when a maximum
number of samples has been drawn and/or a time limit has expired.

A detailed description can be seen in Algorithm 5.1. Next, we explain the
most relevant procedures and functions involved:

• SampleFreei(xgoal, ε). This function returns a valid sample (obstacle free)
of the configuration space. The samples are drawn from a uniform distri-
bution. Moreover, with a low probability, indicated by ε, the goal configu-
ration xgoal (or region Xgoal) is sampled.

• Nearest(G,x). Given the current tree G and a sample x of the config-
uration space X , this function returns the configuration point xnearest of
the tree G that is the ”closest” to the sample x, according to some given
distance criteria, such as Euclidean distance or Manhattan distance among
others.

• Steer(xn,xm). Given two points xn, xm ∈ X , this function returns a point
z ∈ X such that z is ”closer” to xm than xn is. The point z minimizes
‖z−xm‖ while at the same time maintains ‖z−xn‖ ≤ η, for a pre-specified
η > 0. In other words, the Steer function moves the robot (in straight line
or with kinodynamic constraints) from the point xn in the direction of xm
until reaching the point or a maximum distance indicated by η.

• CollFree(xn,xm). This binary function returns whether the path between
the points xn and xm is free of collision with any obstacle or not. It can
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Algorithm 5.1: RRT∗

Input: Start configuration xinit; goal configuration xgoal
Output: Tree G = (V,E);
1: V ← xinit; E ← ∅;
2: for i = 1 to maxSamples do
3: xrand ← SampleFreei(xgoal, ε);
4: xnearest ← Nearest(G = (V,E), xrand);
5: xnew ← Steer(xnearest, xrand);
6: if CollFree(xnearest, xnew) then
7: Xnear ← Near(G = (V,E), xnew, radius);
8: V ← V ∪ {xnew};
9: xmin ← xnearest;

10: cmin ← Cost(Xnearest) +MotCost(xnearest, xnew);
11: for each xnear ∈ Xnear do // Connect along a minimum-cost path
12: if CollFree(xnear, xnew) ∧Cost(xnear) +MotCost(xnear, xnew) <

cmin then
13: xmin ← xnear;
14: cmin ← Cost(xnear) +MotCost(xnear, xnew);
15: end if
16: end for
17: E ← E ∪ {(xmin, xnew)};
18: for each xnear ∈ Xnear do // Rewire the tree
19: if CollFree(xnew, xnear) ∧ Cost(xnew) + MotCost(xnew, xnear) <

Cost(xnear) then
20: xparent ← Parent(xnear);
21: end if
22: E ← (E \ {(xparent, xnear)}) ∪ {(xnew, xnear)};
23: end for
24: end if
25: end for
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perform the checking by considering the path as a straight line connect-
ing the points or the resulting path taking into account the kinodynamic
constraints of the platform (as a combination with the Steer function).

• Near(G,x, r). Given the point x ∈ X , the function Near returns the
group of points (vertices) Xnear of the tree G that are within a ball of
radius r around the point x. The size of this radius changes according to
the number of vertices of the tree (card(V )):

r = min{γRRT ∗ ∗ (log(card(V )/card(V )) ∗ 1/d, δ} (5.4)

Where d indicates the number of dimension of the configuration space, and
δ is a pre-defined maximum value for the radius. The parameter γRRT ∗

is calculated according to the size of the configuration space X and its
dimensionality.

• MotCost(xn,xm). This function calculates the cost of moving from the
point xn to the point xm, according to the following equation:

MotCost(xn, xm) =
c(xn) + c(xm)

2
‖xm − xn‖ (5.5)

Thus, the calculation takes into account the individual costs associated
to each point (function c(x)) and the ”distance” between them. Without
loss of generality, we can assume that the cost function c(x) for each point
can be expressed as a weighted linear combination of a set of J feature
functions fj(x) defining the task (similar to the cost (reward) function of
the MDP that we learn in Chapter 3, or the one we use in Chapter 6):

c(x) =
J∑
j=1

ωjfj(x) = ωT f(x) (5.6)

• Cost(xn). Given a point xn ∈ V , this function returns the accumulated
cost of the path from the initial tree point xinit to the given tree point xn:

Cost(xn) =

{
c(xn) if xn = xinit

Cost(xn−1) +MotCost(xn−1, xn) otherwise
(5.7)

• Parent(x). Given a point x ∈ V and x 6= xinit, this function return the
point associated to the parent vertex of x.
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Finally, the path is recovered from the minimum-cost leaf vertex in the goal
region, and following its parent’s vertices until the initial configuration. If a
solution connecting the initial vertex with the goal region is not found, the closest
path found to the goal region is returned. The path is then represented by a
set of discrete configuration points ζ = {x1, x2, · · · , xN}. Further mathematical
details about asymptotic optimality an computational complexity can be found
in (Karaman and Frazzoli, 2011).

5.4.2 GMM-RRT* planner

In the approach presented here the standard RRT∗ algorithm is extended with
the learned GMM at two levels:

1. Including a new task-similarity cost into the evaluation of the node’s costs.
The GMM obtained encompasses the most likely configurations of the task.
So, when a node is proposed to be added to the RRT∗ tree, a cost based on
the GMM is derived and used. The objective is to increase the cost of those
configurations that are unlikely according to the learned GMM. Thus, the
likelihood is inverted to obtain that cost. Notice that the likelihood is a
density of occurrence, so it is necessary to give a low bound to keep the
inverse within the interval [0, 1]. To this end, it has been chosen to truncate
the likelihood to a certain low value δ. Thus, cost function c(x) expressed
by (5.6), would take now the value of the inverted likelihood of the GMM
in the point x.

2. Providing the planner with the most likely subspace to perform the sam-
pling of the RRT∗. If the RRT∗ knows the regions where the most likely
paths are, then we can bias the sampling of the configuration space to
these areas, reducing the probability of sampling useless states and, hence,
reducing the computational costs to obtain a solution. To this regard, it
is possible to define by a parameter the percentage of uniform sampling
and GMM-based sampling to be used. In this way, the approach presented
here can still take advantage of the random sampling. Therefore, we have
modified the sampling procedure SampleFree including new information:
SampleFree(xgoal, ε,GMM, ρ). Where with a probability ρ the sample is
drawn from the regions of the configuration space covered by the Gaussian
models (and obstacle-free) and leaving the rest to the uniform sampling of
the configuration space.

These changes adopted still guarantee the probabilistic completeness of the
modified RRT∗ planner proposed. Thus, although the sampling method is now
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based on a GMM, it also keeps some percentage of uniform sampling that guaran-
tees a feasible path if the execution time is enough. So, a good balance between
the percentage of GMM-based sampling and the execution time given to the
RRT∗ to plan needs to be negotiated.

5.5 Experimental results

In this section, we evaluate the proposed approximation against an existing
framework (Claassens, 2010) in the two tasks considered. The data collection
and the metrics employed are shown. We also highlight two important aspects
about the suitability of both frameworks for planning: the management of the
homotopies when solving the task and the generalization to deal with situations
far away from the learned examples.

5.5.1 Data collection and unsupervised characterization

Several experiments were performed to retrieve exemplary trajectories to feed
the GMM learning phase. Those experiments took place inside a laboratory of
the Pablo de Olavide University. The robot was teleoperated by a person used
to pilot it (an expert) while performing the scenes described in Section 5.2. The
room was clear and free of obstacles between the person and the robot, and the
study was recorded using a motion capture system (OptiTrack2) which provides
the robot and people’s poses automatically. An example picture of the laboratory
can be seen in Fig. 5.4), in which the space for operation, the robot, and the
hats employed for human detection are shown.

Then, the features [d, θ] were easily derived from the data, and the corre-
sponding GMM models were obtained using the method described in Section
5.3. Those models are then integrated into the RRT∗ as explained in Section
5.4. In the execution of the task, the features are obtained from the people
in the scene and a set of random samples are drawn from the GMM models.
Then, these samples are transformed from the feature space to coordinates in
the Cartesian space in the frame of the robot and used by the RRT∗ planner.
This method is called GMM-RRT∗. A set of GMM models in Cartesian space
[x, y] have also been derived to be used in the approach GMM-RRT presented
in (Claassens, 2010), which will be used to baseline for comparison.

Figure 5.5 shows the recorded trajectories for the task of approaching a per-
son. This task is also split into two subtasks depending on the relative orienta-
tion between the person and the robot. The case of robot and person facing each
other is shown in the left image, while the case of the person placed backward

2http://optitrack.com/motion-capture-robotics/

http://optitrack.com/motion-capture-robotics/
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Figure 5.4: A example view of the general set up of the laboratory for data-
collection experiments.

to the robot is shown on the right. The GMM models learned for these subtasks
are then combined to fulfill the general task, as shown in the down image of the
figure, in which the models learned are depicted in the feature space.

5.5.2 Metrics

We propose two metrics to compare the obtained paths from the different plan-
ners and concerning the demonstrated trajectories.

The first metric is called Trajectory Difference Metric (TDM), which is de-
fined as follows:

TDM(ζD, ζP ) =
1

|ζD|

|ζD|∑
i=1

min
j
‖ζD(i)− ζP (j)‖ (5.8)

where we sum the distances of every point i of the trajectory ζD to its closest
point j of the trajectory ζP . Then we divide between to number of samples of
the trajectory ζD, indicated by |ζD|, in order to obtain an average distance. This
metric gives an idea of the similarity of two given trajectories. The final metric is
given by the averaged value of this metric for all the planned and demonstrated
trajectories:
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Figure 5.5: Trajectories collected and GMMs learned for the task of approaching
a person. Up left: person and robot facing each other. Up right: person placed
backwards to the robot. Down: Respective GMM models learned in the feature
space [d, θ].

TDM =
1

|D|
1

|P |
∑
D,P

TDM(ζD, ζP ) (5.9)

where D and P are the numbers of demonstrated and planned trajectories, re-
spectively.

The second metric is the resulting averaged trajectory length ratio le, ex-
pressed as the mean of the ratio of the absolute value of the difference between
the planned trajectories and the demonstrated trajectories lengths divided by
the demonstrated trajectories’ length:

le =
1

|D|
1

|P |
∑
D,P

|l(ζD)− l(ζP )|
l(ζD)

(5.10)
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Figure 5.6: Evolution of the mean path cost value and the standard deviation
according to the number of iterations executed. The GMM-RRT* approach with
a 100 % of GMM sampling bias is represented by a red line for the cost, and a
green area for its standard deviation. The GMM-RRT∗ approach without GMM
sampling bias is shown with a blue line for the cost, and a light blue area for the
standard deviation.

5.5.3 Results

5.5.3.1 Path cost evaluation

Here we evaluate the convergence speed of the RRT∗-based planner to the op-
timal path regarding costs. To do that, we employ the RRT∗ planner using a
GMM-based cost and varying the percentage of sampling bias from the GMM
models. Figure 5.6 shows the evolution of the solution path cost versus the num-
ber of iterations using 100% and 0% GMM bias, for the ”Avoiding a Person”
task. The allowed planning time for this comparison was 100 seconds to be sure
to converge to the optimal cost.

As can be seen in this example, the planner that includes the GMM sampling
bias can converge to an optimal (or nearly optimal) path much faster than the
version without GMM sampling bias. This result states the value of the bias and
the need of balance the percentage of sampling from the GMM models employed.

5.5.3.2 Metrics performance

Here, we compare the proposed approach (GMM-RRT∗) with a related approach
of the state-of-the-art (GMM-RRT) (Claassens, 2010). This baseline approach
for trajectory imitation also employs GMMs for statistical characterization of a
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(a) Task 1: avoid a person

(b) Task 2: approach a person

Figure 5.7: Demonstrated and planned trajectories of the GMM-based planners.
The ”start” and ”goal” states are shown, while the person’s position and gaze is
represented by a triangle. The demonstration paths are shown in green lines. The
paths of the baseline planner are shown in blue, and the paths of the GMM-RRT∗

planner proposed in red. (5.7a) Avoiding a person task. (5.7b) Approaching a
person task.
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Table 5.1: Trajectory quality for both tasks. Smaller values are better for all
metrics. The best values are highlighted in boldface.

Task 1: Avoiding Task 2: Approaching

TDM (m) le(%) TDM (m) le(%)

Rigth Homotopy

GMM-RRT* 0.057± 0.015 3.66± 2.64 0.091± 0.018 3.69± 2.54
GMM-RRT 0.080± 0.021 4.00± 2.51 0.092± 0.016 4.96± 3.45

Left Homotopy

GMM-RRT* 0.048± 0.011 4.96± 2.37 0.061± 0.029 4.22± 2.50
GMM-RRT 0.068± 0.017 4.31± 3.1 0.067± 0.017 4.56± 3.62

Frontal Homotopy

GMM-RRT* 0.038± 0.014 11.35± 5.35
GMM-RRT 0.034± 0.018 8.55± 3.34

set of demonstration trajectories. Then, unlike our approach, the search tree of
an RRT planner is completely kept within the statistical model learned (100 %
of sampling bias of the GMM model). Moreover, the sampling process is con-
strained so that the samples can be drawn only from following modes of the
GMM learned. Further details of the approach can be consulted in (Claassens,
2010).

For the comparison, the following mixed-sampling strategy was adopted in
our approach: the 95% of the samples were drawn from the learned GMM while
the remaining 5% of the samples were uniformly obtained. We aim to take
advantage of the learned models and also allow a degree of randomness when
sampling configurations. This feature is only applicable to the proposed GMM-
RRT∗ planner. In the case of GMM-RRT planner, the commented constraints
in the construction of the RRT tree do not allow uniform sampling of the space.

Figure 5.7 shows graphically a set of 25 paths obtained by each planner for
both tasks proposed. The different valid homotopies are also taken into account.
Visually, both planners seem to mimic quite well the demonstrated paths followed
in the tasks.

To have a clearer comparison of the planners’ ability to imitate the demon-
strated trajectories, we make use of the metrics presented in Section 5.5.2. Table
5.1 shows the values of the metrics obtained when the different planners are used
in both tasks. As can be observed, the planner proposed in this work outperforms
in nearly every homotopy considered.
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5.5.3.3 Homotopy management

As commented in Section 5.2, the tasks being learned by the robot may be
composed by several homotopies that are equally valid for reaching the goal. For
instance, Fig. 5.8 illustrates the compound model of the Approaching-a-Person
task. As can be seen, the compound model covers the subtasks of approaching
the person from the front or the back. Moreover, this latter can be reached by
two homotopies, surrounding the person from the left or right side.

(a) Compound model for the Approaching-a-person task

(b) Three different GMM models for fulfilling the Approaching task

Figure 5.8: Models learned for the Approaching-a-person task. (5.8a) com-
pound model of the three different GMMs. (5.8b) Separate GMM models: front
approach, left homotopy for back approaching, and right homotopy for back
approaching respectively.

This is a clear advantage of the GMM-RRT∗ planner proposed over the base-
line. In case of the GMM-RRT planner, not only the social situation has to
be known beforehand to choose between the homotopy models, but also once a
model has been selected, an obstacle may hamper the execution of the plan. In
such a situation, both planners can take advantage of the variability in the exe-
cution of the demonstrated task, encoded by the GMMs covariance matrices, to
avoid the obstacle, but sometimes this could not be enough. An example of this
situation is illustrated in Fig. 5.9. There, it can be observed how the GMM-RRT
planner is not able to find a free path to the goal, although it exists. However,
the ability of the proposed GMM-RRT∗ planner to manage different homotopies
allows it to choose between the possible homotopies to reach the goal naturally.
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Figure 5.9: Avoiding-a-person task. Shadowed area represents an obstacle. Left:
GMM-RRT planner can deal with only one homotopy, leading to a block situa-
tion. Right: GMM-RRT∗ planner managing a two-homotopies model, and thus,
reaching correctly the goal.

Figure 5.10: Mixed-sampling strategy for generalization of the GMM-RRT∗ ap-
proach. Left: Simulated trial without uniform sampling. Right: 95% of GMM
sampling bias and 5% of uniform sampling.

5.5.3.4 Generalization

Another important aspect to be evaluated is the generalization to other scenar-
ios different from those used in the learning. The GMM models are very good
in mimicking the situations employed to build them. However, robot naviga-
tion tasks involve several different scenarios and situations that can also change
dynamically, and the GMMs can hardly deal with them. Nevertheless, the com-
bination of the GMMs with the RRT∗ allows us to take advantage of the ability of
the RRT∗ planners to overcome those situations by exploration the state space.

The Approaching-a-person task is modified in Fig. 5.10 so that an obstacle
(as a rectangular shadowed area) is introduced in the scenario blocking the two
possible robot path to the goal encoded in the GMMs learned. In that situation,
the planner is not able to find a path to goal if only samples from the GMM
model can be drawn (left image). On the other hand, the GMM-RRT∗ planner
still can reach the goal is a mixed-sampling strategy is adopted (right image):
the percentage of uniform sampling allows to randomly explore the state space
outside the learned space encoded through the GMMs, and therefore a path to
the goal avoiding the obstacle can be found.

The simulations showed in Fig. 5.10 were within a 10 seconds time horizon.
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Depending on the task to perform, the percentage of bias, thus, offers a trade-off
between the imitation capabilities and the planning time required to obtain a
path. An adaptive solution that dynamically modifies this bias after obtaining
a first good path is left for future work.

5.6 Conclusions

In this chapter, we presented a planning algorithm based on RRT∗, which is
capable of inferring the most suitable socially-aware paths in two particular
situations (or tasks): avoiding a standing person and approaching forwards or
backward a standing person. Both tasks are statistically characterized from real
experiments by using two different GMMs, which are later used in two ways: to
guide the state-space sampling step and to include a cost term into the standard
cost function employed in the RRT∗ algorithm.

Unlike discrete MDP-based approaches, as seen in Chapter 3, the use of
the RRT∗ planner allows us to work in continuous spaces. It also scales better
with larger state spaces and higher dimensionality. Additionally, the statistical
characterization of the demonstration trajectories based on GMMs allows us to
lead the planner to mimic the provided behavior correctly.

We evaluated the approach presented here jointly with a state-of-the-art algo-
rithm based on RRT and GMM. The comparison included a metric performance
to measure the similarity between the planned trajectories with the learned ones,
and how both approaches performed in simulated scenarios that can include
slight differences from where they were learned. Although the RRT based plan-
ner was quicker to get a suitable path, the approach presented here was able to
manage homotopies. It also generalized better when tackling with unexpected
situations (such as obstacles), thanks to the trade-off between the uniform and
the biased sampling of the configuration space.

However, the proposed approach presented some drawbacks. First, we have
to define the set of features that describe the task to be imitated. Nevertheless, in
complex problems, like human-aware navigation, it is not easy to determine the
key features that better describe the task considered. Second, some parameters
need to be manually specified as the number of modes of the GMM model to
be learned. And finally, to consider the possible obstacles in the modeling is
complex. In our approach, they are not considered in the GMM modeling but
we used the RRT∗ to deal with them. Unfortunately, this can not be enough to
overcome all the possible situations that can arise.

In any case, we think the approach can be satisfactorily employed in specific
situations, like the task of approaching a human target in a socially-acceptable
manner, as we implemented in the TERESA project (Chapter 7). Further-
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more, to overcome some the drawbacks commented, a different Learning-from-
Demonstration approach for the general human-aware navigation problem using
RRT∗ planners is presented in the next Chapter.



Chapter 6

Learning robot navigation behaviors by
demonstration using a RRT* planner

”May the Force be with you.”
Star Wars, 1977

This chapter presents an approach for learning navigation behaviors from
demonstrations using Optimal Rapidly-exploring Random Trees (RRT∗) as the
main planner. A new learning algorithm combining both Inverse Reinforcement
Learning techniques (IRL) and RRT∗ planners is developed to learn from ex-
pert’s demonstrations the RRT∗’s cost function that leads the planner to behave
similarly to the demonstrated examples.

In Chapter 3, IRL based on discrete MDPs was employed to learn a simple
reward function for reactive motion planning. To overcome some of the draw-
backs found, we decide on taking advantage of a more flexible path planner in
continuous spaces (RRT∗), as we also introduced in Chapter 5. In contrast,
here we present a new approximation that combines the RRT∗ planner with IRL
concepts to induce social behavior into it. A comparison with other state-of-
the-art algorithms shows how the method can recover the underlying behavior
demonstrated by the expert.

6.1 Introduction

As commented in previous chapters, IRL is a successful technique to learn human
behaviors from demonstration. In most of the existing models, the IRL technique
makes use of MDPs as the underlying process (Henry et al., 2010; Ramón-Vigo
et al., 2014; Vasquez et al., 2014). MDPs present some disadvantages for robot
motion planning, like poor scalability with the involved large (and typically
continuous) state spaces, which leads to high computational complexity.

Different solutions have been considered to deal with the main MDP draw-
backs. The computational cost is managed in (Michini et al., 2013) by using a

93
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Bayesian nonparametric mixture model to divide the observations and obtain a
group of simpler reward functions to learn. In (Levine and Koltun, 2012), de-
terministic MDPs with large, continuous state and action spaces are handled by
considering only the shape of the learned reward function in the neighborhood of
the experts demonstrations. Furthermore, neural networks are applied in (Xia
and Kamel, 2016) to learn non-linear policies. In (Okal and Arras, 2016a), a
socially normative behavior is learned using flexible graph-based representation
to model the underlying MDP.

Other authors try to replace or represent the MDP by another process ac-
cording to the aim of the task. In the called Maximum Margin Planning (MMP)
method (Ratliff et al., 2006), the MDP can be replaced by an A∗ search algo-
rithm. Also in (Shiarlis et al., 2017a) the MMP method is extended to learn
RRT∗ cost functions instead of using an A∗ search algorithm. Different car driv-
ing styles are learned in (Kuderer et al., 2015) by modeling the car dynamics
using a time-continuous spline representation instead of an MDP. Another ex-
ample is (Kretzschmar et al., 2016), where the cooperative navigation behavior
of humans is learned using Hamiltonian Markov chain Monte Carlo sampling
to compute the feature expectations over high-dimensional continuous distribu-
tions.

We present here a novel approach to learn navigation behaviors from demon-
strations, which we have called Rapidly-exploring random Trees Inverse Rein-
forcement Learning (RTIRL) (Pérez-Higueras et al., 2016a, 2017). We make use
of IRL concepts (Ng and Russell, 2000) and sampling-based costmap planners,
like Optimal-RRTs (RRT∗)(Karaman and Frazzoli, 2011), to identify the RRT
cost function that best fits the example trajectories. In Chapter 3, we present an
approach with a gross discretization and a low dimensionality of the state and
feature space to keep the MDP computationally tractable. In contrast, here we
make use of RRT∗ path planners instead of MDPs, which are quite widespread
planners in the robotics community. The method exploits the advantages of the
RRT∗ planners to deal with continuous state and control spaces and to scale
with the state size. It is also computationally faster and general enough to be
applied in different scenarios.

In particular, we consider the application for semi-autonomous telepresence
robot developed in the European project TERESA (Shiarlis et al., 2015), as we
did in Chapter 5. Our goal is to increase the autonomy of such robots, freeing
the users from the low-level navigation tasks. In this setup, it is very natural to
obtain navigation data from the user, considering them as examples and using
them to learn social navigation behaviors. In particular, we employ navigation
demonstrations in static scenarios (non-moving pedestrians), that we use later
in dynamic scenarios by replanning at high frequency.



6.2. Learning a RRT* cost function from demonstrations 95

The proposed approximation is compared against other similar approaches
from state of the art. The results show how the method adequately recovers the
demonstrated behavior.

6.2 Learning a RRT* cost function from demonstra-
tions

6.2.1 IRL formulation with RRT* planners

RRT∗ is a technique for optimal motion planning employed extensively in robotics
(Karaman and Frazzoli, 2011). It is flexible and easily adapted to different sce-
narios and problems. RRT∗ approaches reason about collisions with obstacles
at moderate computational cost even in high dimensionality. They explore the
configuration space to obtain optimal paths on cost spaces, and the kinodynamic
extension allows reasoning about the robot dynamics.

The RRT∗ algorithm is presented and explained in detail in Chapter 5.
According to Eq. (5.6), the cost of a point x of the configuration space, can
be calculated as a weighted linear combination of a set of features f(x) =
[f1(x), f2(x), · · · , fJ(x)]T . The particular features will depend on the task to
be learned, and are used to extract the information from the robot configura-
tions that are relevant for that particular task. While not explicitly indicated,
the value of the features will also depend on the scenario s (given by the position
of obstacles, people, goals and any other relevant information external to the
robot) where the planning takes place.

The cost of a path ζ is then the sum of the cost for all points in it. Particularly,
in the RRT∗, the cost of a path is the sum of the sub-costs of moving between
pairs of points in the path, according to Eq. (5.5) presented in the previous
chapter:

C(ζ) =

N−1∑
i=1

c(xi) + c(xi+1)

2
‖xi+1 − xi‖ (6.1)

= ωT
N−1∑
i=1

f(xi) + f(xi+1)

2
‖xi+1 − xi‖︸ ︷︷ ︸

f(ζ)

(6.2)

= ωT f(ζ) (6.3)

where f(ζ) is called the feature count vector of path ζ. Thus, for a given weights
vector ω, the algorithm will return trajectories that try to minimize this cost.
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Given a set of demonstration trajectories by an expert,

D = {ζ1, ζ2, · · · , ζD} (6.4)

and the definition of the cost function c(x), given by Eq. (5.6), the problem of
learning from demonstrations, in this setup, means to determine the weights ω
that lead our planner to behave similarly to these demonstrations.

The concept of similarity in this context is ambiguous. One may want to
reproduce the same trajectories in the same situations. However, it is necessary
to learn a representation that can generalize to other cases. As in (Abbeel and
Ng, 2004; Kuderer et al., 2015), this can be achieved by using the mentioned
features as a measure of similarity. The objective is then to model the underlying
trajectory distribution of the expert p(ζ|ω) with the constraint that the expected
value of the features for the path generated by the model is the same as the
expected value of the features for the given demonstrated trajectories:

E(f(ζ)) =
1

D

D∑
i=1

f(ζi) (6.5)

There are many distributions p(ζ|ω) that achieve the previous constraint.
Applying the Maximum Entropy Principle (Ziebart et al., 2008; Kretzschmar
et al., 2014) to the IRL problem leads to the following form for the probability
density for the trajectories returned by the demonstrator:

p(ζ|ω) =
1

Z(ω)
e−ω

T f(ζ) (6.6)

where the partition function Z(ω) =
∫
e−ω

T f(ζ)dζ is a normalization function
that does not depend on ζ. Thus, this model assumes that the expert is expo-
nentially more likely to chose a trajectory with lower cost ωT f(ζ).

Under this model, we can estimate the log-likelihood of a particular trajectory
ζ:

L(ζ|ω) = log
1

Z(ω)
e−ω

T f(ζ) = (6.7)

−logZ(ω) + (−ωT f(ζ)) (6.8)

Therefore, assuming conditional independence of the demonstrations, the
(log-)likelihood of the set of demonstrated trajectories is given by:

L(D|ω) = −D log(Z(ω)) +
D∑
i=1

(−ωT f(ζi)) (6.9)
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The gradient of this log-likelihood with respect to ω is given by:

∂L(D|ω)

∂ω
= D

1

Z(ω)

∫
f(ζ)e−ω

T f(ζ)dζ︸ ︷︷ ︸
E(f(ζ))

−
D∑
i=1

f(ζi) (6.10)

= D(E(f(ζ))− 1

D

D∑
i=1

f(ζi)) (6.11)

We arrive at the primary constraint in (6.5) by setting this gradient to zero.
That means, as indicated in (Kuderer et al., 2012), that the IRL problem under
the Maximum Entropy distribution is equivalent to maximizing the likelihood of
the demonstrations when assuming an exponential distribution.

Maximizing the likelihood, Eq. (6.9), to obtain the set of weights cannot be
solved analytically. But the gradient in (6.11) can be used to apply gradient
ascend techniques to solve this problem. As mentioned in (Kuderer et al., 2015),
this gradient can be intuitively explained. If the value of one of the features for
the trajectories returned by the planner is higher than the value in the demon-
strated trajectories, the corresponding weight should be increased to penalize
those trajectories.

The main problem with the computation of the previous gradient is that it
requires to estimate the expected value of the features E(f(ζ)) for the generative
distribution (6.6) over the continuous space of trajectories.

E(f(ζ)) =
1

Z(ω)

∫
f(ζ)e−ω

T f(ζ)dζ (6.12)

In (Kretzschmar et al., 2014), a probabilistic generative model for trajectories
is derived from data, and the expectation is computed by Monte Carlo Chain
sampling methods, which are very computationally demanding. One option is to
approximate the previous expectation by the features of the most likely trajectory
(Kuderer et al., 2015). In our case, we will approximate the expert by the RRT∗

planner onboard the robot. Being an asymptotically optimal planner, for some
given weights, the RRT∗ will provide the trajectory that minimizes the cost (the
most likely) given infinite time. As the planning time is limited, the RRT∗ will
provide trajectories with some variability on the features, and thus the feature
expectation E(f(ζ)) is computed by running several times the planner between
the start and goal configurations. That is then used to calculate the gradient
and adapt the weights employed in the RRT∗ planner.

The experimental results will show that the method can recover the behaviors
taught by the expert.
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Figure 6.1: General learning scheme proposed to adjust the weights of the cost
function of a RRT∗ planner.

6.2.2 RTIRL algorithm

The general scheme of the learning algorithm proposed is presented in Figure 6.1.
First, we define a scenario as a particular situation where to perform the task
proposed (for instance, a particular position of the obstacles, people positions,
and orientations, starting and goal positions, for the task of social navigation).
So, for each different scenario s ∈ S present in the demonstrations, we plan a path
to the respective goal using the RRT∗ planner. The planner has a limited time
to plan, so small variations of the resulting path can arise. So, as commented
before, we deal with that by repeating the plan some times and calculating the
average values over the number of repetitions. Then, the feature count of the
demonstration paths and the RRT∗ paths are calculated and averaged over all
the scenarios. The difference between these values is used to update the weights
of the cost function at each iteration. Thus, we get the weights that make the
cost function fit better the demonstration paths as the output of the algorithm.

The approximation is described in more detail in Algorithm 6.1. First, in
Line 1 we obtain the average feature count fD = 1

D

∑D
i=1 f(ζi) from the example
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Algorithm 6.1: RTIRL

Input: Trajectory examples D = {ζ11 , . . . , ζSD} in S scenarios
Output: Function features weights ω = [ω1, . . . , ωJ ]T

1: fD ← calculeAvgFeatureCounts(D)
2: ω ← randomInit()
3: repeat
4: for each s ∈ S do
5: for rrt repetitions do
6: ζi ← getRRTstarPath(s, ω)
7: f(ζi)← calculeFeatureCounts(ζi)
8: end for
9: f

s
RRT ∗ ← (

∑rrt repetitions
i=1 f(ζi))/rrt repetitions

10: end for
11: fRRT∗ ← (

∑S
i=1 f

i
RRT ∗)/S

12: ∇L ← (fRRT∗ − fD)
13: ω ← UpdateWeights(∇L)
14: until convergence
15: return ω

trajectories D in S different scenarios. The feature counts are obtained as the
addition of the feature values of pairs of nodes of the trajectory evaluated using
(6.2).

Then we initialize the weights with a random value (Line 2). It is notewor-
thy that the weights are being normalized during the learning iterations, and
the features values for each node are also normalized for the sake of clarity of
representation, but this is not a requirement of the algorithm.

The key point is the gradient given by (6.11), which requires a comparison
of the features counts obtained from the example trajectories and the expected
value from the RRT∗ planner. The latter is obtained by running rrt repetitions
times the planner for the current weight values for each scenario considered (Line
6), and estimating and normalizing the features counts (Line 7). In Lines 9 and
11, the averaged values are computed.

Based on this comparison the weights of the cost function are updated using
gradient descent (line 13):

ωi+1 ← ωi −
λ

φ
∗ ∇Li (6.13)

where φ is a value for stabilization which is being incremented after each iter-
ation, λ is an adjusting factor of the equation and ∇Li = ∂L(D|ω)

∂ωi
is the i-th

component of the gradient.
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Finally, the learning process finishes when the variations of the weight values
keep under a certain convergence value ε.

6.3 Features for social navigation

The general learning approach presented above can be applied to any task that
can be solved with a RRT∗ planner and by defining the adequate features that
describe the task properly. From this section on, we apply the algorithm to learn
the particular task of human-aware navigation. So, a set of features specially
designed for that task is presented here.

The social navigation task considered here involves the robot navigation in
different house environments like rooms and corridors where some persons stand
in various positions, the robot has to avoid them to reach the goal.

The selection of the adequate features involved in the social navigation task
is not trivial (Ramón-Vigo et al., 2015). A review and analysis of the most
used features in the literature are presented by Vasquez et al. (2014). A set of
commonly-used features have been considered here by taking into account these
previous works. In particular, they are the distance to the goal, the distance
to the closest obstacle, and the distance from the robot to the people in the
scene and the angle of the robot position concerning the people α, as depicted in
Figure 6.2. We are not using dynamic features as velocities or accelerations here
since we are considering learning from static scenarios, where the pedestrians
are still. Then, the learned behavior is applied to dynamic scenarios by periodic
re-planning at high frequency to capture the new situations in the environment.
The adaptation of the learning algorithm to employ demonstrations in dynamic
scenarios is left for future work.

Thus, five functions based on the features presented are combined to obtain
the cost function employed in the RRT∗ planner. The functions are computed for
each sample xk of the configuration space. The first one is just the computation
of the Euclidean distance from the robot position to the goal:

f1(xk) = ‖xk, xgoal‖ (6.14)

The second feature function uses the distance to the closest obstacle for
each node xk, with the aim of motivating the robot to keep some distance from
the obstacles. This value grows when the distance to the obstacle decreases.
A distance transform function is employed to obtain the distance to the closest
obstacle for each sample (Borgefors, 1986). Then, a normalized value is obtained
by using this distance according to Eq. (6.15).

f2(xk) =
a1

γ ∗ (‖xk, xclosest obs k‖+ a2)
(6.15)
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Figure 6.2: Some of the features employed in the social cost function learned. d1,
distance to the goal. d2, distance to the closest obstacle. d3, distance from the
people to the robot. α, angle between the person front and the robot location.
The three Gaussian functions deployed over the people are also represented.

where a1 and a2 are the parameters that define the function and take the values
2 and 0.2 respectively. γ is a normalization parameter that takes the value 10 in
this case.

Then, other three feature functions representing a proxemics cost concerning
the people in the environment are employed. These cost functions are defined by
Gaussian functions and are inspired by the model used by Kirby et al. (2009).
One Gaussian function is placed in the front of the person, another one in the
back, and the last one in the right side of the person. The shape of these Gaussian
functions can be seen in Fig. 6.2. The first Gaussian function is asymmetric and
placed in the front of the person with σh = 1.20 (m) being the variance in the
direction the person is facing, and considering a smaller variance towards the
sides σs = σh/1.5. The second Gaussian is placed in the back of the person with
σh = σs = 0.8. Finally, a third Gaussian is placed in the right side of the person
with σh = 0.8 and σs = 0.8/2.5. This function can be useful in corridor scenarios
where, usually in Europe, the people usually walk on the right-hand side (Kruse
et al., 2013). Another one could be placed on the left side, so the system should
learn the correct weight for each side.

These cost functions p depend on the distance (djk) and relative angle (αjk)
of the robot position xk with respect to each person j in the scenario. The costs
due to all persons in the scenario are integrated according to the next expressions,
where P represents the set of people:

f3(xk) = max{pfront(djk, αjk),∀j ∈ P} (6.16)

f4(xk) = max{pback(djk, αjk), ∀j ∈ P} (6.17)

f5(xk) = max{pright side(djk, αjk),∀j ∈ P} (6.18)
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The amplitude of these two-dimensional Gaussian functions is set to 1, so
the values returned by the cost functions p are in the range [0, 1]. Moreover, as
we are planning in fixed-size area, the two feature functions based on distance
are also normalized by dividing by the maximum distance possible between two
points in the area. Thus, the values of the J (5 in this case) feature functions are
normalized and the cost function for each node xk is built adding its weighted
values c(xk) =

∑J
i=1 ωifi(xk) where ωi ∈ [0, 1] and

∑
i ωi = 1.

Finally, the total cost of the N nodes of the path ζ is obtained based on the
motion-cost function employed by the RRT∗ algorithm to calculate the cost of
moving from one node to the next one according to Equation (6.1).

6.4 Algorithm validation

In this section, we validate the ability of the proposed RTIRL algorithm to
recover the cost function and the behavior implicitly encoded by the demon-
strations. To do so, a ground-truth cost function is employed to obtain a set
of demonstration trajectories from a motion planner optimizing such function.
Then, these trajectories are used by the proposed learning algorithm. This way,
the learned cost function can be directly compared with the ground-truth one.

Moreover, we present a comparison with two learning from demonstration
algorithms of the state-of-the-art: the Maximum Margin Planning algorithm
(MMP) (Ratliff et al., 2006), which uses an A∗ algorithm as a planner, and a
new learning algorithm called Rapidly Exploring Learning Trees (RLT∗) (Shiarlis
et al., 2017a), which adapts MMP to use a RRT∗ as a planner. These algorithms
have been chosen because they follow the same idea of using a planning algorithm
instead of an MDP, and these planning algorithms are also two of the most used
planners in robot navigation. The implementation code of the RTIRL and RLT∗

learning algorithms is publicly available under BSD license in the Github of the
Service Robotics Lab of the Pablo de Olavide University1.

The MMP is a method for learning to plan which attempts to automate the
mapping from perception features to costs (or rewards) as well as IRL tries to
find the weights of a cost (or reward) function of an MDP. The idea behind
MMP is to determine the set of weights that make that the cost of the demon-
strated trajectories is lower than any other path between the same start and goal
configurations. For better generalization, the cost function is augmented by a
margin that reduces the costs of paths far from the demonstrations. The notion
of closeness to demonstrations is defined by a loss-function L : ζ × ζD → R+

which defines for each path ζ how much the learner pays for failing to match the
example behavior ζD. This loss function value is inverted (1− L(ζ(k), ζD)) and

1https://github.com/robotics-upo/upo_nav_irl

https://github.com/robotics-upo/upo_nav_irl
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added to the cost function. This way, the algorithm tries to make any demon-
strated path better than any other path by a margin that scales with the size of
the loss.

The loss-function employed in the A∗-based MMP algorithm (Ratliff et al.,
2006) counts the number of states that the planner visits but the teacher did
not. It is also recommended to relax this function so that nearby paths are also
admissible. In the case of RLT∗ the loss-function used takes into account the
nearby paths but it is not explicitly specified (Shiarlis et al., 2017a). Therefore,
in our implementation, we have followed the idea of admitting also nearby path
by defining a loss-function, used in both methods (MMP and RLT∗), which add
a cost for each point of the evaluated path based on the Euclidean distance from
that point to the closest point of the demonstrated path according to:

L(ζ(k), ζD) =

{
1 if dmin(ζ(k), ζD) > 1

dmin(ζ(k), ζD) otherwise
(6.19)

where the function dmin calculates the Euclidean distance between the point k
of the path ζ and the closest point of the demonstration path ζD.

6.4.1 Datasets for learning and testing

To validate the algorithm performance, we have used a set of demonstration tra-
jectories obtained by a planner optimizing a given ground-truth cost function un-
known to the learner. That is, the demonstration trajectories have been recorded
by the planner using a cost function with the features explained in section 6.3
and a known set of weights. This way, we can compare the weights learned
with the ground-truth weights and the path costs of the demonstrations and the
learned paths. The paths generated with the cost function computed with the
learning algorithm are expected to recover the behavior of the demonstration
trajectories. Moreover, we should obtain approximately the same weights of the
cost function used to generate the demonstration trajectories, our ground-truth,
in case that a unique set of weights can replicate the desired behavior.

Particularly, we have employed the ground-truth cost function to record 30
trajectories, each one in a different demonstration scenario (different initial robot
position, goal position and person positions in different parts or rooms in a house
map). Also, we varied the number of persons in the scenes from 1 to 3. These
demonstrations have been recorded by using the RRT∗ planner with the ground-
truth cost function proposed. All the trajectories are performed in a fixed area of
100 m2 with the robot in the center. And the time for plan calculation employed
is 10 seconds, which have been seen that it is enough to converge close to the
optimum given the space for planning.

Testing and validation of the approximation will be based on splitting the 30
different demonstration configurations into 20 trajectories to learn the weights
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Table 6.1: Demonstration trials

Trial 1
Learning [1-20]
Evaluation [21-30]

Trial 2
Learning [11-30]
Evaluation [1-10]

Trial 3
Learning [1-10, 21-30]
Evaluation [11-20]

of each cost function, and 10 configurations to compare the resultant paths. An
example of the configurations employed in the validation can be seen in Figure
6.3 where the scenarios 9 and 19 are presented. To have small, well-defined sets
of trajectories in different enough scenarios, we have grouped the trajectories
used for learning and evaluation in three trials for cross-validation according to
Table 6.1.

The time the RRT∗ is allowed to plan a path during the execution of the
learning algorithms RLT∗ y RTIRL is 3 seconds (other times are also consid-
ered in section 6.4.7). In the case of the MMP learning, the resolution of the
discretization of the state space for the A∗ planning is 0.05 m, which is consid-
ered a good resolution to get a smooth A∗ path. Finally, 100 iterations of each
learning algorithm have been performed.

Figure 6.3: Some of the scenarios employed in the validation (scenario 9 and
scenario 19 respectively). The green cylinders represent the people in the scene
indicating their orientations with an arrow. A low-resolution coloured costmap
is also shown.
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6.4.2 Weights comparison

As the ground-truth weights are known (ωgt), we can calculate the relative errors
committed in the final weights learned according to:

REω =
‖ωgt − ω‖
‖ωgt‖

(6.20)

These relative errors obtained in the weights by each algorithm for the 3
trials are shown in Table 6.2. As can be seen, the RTIRL approximation can
recover the ground-truth weights with a small error for all the trials committing
a final average error much lower than the other approximations.

Table 6.2: Relative error in the weights committed by the learning algorithms
in the three trials. The mean values and the standard errors are also shown.

REω RTIRL RLT∗ MMP

Trial 1 0.101 0.208 0.524
Trial 2 0.057 0.197 0.361
Trial 3 0.047 0.109 0.561

Mean: 0.068± 0.016 0.171± 0.031 0.482± 0.062

Once the learning phase has finished, we can compare the 10 trajectories
reserved for evaluation of the 3 trials with the trajectories computed by the RRT∗

(and A∗ planner in case of MMP) with the estimated cost functions in order to
visualize how close to the trajectories are in other scenarios. The planning time
for the RRT∗ planner and the space discretization for the A∗ planner are the same
that the ones employed in the learning phase. To overcome the randomness of
the RRT∗ algorithm, 5 paths are planned, and an average computation over these
paths is performed. The comparison is performed using the following metrics:

6.4.3 Path dissimilarity comparison

The first considered metric that we called dissimilarity is used to compare how
different are two given paths in a Euclidean space. It is inspired by the metric for
path comparison expressed in Eq. 5.8 of Chapter 5. This metric is an estimation
of the area contained between two paths ζ1 and ζ2 by employing the Riemann’s
summation:

dissimilarity(ζ1, ζ2) =∑N−1
k=1

d(ζ1(k),ζ2)+d(ζ1(k+1),ζ2)
2 ‖ζ1(k)− ζ1(k + 1)‖

δ

(6.21)
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where the function d calculates the Euclidean distance between the point k of
the path ζ1 and its closest point of the path ζ2. δ is the number of divisions
that we performed in the path ζ1. In this case, we have split the paths into slots
of 10 cm in which we calculate the area. The paths are more similar when the
dissimilarity approaches zero.

Figure 6.4 shows the dissimilarity values (along with the standard errors in
the case of the 5 paths of RRT∗-based approximations) for the trials 1, 2 and 3
respectively. As can be seen, for trial 1, the dissimilarity of the RTIRL method
is the lowest in most of the cases. The other algorithms lead to big dissimilarity
values in some scenarios while the RTIRL method keeps a low dissimilarity except
for scenarios 5 and 6 where none of the algorithms can plan a good path close
to the expert’s ones. In the case of the trial 2, a similar behavior arises again.
The MMP weight set is not able to reproduce the behavior in scenarios 2, 8
and 10 correctly. Also, the RLT∗ weight set fails in scenarios 3 and 8. The
RTIRL algorithm only partially fails in scenario 8 because some of the 5 paths
take another homotopy. Finally, for trial 3, the RTIRL was able to reproduce
very well all the evaluation paths while the MMP and RLT∗ cost functions lead
to paths farther from the ground-truth in scenarios 1, 4 and 8, and 4 and 6
respectively.

For a better understanding of the dissimilarity values, Figure 6.5 shows a
visual comparison of the paths corresponding with some of the worst cases of the
scenarios for evaluation observed in the dissimilarity comparison presented in the
Figure 6.4. As can be seen, the weight set learned by the RTIRL approximation
(blue lines) leads the paths closer to the demonstrated ones (green circles) in
most of the cases.

Table 6.3 summarizes the dissimilarity values for the 3 trials. The results
obtained by the weights learned with the RTIRL algorithm are better than the
state-of-the-art methods.

Table 6.3: Dissimilarity means and standard errors committed by the learning
algorithms in the three trials

Dissimilarity RTIRL RLT∗ MMP

Trial 1 0.027± 0.014 0.065± 0.024 0.098± 0.028
Trial 2 0.010± 0.004 0.025± 0.011 0.037± 0.022
Trial 3 0.007± 0.000 0.024± 0.011 0.061± 0.027

Mean: 0.015± 0.006 0.038± 0.015 0.049± 0.025
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Figure 6.4: Dissimilarity values for the 10 configurations for evaluation of the 3
trials.

6.4.4 Feature count comparison

Another interesting comparison is the feature count of the paths f(ζ), obtained
according to equation (6.2). Figure 6.6 shows the relative errors committed in the
feature counts of the paths concerning those of the demonstration paths. Again,
the RTIRL method commits the lowest errors in most of the cases while the other
methods fail strongly in some cases. These results are stated in Table 6.4, which
averages the results of the 3 trials. As can be seen, the RTIRL method reaches
significant better results than the RLT∗ and MMP methods which performance
is quite similar according to this metric.

6.4.5 Path cost comparison

Finally, as the weights of the ground-truth cost function are known, we can also
compare the costs of the learned paths and the demonstration paths. To do that,
we can calculate the relative error in the cost of the paths according to:

REcosts(ζ
i
l , ζ

i
d) =

ωTgt(f(ζil )− f(ζid))

ωTgtf(ζid)
(6.22)
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Figure 6.5: Visual comparison of the paths learned in some of the scenarios for
evaluation of the three trials.
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Figure 6.6: Relative error in the feature counts for the 10 configurations for
evaluation of the 3 trials.

Table 6.4: Mean relative errors in the feature counts of the paths with the
standard errors committed by the learning algorithms in the three trials

REfc RTIRL RLT∗ MMP

Trial 1 0.147± 0.054 0.300± 0.080 0.344± 0.081
Trial 2 0.132± 0.054 0.228± 0.088 0.214± 0.066
Trial 3 0.061± 0.008 0.152± 0.059 0.201± 0.059

Mean: 0.113± 0.038 0.227± 0.076 0.253± 0.069

where ζil is the path obtained in the scenario i with the cost function learned
and ζid is the demonstration path in the scenario i. ωgt is the weight vector of
the ground-truth function.

The relative errors in the costs of the paths for the evaluation scenarios of
the 3 trials are shown in Fig. 6.7. As can be seen, the results are quite similar
to those obtained for the relative error in the feature count, where the error
committed by the RTIRL algorithm is much lower than the error reached by the
other approximations. Moreover, the average results of the trials are presented
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in Table 6.5. Again, the RTIRL improves the results of the RLT∗ and MMP
methods.
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Figure 6.7: Relative error in the cost of the paths for the 10 configurations for
evaluation of the 3 trials.

Table 6.5: Mean relative errors in the path costs with the standard errors com-
mitted by the learning algorithms in the three trials

REcosts RTIRL RLT∗ MMP

Trial 1 0.166± 0.054 0.363± 0.101 0.410± 0.092
Trial 2 0.169± 0.077 0.323± 0.139 0.276± 0.100
Trial 3 0.067± 0.007 0.213± 0.090 0.299± 0.116

Mean: 0.134± 0.046 0.300± 0.110 0.328± 0.103

6.4.6 Statistical significance

A Welch’s T-test is employed to compare the results of the methods in the 3 trials.
Table 6.6 shows the results of the t-tests when comparing the different metrics
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along with the p-values obtained. As can be observed, the better results reached
by the RTIRL method can be considered significant (for a 0.05 level) whereas
the differences between the RLT∗ and the MMP method can be neglected in the
setup presented.

Table 6.6: Results of the Welch’s t-test

T-tests RTIRL-RLT∗ RTIRL-MMP RLT∗-MMP

Dissim. p = 0.041 p = 0.003 p = 0.124
REfc p = 0.031 p = 0.005 p = 0.663
REcosts p = 0.024 p = 0.006 p = 0.828

6.4.7 Learning with different RRT* planning times

We also evaluate the performance of the proposed learning algorithm regarding
the time that the RRT∗ planner is allowed to plan a path during the learning
process (this time may be different from that used in execution after learning)
and the number of repetitions of the planning. Table 6.7 shows the average rel-
ative error committed in the weights for the methods RTIRL y RLT∗ according
to different planning times of the RRT∗ planner (0.5 seconds, 3 seconds and
9 seconds) and different number of planning repetitions (10 repetitions, 5 repe-
titions and 1 repetition respectively). As can be observed, the algorithm behaves
well even for short planning times. The relative error in the weights just varies
around a 3 % in both algorithms. These results highlight the importance of the
number of repetitions. Even if the time for planning is short, we can still have
a good estimation of the average features values if we repeat the plan several
times. The results also show that the RTIRL is all in all more efficient in terms
error vs. planning time than the RLT∗ algorithm.

Table 6.7: Average relative error in the learned weights committed by the learn-
ing algorithms according to different planning times of the RRT∗ planner used
in the learning phase

REω 0.5 s (10 rep) 3 s (5 rep) 9 s (1 rep)

RTIRL 0.098 0.068 0.077
RLT∗ 0.149 0.171 0.180
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6.5 Conclusions

In this chapter, a novel approach for teaching a robot social navigation behaviors
using demonstrations was presented. To this end, a method based on IRL has
been implemented and linked with a regular RRT∗ to learn the weights of its
cost function, so the planner behaves similarly to the demonstrated behaviors.
The method is simple to implement and allows to overcome the typical problems
associated with IRLs based on MDPs. The proposed method allows to deal with
continuous state spaces and is capable of dealing with larger scenarios (regarding
persons and features) than previous discrete-MDP-based approaches for human-
aware navigation (Ramón-Vigo et al., 2014; Pérez-Higueras et al., 2014), as seen
in Chapter 3. It also simplifies the generalization of the behavior thanks to the
inherent benefits of RRTs. The approach has been validated using demonstra-
tions provided from a ground-truth cost function. The results showed that it can
properly approximate the demonstrated cost function, and to obtain behaviors
more similar to the demonstrations than related algorithms from the state-of-art.
Moreover, this approach has been successfully applied in the real mobile robot
of the European project TERESA, as is presented in the next Chapter.

However, this approach still requires the representation of the cost function
as a weighted linear combination of features, which can limit the learning of
complex behaviors that can not be properly described with a linear combination.
Furthermore, we have to manually identify the set of relevant features involved
in the task, which is not easy to determine in problems such as human-aware
navigation. These drawbacks are addressed in Chapter 8, in which some solutions
are proposed.



Chapter 7

TERESA: a social navigation system in
telepresence robots for elderly

”It’s alive! It’s alive!”
Frankenstein, 1931

In this Chapter, the integration of the research work presented in Chapters 5
and 6 into the navigation system of the TERESA1 European project is presented.
The extensive evaluation and results of different experiments performed with the
real telepresence robot are also showed.

TERESA aims to develop a telepresence robot of unprecedented social intel-
ligence, thereby helping to pave the way for the deployment of robots in settings
such as homes, schools, and hospitals that require substantial human interaction.
In telepresence systems, a human controller remotely interacts with people by
guiding a remotely located robot, allowing the controller to be more physically
present than with standard teleconferencing. The TERESA project has devel-
oped a new telepresence system that frees the controller from low-level decisions
regarding navigation and body pose in social settings. Instead, TERESA has
the social intelligence to perform these functions automatically (Shiarlis et al.,
2015). The ultimate goal of the project is to deploy this system in an elderly
day centre to allow elderly people to participate in social events even when they
are unable to travel to the centre.

7.1 Introduction

Telepresence robots are gaining an important role in robotics (Kristoffersson
et al., 2013). These robots are called ”Skype on a stick” because they combine the
conversation capabilities of teleconference software and the mobility of the robots

1TERESA: TElepresence REinforcement-learning Social Agent. Project reference: FP7-
ICT-2013-10. Web: http://www.teresaproject.eu
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Figure 7.1: Image of the telepresence robot developed in the TERESA project
navigating among people.

controlled by humans to allow for better social interaction. In particular, we
consider the application of telepresence robots for elderly (Shiarlis et al., 2015).
However, maintaining a social interaction and, at the same time, controlling
the low-level navigation of the robot overloads the cognition level required by
the user, which is especially critical for elderly. That may lead to mistakes in
navigation and to pay less attention to the interaction and communication tasks
(Tsui et al., 2011). Actually, partial autonomy regarding navigation is a feature
requested by telepresence users according to studies like in (Desai et al., 2011)
and the findings of the user studies for the requirements of TERESA (TERESA
Consortium, 2014).

Therefore, the main goal of the TERESA project is to develop a semi-
autonomous telepresence robot for elderly centers, increasing its autonomy in
such a manner that users are relieved from lower-level navigation tasks. At the
same time, the social intelligence of the robot is improved, providing additional
functionalities of interest for the application, such as navigating autonomously
to pre-defined goal points, socially approaching people, or walking side-by-side
during a conversation. Figure 7.1 shows a capture of the telepresence robot
navigating autonomously in a crowded scene.



7.2. TERESA architecture for social navigation 115

Figure 7.2: Final disposition of sensors on TERESA. The sensors used for nav-
igation are the LIDARs (there is another one in the back, not shown here) and
the XTion cameras.

This Chapter firstly presents the architecture for the social navigation sys-
tem of TERESA, which is a two-level decision-making system which combines
different social behaviors (encoded as macro-actions) intelligently. Learning al-
gorithms (such as the techniques presented in Chapters 5 and 6) are integrated
at the macro-action level to endow the robot with social navigation skills and dif-
ferent behaviors. Secondly, the thorough evaluations and experiments performed
with the robot in real environments are presented.

7.2 TERESA architecture for social navigation

The TERESA architecture devised for human-aware navigation is presented in
this section. So, key features like the sensors employed, the system of people
localization and the navigation architecture are introduced here.

7.2.1 Hardware of TERESA robot

The TERESA robot is an evolution of the original Giraff commercial telepresence
system2, in which a new microcontroller and a new shell (produced by the com-

2http://www.giraff.org/?lang=en

http://www.giraff.org/?lang=en


116 Chapter 7. TERESA: a social navigation system in telepresence robots

pany IDMind3) have been designed. Furthermore, the robot has been equipped
with several sensors that provide appropriate environment measurements to the
software stack. Thus, some of them are used for safe navigation (i.e., obstacle
avoidance), whereas others are used for retrieving information about the social
scene around.

Figure 7.2 shows the location the sensors on the robot frame. We have defined
two main groups to cluster them by their aim, namely navigation and interaction
sensors:

LIDARs 4 Two scanning laser rangefinders for obstacle detection and localiza-
tion of the robot. They are located at the front and the back of the robot
and cover 360 around it. They are also used to obtain person detections.

XTion cameras 5 These cameras use infrared sensors, adaptive depth detec-
tion technology and color image sensing. One is tilted 40 degrees approx-
imately, thus providing the navigation stack with readings that can be
useful for 3D obstacle detection, such as steps, holes or table’s boards.
The second one, facing forward, is also used for person detection. It helps
to differentiate simple obstacles as furniture or walls from people. This
camera is used for navigation and interaction purposes.

Microphone 6 This sensor is used as a voice tracker and provides an omnidirec-
tional field of view for detecting the active talker. It is used for interaction
purposes.

HD camera 7 It provides a high-resolution video streaming which is analyzed
in real time to detect the emotions that can arise while the robot performs
its tasks. It is used for interaction purposes.

The other devices depicted in Fig. 7.2 are aimed at enhancing the user
experience, so they provide the users with video streaming (existing camera)
and audio (speakers). Users can also interact with the robot by selecting the
volume or through the yes/no buttons.

Lastly, the charging of the robot can be done by plugging the manual charger
or using a charging station that makes contact with the charger pads depicted
in Fig. 7.2.

3http://www.idmind.pt/
4https://www.hokuyo-aut.jp/02sensor/07scanner/ust_10lx_20lx.html
5https://www.asus.com/3D-Sensor/Xtion_PRO_LIVE/
6https://www.acousticmagic.com/products/voice-tracker-ii-details/
7http://www.teledynedalsa.com/imaging/products/cameras/area-scan/genie/

CR-GM0X-H140X/

http://www.idmind.pt/
https://www.hokuyo-aut.jp/02sensor/07scanner/ust_10lx_20lx.html
https://www.asus.com/3D-Sensor/Xtion_PRO_LIVE/
https://www.acousticmagic.com/products/voice-tracker-ii-details/
http://www.teledynedalsa.com/imaging/products/cameras/area-scan/genie/CR-GM0X-H140X/
http://www.teledynedalsa.com/imaging/products/cameras/area-scan/genie/CR-GM0X-H140X/
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Figure 7.3: Schematic representation of the person localization and tracking
modules of the TERESA project.

7.2.2 People localization and tracking

One of the modules that is required for human-aware navigation and interaction
with people is the capacity to detect and localize them. We briefly introduce
here the localization component for multiple people detection and tracking em-
ployed in the TERESA project. This work was mainly led by the Human Media
Interaction Group of the University of Twente, as a partner of the project. The
Pablo de Olavide University collaborated in the data fusion and people detection
with laser range finders, as we explain down below. Further details can be found
in the Deliverable 2.2: Pose Estimation, of the project (TERESA Consortium,
2016a).

Person localization must be achieved all around the robot under challenging
circumstances of occlusion and difficult lighting conditions to exhibit the desired
social behavior in the robot. This localization is based on data from the following
sensors, commented previously: one colour+depth camera (RGB-D sensor) and
two laser rangefinders.

That is achieved by combining different existing algorithms for localization:

• Skeleton tracking implemented for RGB-D sensors. The ROS COB
OpenNI-based skeleton-tracking module8 is employed for this. The centre
of mass of the skeleton is used as the position, which is integrated with
the other detections for tracking. The advantages of the skeleton tracking
are that it relies on many detectors for body parts, and therefore has a

8http://wiki.ros.org/cob_openni2_tracker

http://wiki.ros.org/cob_openni2_tracker
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”holistic” view of the person. However, the skeleton tracker does have some
weaknesses. Most importantly, when the robot is moving, its detections
are not very reliable, and it is easily confused.

• Face detection algorithms from RGB-D sensors. To deal with the
weaknesses of the skeleton tracker, the detection of heads and faces were
also considered through the ROS COB people detection module9. Using
the active depth sensor allows the system to perform well even in poor
lighting conditions, and allows for high-precision, high-recall detection of
people when only their head is visible in front of the robot. Moreover, the
face detections are not measurably affected by the robot motion.

• Leg detectors from the laser-range finders. The combination of skele-
ton and face detectors result in very high-quality person detection in the
field of view of the RGB-D sensor, which is the area in front of the robot.
Nevertheless, to implement acceptable social behavior, our modules do re-
quire tracking the position of all the people surrounding the robot. To
achieve person detection in the complete 360◦ around the robot, the ROS
module based on the people’s legs detector presented in Arras et al. (2007)
is employed. Two instances of the module are set up, where the parameters
of one detector are set to obtain high recall at the expense of a lower pre-
cision while the other detector maintains a higher precision at the expense
of a comparatively lower recall. The false detections are handled in the
aggregation and tracking modules.

An overall overview of the architecture is shown in Fig. 7.3. It shows how
the RGB-D sensor data is used for face detection and skeleton tracking. These
are aggregated with the leg detections and fed to the tracker. The tracker is
additionally given the output of a separate leg detector which detects many
more people at the expense of more miss-detections; these detections are used
to sustain existing tracks but not to initiate new tracks.

The people detections are initiated with a Kalman filter for each person.
When new detection data is received from any source, it is matched with the
position prediction given by the Kalman filters. Thus, we associate the informa-
tion from different sources, keeping track of the current people in the scene, and
also adding new ones and/or deleting the missing ones.

7.2.3 Navigation architecture

Conceiving a single navigation function able to deal with all the human-aware
navigation problems is very challenging. Many existing approaches only address

9http://wiki.ros.org/cob_people_detection

http://wiki.ros.org/cob_people_detection
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Figure 7.4: A sketch of the general architecture for the navigation macro-actions.
The TERESA architecture adds new models, social costs and constraints. Fur-
thermore, the different modules are tailored to each particular macro-action.

one particular problem, like social people avoidance (Henry et al., 2010), people
approach (Truong and Ngo, 2016), following a person walking side-by-side (Ferrer
et al., 2016), etc.

We concur that it is very complex to derive general models, costs, planners,
etc. for every potential situation, as we commented along this thesis, so our
navigation architecture reflects this fact. Thus, the navigation stack offers a set
of social macro-actions that can be triggered by the robot user or executed
automatically when the social situation requires. Each macro-action involves
different models and algorithms, like those developed in Chapters 5 and 6.

We have used the ROS middleware10 to implement the navigation stack
that has been developed in the project. This stack substitutes completely the
move base ROS navigation stack. It follows the same classical navigation archi-
tecture, as we introduced in Chapter 2 and also followed in the architecture of
FROG (Chapter 4), but adding the components for human-aware navigation.
Figure 7.4 shows a simplified block diagram of the architecture.

The macro-actions mentioned above are implemented following a similar
scheme. Besides receiving the information from the sensors and the percep-
tion modules, the main components are a global or high-level planner, that pro-
vides global paths or actions; and a local planner/controller also incorporating

10http://www.ros.org

http://www.ros.org
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dynamic obstacle avoidance. Each macro-action may involve different social
cost/restrictions and/or different models or implementations of the planners.
When the Behavior Manager activates a particular macro-action, the naviga-
tion stack loads the required modules and models. That fits the objectives of
TERESA and allows the social models, cost functions, and planners to be learned
from data for that specific application.

The navigation macro-actions considered are the following:

• Navigate to Waypoint, in which the robot navigates socially to the
desired waypoint, and that is activated with a command from the visitor at
the control station by selecting from a waypoint list. The method described
in Chapter 6 is employed to this aim.

• Navigate to Interaction Target, in which the robot approaches a per-
son to interact with him/her socially. The person is selected by the visitor
at the control station by clicking the person on the image. This person is
denoted as the Interaction Target. The approximation presented in Chap-
ter 5 is used to achieve this.

• Walk side-by-side, where the robot tries to accompany a person walking
together to other room or place while in conversation. That is also triggered
by the visitor.

• Assisted steering This macro-action is activated whenever the visitor
tries to drives the robot manually through his/her control interface. This
assistant is in charge of evaluating the velocity commands sent by the
visitor, checking possible collisions and generating smooth valid commands
when possible (stopping in case of unavoidable collision).

The previous macros are activated by the user of the robot (explicitly or
implicitly). Moreover, there is another group of macro-actions that are triggered
by events independent of the user’s actions:

• Yield. While the robot is navigating, if any person stands on the robot’s
path within a narrow space like a doorway, the robot will yield politely,
retreating to a position that allows the person to come through first. Once
the path is free again, the robot will resume its previous action.

• Wait. This macro is activated whether the robot finds its path blocked
while navigating. To avoid a collision, the robot keeps standing still for a
pre-defined time, trying to resume navigation after a waiting time.
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• Navigate Home. This macro-action is triggered whenever the battery
level of the robot is under a certain threshold, or the visitor ends the call.
In that case, the robot should go back to a pre-defined position where the
docking station is installed to charge (Home).

7.3 Architecture implementation

The navigation architecture of TERESA has two levels of decision making. At
the highest level, there is a Behavior Manager in charge of selecting the different
macro-actions and controlling the transitions between them; at the lower level,
each macro-action represents a navigation behavior.

Hereafter, the behavior manager is briefly introduced, and the integration of
the work presented in Chapters 5 and 6 into the macro-actions architecture
is emphasized. The implementation of the different modules of the naviga-
tion architecture can be found, under BSD license, in the ROS meta package
upo robot navigation in the Github of the UPO Service Robotics Lab11.

7.3.1 Behavior manager

The Behavior Manager represents the top level decision-making component,
and is in charge of controlling navigation functionalities through the concept
of macro-actions, which can be implemented in different manners, such as Finite
State Machines (FSM), control-based, decision-theoretic-based, etc. The whole
architecture is based on the ROS middleware. Each macro-action must provide
an interface based on the ROS actionlib12 for the rest of the system, acting as
services. These macro-actions are then activated when certain events happen
and/or inputs are received from the user. The Behavior Manager is encoded as
a Finite State Machine (FSM) that produces the adequate transitions between
macro-actions. In particular, we have used SMACH 13 for the implementation.

Figure 7.5 shows the part of the general FSM diagram corresponding to the
eight navigation macro-actions implemented, along with the possible transitions
between them according to the events that may occur. The initial macro-action
is ”Wait for goal”, where the robot waits for an event that initiates a transition.
The transition to the interaction in conversation states is done through the event
”Nav succeeded”.

11https://github.com/robotics-upo/upo_robot_navigation
12http://wiki.ros.org/actionlib
13http://wiki.ros.org/smach

https://github.com/robotics-upo/upo_robot_navigation
http://wiki.ros.org/actionlib
http://wiki.ros.org/smach
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Figure 7.5: Diagram of the finite state machine for social navigation. The initial
state is shown in yellow.

7.3.2 Social navigation to waypoint

The first macro-action that was implemented is the navigation between way-
points in the scenario. Thus, the robot has to show a socially-acceptable behavior
while encountering people on its way to the goal.

To achieve this, the learning approach presented in Chapter 6 is considered
here to endow a local RRT∗ planner with a social navigation behavior. The set
of features designed for human-aware navigation and also presented in Chapter 6
is employed to fulfill the task.

The macro itself is implemented using a classical three-level architecture: a
global planner computes a global path, then local planning and a control layer
deal with dynamic obstacle avoidance.

On top of it, an A∗ planner provides a global path towards the destination.
The relation between the two levels is the following:
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Figure 7.6: Capture of the navigation simulator for describing the planning
architecture. The dark green line represents the path obtained by the A∗ planner
to the final goal. The light green line represents the RRT∗ path in a local area.
The light yellow line represents the lasers sensors readings. The orange arrow
represents the current local goal of the RRT∗ planner. Finally, the green cylinders
marked 2 and 4, represent people detected in the vicinity of the robot.

• Firstly, the A∗ global planner is employed to obtain a path from the initial
robot position to the final goal. The plan is calculated in the map frame
over the static map of the scenario, no-mapped static obstacles and dy-
namic obstacles are not taken into account. This path is computed only
one time when a navigation goal is received.

• Secondly, the RRT∗ planner uses the previous plan to determine a local
goal. This sub-goal is determined as the intersection point of the A∗ plan
and a local area around the robot (10x10m approximately with the robot in
the center). Then, the RRT∗ plan a local path on the robot frame towards
this local goal taking into account all the people and static and dynamic
obstacles in the vicinity of the robot. Moreover, the RRT∗ space sampling
is partially biased to areas close to the A∗ plan. The sub-goal is updated
and the RRT∗ path is re-planned at a frequency between 1− 2 Hz. Figure
7.6 shows a descriptive example of this two-level planning architecture.

Finally, a low-level controller is employed to send the correct commands to
the robot to follow the RRT∗ path. It based on pure pursuit path tracking to
command velocities to the differential robot to follow the path smoothly. More-
over, it has been extended to perform a collision detection checking similar to
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the Dynamic Windows Approach algorithm (Fox et al., 1997). If the forward
projection of the robot movement given by the control law is detected as a possi-
ble collision, a valid command is tried to be found by sampling small variations
of the given angular velocity. If a possible collision is still detected, a rotation in
place in the correct direction is performed to avoid very close obstacles. More-
over, a linear decrease of the velocities when approaching the goal has also been
added.

The use of the RRT∗ planner in the scheme presented has some advantages.
In one hand, it plans in a fixed-size continuous space unlike the A∗ planner
who needs a discretized space and its performance depends on the resolution of
the discretization. On the other hand, the random component of the planner
allows to learn and plan paths of different homotopies that are similarly valid
for avoiding obstacles or people.

7.3.3 Social people approaching

The navigation to an interaction target requires that the robot approaches the
person taking into account the orientation of the person and re-calculating the
goal if the person moves or changes his position.

To perform the approaching person socially, a set of human trajectories ap-
proaching other people has been used to learn the task, as can be seen in Fig.
7.7. In most of the approaching angles, two valid homotopies to reach the goal
have been considered. That gives more flexibility to the RRT∗ planner in case
one of the homotopy paths is blocked for any reason. In particular, a model
in feature space has been learned from the human demonstrations and encoded
as a Gaussian Mixture Model (GMM), as explained in Chapter 5. Then, this
GMM is employed to bias the sampling of the Optimal-RRT planner to direct
the planner to the correct areas to perform the approaching.

The steps followed when the macro-action of navigation to an interaction
target is triggered, are listed here:

1. The distance to the target is checked. If it is less than 3.20 meters, the
GMM sampling process is activated.

2. If the GMM sampling is active, the angle between the robot position and
the heading of the interaction target is discretized in one of the eight cat-
egories of possible approaching, as shown in Fig. 7.7.

3. The corresponding GMMs (in two valid homotopies in some cases) are
selected according to the previous step and a 90 % of samples used in the
RRT∗ planner are then drawn from the GMMs.
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Figure 7.7: Real trajectories employed to learn how to approach a person for the
TERESA robot. Trajectories for approaching angles [0,±π] rad are shown in
blue lines. [π/4,−π/4] rad in red lines. [π/2,−π/2] rad in green lines. Finally,
[3π/4,−3π/4] rad in magenta lines.

4. At a frequency of 2 Hz approximately, the previous steps are checked again
the sampling process is updated if necessary.

7.4 Evaluations

In this section, the waypoint navigation macro-action is evaluated by performing
real experiments in the laboratory. First, the navigation functionality will be
assessed with an evaluation inspired by the benchmark of the European Robotic
League for Social Robots (ERL-SR) used in Rock-In competition14. Secondly,
an evaluation of the ”social” capabilities of the system will be studied. In both
cases, a comparison with a standard navigation stack where all entities in the
scene are simple obstacles is performed. To do that, the move base framework

14http://rockinrobotchallenge.eu/

http://rockinrobotchallenge.eu/
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Figure 7.8: Scenarios for navigation evaluation. Left, testbed of the Rockin
Home Competition. Right, testbed in the Pablo de Olavide University.

from ROS is employed15.

7.4.1 Benchmarking according to ERL-SR

According to the ERL-SR Rulebook16, the navigation functionality benchmark
assesses the robot’s capability to correctly, safely, and autonomously navigate
in an ordinary apartment. The task includes the navigation in an apartment-
like environment with furniture, walls, and doors, i.e., in a previously mapped
area; avoiding collisions with a different type of unknown obstacles, in unknown
positions (not previously mapped); and navigate in the presence of people in the
arena. The robot receives a list of waypoints it has to follow in respective order.

The proposed testbed of the Rockin Home Competition is depicted in Figure
7.8. A similar apartment environment has been replicated at the Universidad
Pablo de Olavide (Figure 7.8, right). In the living room area, some unmapped
obstacles have been placed. Also, the kitchen area counts with the presence of
people wandering around. A set of waypoints have been defined in the scenario,
as indicated in the Figure 7.9. The robot has to reach each waypoint following
the order established.

The evaluation of the navigation takes into account the following three met-

15http://wiki.ros.org/move_base
16http://sparc-robotics.eu/wp-content/uploads/2016/04/ERL_Service.compressed.

pdf

http://wiki.ros.org/move_base
http://sparc-robotics.eu/wp-content/uploads/2016/04/ERL_Service.compressed.pdf
http://sparc-robotics.eu/wp-content/uploads/2016/04/ERL_Service.compressed.pdf
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Figure 7.9: Waypoints (green dots) employed for navigation functionality evalu-
ation. An example of the paths followed by the TERESA system (red line) and
the move base system (blue line) are also showed.

rics:

• The distances between the robot’s position and the respective position
of the waypoint (both the Euclidean distance between the waypoint and
the robot in meters (Pxy) and the difference in the orientation in radians
(Pyaw)).

• The time spent by the robot to go from each waypoint to the next waypoint
in seconds (Tp).

• The number of times that the robot hits each obstacle (Hits).

We also have added an extra metric that is the total path length in meters
(Lp). Three runs are carried out with each one of the systems. Table 7.1 shows
the metrics (in average) with their standard deviations of the three runs for each
of the paths between waypoints. As can be seen, there are not very significant
differences between the two navigation systems. As expected the time to reach
the goal for the most of trajectories is a bit shorter in the case of move base since
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it tries to minimize the distance and time to reach the goal, unlike the TERESA
system which also takes into account the people comfort. Anyway, the differences
are small. Moreover, the precision on reaching the waypoints is slightly better in
the case of move base by a small margin. Both navigation systems successfully
reached all the goal without any hits.

Table 7.1: Rockin evaluation metrics for each waypoint

TERESA Tp Pxy Pyaw Lp Hits

W1-W2 17.73± 1.70 0.15± 0.03 0.25± 0.15 5.10± 0.11 0
W2-W3 14.95± 8.03 0.39± 0.25 0.16± 0.14 4.65± 2.80 0
W3-W4 28.89± 12.3 0.13± 0.02 0.29± 0.11 5.58± 3.33 0
W4-W5 31.38± 18.5 0.16± 0.02 0.36± 0.03 6.32± 2.88 0
W5-W6 19.07± 14.7 0.27± 0.22 0.16± 0.07 4.46± 0.68 0
W6-W7 23.57± 6.10 0.22± 0.08 0.29± 0.09 4.89± 3.20 0
W7-W1 15.61± 4.31 0.25± 0.03 0.17± 0.14 4.17± 0.83 0

MOVEB

W1-W2 24.47± 13.1 0.10± 0.03 0.09± 0.09 3.17± 0.24 0
W2-W3 14.25± 1.49 0.09± 0.00 0.32± 0.09 5.00± 0.05 0
W3-W4 18.43± 13.8 0.10± 0.00 0.22± 0.01 3.95± 0.85 0
W4-W5 17.82± 4.89 0.37± 0.43 0.19± 0.18 5.56± 3.24 0
W5-W6 18.03± 9.98 0.10± 0.01 0.30± 0.14 5.17± 2.62 0
W6-W7 73.48± 25.8 0.35± 0.02 0.20± 0.28 6.82± 2.51 0
W7-W1 25.96± 19.0 0.07± 0.06 0.30± 0.03 5.12± 2.86 0

Table 7.2 summarizes the results of three runs for all the paths performed
with each system (TERESA navigation system and ROS Move base system).
The precision reaching the waypoints in the distance metric is slightly better
in the case of the move base. However, the TERESA system has a better total
average time to finish the trial. We observed during the trials that the move base
system spent more time rotating and trying to reach the correct goal position
than TERESA. We also noted that move base has some problem when the robot
is surrounded by people or unknown obstacles because the A∗ planner is not able
to find a path to the goal. The TERESA’s RRT ∗ local planner is more efficient
for local obstacle avoidance. Regarding navigation functionality, we can say that
the performance of both systems is quite similar.

7.4.2 Social Evaluation of the navigation system

In this section, the cost function for social navigation learned using the RTIRL
algorithm is evaluated by performing real experiments with the TERESA robot
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Table 7.2: Rockin evaluation metrics in average

Tp Pxy Pyaw Lp Hits

TERESA 151.20± 9.38 0.22± 0.14 0.24± 0.12 35.17± 0.17 0

MOVEBASE 192.44± 20.78 0.17± 0.18 0.23± 0.13 34.79± 0.17 0

in the laboratory. We perform a comparison between the social capabilities of a
navigation system employing the cost function learned from a set of demonstra-
tions (which we will denote as TERESA or SNS (Social Navigation System)) and
a standard navigation stack where all entities in the scene are considered as sim-
ple obstacles. For the latter we employ the popular move base framework from
ROS17 (Quigley et al., 2009) (denoted as MOVEBASE or Non-SNS (Non-Social
Navigation System)). The default configuration parameters have been used but
the related ones to the robot footprint, velocities, and accelerations that have
been adjusted to the TERESA robot.

The library of RRT algorithms and the rest of necessary modules for the SNS
that have been developed by the Ph.D. candidate are available in the Github
of the Service Robotics Lab18 under BSD license. A RRT∗ replanning each
0.5 seconds in a local area surrounding the robot and using the learned costs is
employed for motion planning, and a simple controller derived from the Dynamic
Windows Approach algorithm (Fox et al., 1997) is used to follow the RRT path.

7.4.2.1 Metrics

A set of simple metrics for a social evaluation used in the literature (Okal and
Arras, 2016b), some of them based on the Proxemics theory (Hall, 1966), has
been considered here:

• Time to reach the goal (Tp). Time since the robot start the navigation
until the goal is correctly reached.

Tp = (Tgoal − Tini) (7.1)

• Path length (Lp). The length of the path followed by the robot from the
initial point to the goal position.

Lp =
N−1∑
i=1

‖xir − xi+1
r ‖2 (7.2)

17http://wiki.ros.org/move_base
18https://github.com/robotics-upo/upo_robot_navigation

http://wiki.ros.org/move_base
https://github.com/robotics-upo/upo_robot_navigation
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• Cumulative heading changes (CHC). It counts the cumulative heading
changes of in the robot trajectory measured by angles between successive
waypoints. It gives a simple way to check on smoothness of path and
energy (Okal and Arras, 2016b) so a low value is desirable.

CHC =
N−1∑
i=1

(hir − hi+1
r ) (7.3)

Where hir indicates the heading of the robot in the position i. The angles
and their difference are normalized between −π and π.

• Average distance to closest person (CPavg). A measure of the mean
distance from the robot to the closest person along the trajectory.

CPavg =
1

N

N∑
i=1

(‖xir − xicp‖2) (7.4)

Where xicp indicates the position of the closest person to the robot at step
i.

• Minimum and maximum distance to people (CPmin and CPmax
respectively). The values of the minimum and the maximum distances
from the robot to the people along the trajectory. It can give an idea of
the dimension of the robot trajectory with respect to the people in the
space.

CPmin = min{‖xir − xicp‖2 | ∀i ∈ N} (7.5)

CPmax = max{‖xir − xicp‖2 | ∀i ∈ N} (7.6)

• Personal space intrusions (CPprox). This metric is based on the Prox-
emics theory which define personal spaces around people for interaction
(Hall, 1966). These areas are defined as:

– Intimate. Distance shorter than 0.45 m.

– Personal. Distance between 0.45 m and 1.2 m.

– Social. Distance between 1.2 m and 3.6 m.

– Public. Distance longer than 3.6 m.

Thus, the metric classifies the distance between the robot and the closest
person at each time step in one of the Proxemics spaces (in our case we use



7.4. Evaluations 131

only three: Intimate, Personal and Social+Public), and obtain a percentage
of the time spent in each space for the whole trajectory:

CP kprox =

 1

N

N∑
j=1

F(‖xjr − xjcp‖2 < δk)

 ∗ 100 (7.7)

whereN is the total number of time steps in the trajectory, δ defines the dis-
tance range for classification defined by k = {Intimate, Personal, Social+
Public}, and F(·) is the indicator function. The desirable behavior should
lead the robot to spend most of the time in the Social or Public distance
range, but this depends on the dimensions of the space and the density
of people in the area. So, for a small area shared with people, intrusions
in the Personal area are acceptable whereas for big open space the robot
should stay in the Social and Public distances. In any case, the intrusions
in the Intimate space should be avoided.

• Interaction space intrusions (ISprox). This metric is inspired by the
work of Okal and Arras (Okal and Arras, 2016b) in formalizing social nor-
mative robot behavior, and it is related to groups of interacting persons.
It measures the percentage of time spent by the robot in the three Prox-
emics spaces considered with respect to an interaction area formed by a
group of people that are interacting with each other. The detection of the
interaction area of the group is based on the detection of F-formations.
A F-formation arises whenever two or more people sustain a spatial and
orientational relationship in which the space between them is one to which
they have equal, direct, and exclusive access (Cristani et al., 2011; Setti
et al., 2015).

ISkprox =

 1

N

N∑
j=1

F(‖xjr − x
j
f‖2 < δk)

 ∗ 100 (7.8)

where xjf determines the center of the closest formation or group of people
f to the robot at step j.

7.4.2.2 Experiments

The social navigation behavior learned using the learning algorithm RTIRL (pre-
sented in Chapter 6) is evaluated here. A cost function, using the features de-
scribed in Section 6.3, has been learned from navigation demonstrations in static
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Figure 7.10: Capture of the real experiments for the social navigation evaluation
in the University Pablo de Olavide.

scenarios. The demonstrations were recorded in the Robotics Lab and some sce-
narios of the TERESA project (an elderly care center in Troyes, France, see
Fig. 7.16). The planning time for the RRT∗ employed during the learning phase
was 3 seconds. The learned cost function is then used by the Social Navigation
System.

Two sets of experiments have been performed. One in a static scenario (the
learning is performed from static scenes) and another one in a dynamic scenario,
to check the behavior in scenarios with moving pedestrians.

These evaluation experiments have been recorded in the Robotics Lab of
the Pablo de Olavide University. The room has an approximate dimension of
4.60 × 7.60 m, and it is equipped with an Optitrack Motion Capture System.
This system has been used to accurately estimate the position of the robot
and persons involved in the experiments so that results cannot be biased by
localization errors.

• Experiments in static scenarios
In the static scenario we have considered two different situations: first,
a small group of two people talking to each other in the middle of the
scene, as can be seen in Figure 7.10; second, there are two persons in
the scenario, but they are not interacting each other. Figure 7.11 shows
two examples of the scenarios proposed, where the robot paths and the
people position and orientation are shown. As can be seen, the TERESA
Navigation System (SNS) avoid interfering with the group indicating a
more acceptable behavior than the MOVEBASE Navigation System (Non-
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SNS) from the social point of view.

 

 

SNS path

Non−SNS path

people

 

 

SNS path

Non−SNS path

people

Figure 7.11: Static scenario for social evaluation along with some of the paths
obtained by the SNS and non-SNS. Left: Two persons, represented by magenta
circles with the blue arrow indicating their orientation, are forming a group.
Right: Two persons are facing the walls (not a group). The red line shows the
path followed by the TERESA social navigation system (SNS). The blue line
shows the path of the MOVEBASE non-social system (Non-SNS).

Tables 7.3 and 7.4 shows the metrics, with their standard deviations, ob-
tained for four runs of each navigation system in the static scenario with
a group of interacting people, and another four runs in the scenario with
two non-interacting individuals respectively.

In the case of two people not forming a group, the metrics do not present
significant differences as can be observed in Table 7.3 (note that the ISprox
metric is not applicable because there is no interaction space). That is
because of, in this particular setup, the social taught behaviors lead the
robot to perform similar paths of the Non-Social MOVEBASE system.
Nevertheless, some metrics can be highlighted. The minimum distance to
people is higher in the case of TERESA which indicates that the system
always was able to keep some distance to the person. And it was also able
to spend less time in the Personal space in favor of the time in the Social
space which indicates a better social behavior.

Furthermore, the case of a group of people presents more evident differ-
ences. The MOVEBASE performs clear intrusions in the Intimate space
concerning the closest person and also to the interaction space of the group.
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Again, the minimum distance to people is higher in the case of TERESA.
These results show that the Social TERESA system is more respectful of
the people spaces and the interaction space of the group from a social point
of view.

Table 7.3: Results for social navigation evaluation in a static scenario with two
people not forming a group

NO-GROUP TERESA MOVEBASE

Tp(s) 22.70± 1.52 24.18± 1.73
Lp(m) 4.86± 0.40 4.92± 0.23
CHC(rad) 4.54± 0.79 4.37± 0.40
CPavg(m) 1.74± 0.09 1.90± 0.14
CPmin(m) 1.08± 0.16 0.63± 0.07
CPmax(m) 2.47± 0.13 2.82± 0.01

Intimate 0.00± 0.00 0.00± 0.00
CPprox(%) Personal 12.77± 1.02 17.24± 0.98

Social+ 87.23± 0.87 82.76± 0.98

Table 7.4: Results for social navigation evaluation with a static group of two
people

GROUP TERESA MOVEBASE

Tp(s) 23.65± 0.64 23.15± 1.34
Lp(m) 5.45± 0.27 5.02± 0.08
CHC(rad) 4.18± 2.55 4.41± 0.08
CPavg(m) 1.87± 0.08 1.88± 0.12
CPmin(m) 0.79± 0.17 0.42± 0.15
CPmax(m) 2.71± 0.11 2.74± 0.17

Intimate 0.00± 0.00 2.60± 3.67
CPprox(%) Personal 17.83± 1.52 14.50± 3.06

Social+ 82.17± 1.52 82.90± 0.61

Intimate 0.00± 0.00 7.64± 0.70
ISprox(%) Personal 0.00± 0.00 13.00± 0.01

Social+ 100.0± 0.00 79.37± 0.71

• Experiments in dynamic scenarios

Another test has been recorded in a dynamic situation. The aim is to
check whether the social cost function learned for static situations is still



7.4. Evaluations 135

 

 

SNS path
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Figure 7.12: Representation of the paths followed in the dynamic free run exper-
iment. Left: paths followed by the robot using the TERESA SNS (red lines) and
MOVEBASE Non-SNS (blue lines). Right: Paths followed by the two people in
the scenario.

able to behave in a socially acceptable way in an environment with moving
pedestrians. To do that, the RRT∗ re-plans at a frequency of 2 Hz. In
this scenario, two people are walking freely in the scenario, sometimes
forming a group and sometimes walking alone. At the same time, the
robot is receiving waypoints that lead it to cross the room avoiding the
people around. One long run for each navigation system was performed.
Figure 7.12 shows the paths followed by the people in one of the runs
(right) and the paths followed by the robot with the TERESA SNS and
the MOVEBASE Non-SNS (left). As can be seen, the SNS tried to deal
with the people adapting its paths to the individuals in a social way unlike
the Non-SNS, which tried to perform the same direct trajectory to the goal
many times.

Table 7.5 shows the metrics obtained in the experiment. In this case, the
total time Tp indicates the total duration of the run, being the recording
of the SNS case a bit longer than the Non-SNS recording. Under this
condition, the path length metric Lp indicates the total length traveled by
the robot (all the trajectories), and, as can be seen, it was longer in the
SNS case. That fits with the paths shown in Fig. 7.12 left, and explains
the higher value in the cumulative heading changes (CHC) since the SNS
tried to adapt its paths to the people in the scene. Again the most relevant
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Table 7.5: Results for social navigation evaluation of a free run with two people
moving in the scenario.

GROUP TERESA MOVEBASE

Tp(s) 495.50 387.80
Lp(m) 70.24 50.18
CHC(rad) 89.16 74.34
CPavg(m) 2.50 2.50
CPmin(m) 0.31 0.27
CPmax(m) 4.65 4.84

Intimate 0.60 3.17
CPprox(%) Personal 14.31 10.11

Social+ 85.08 86.73

Intimate 3.31 8.51
ISprox(%) Personal 12.27 12.67

Social+ 84.42 78.81

and significant metrics are the intrusions in the Proxemics spaces of the
closest person (CPprox) and the interaction area (ISprox). The intrusions
in the intimate spaces are much lower in the case of SNS, what states the
effort on minimizing the disturbance of people. As a general result, we
can say that the behavior of the TERESA SNS is more socially acceptable
than the behavior shown by the MOVEBASE Non-SNS as expected.

7.5 Integrated experiments

Throughout the TERESA project, four joint consortium studies were conducted.
These consortium studies were aligned with four iterations of the robotic system
and its software and included a longitudinal study and also new participants in
each case. Some results about the acceptance of the system by the end-users
along the iterations are presented here.

Then, the particular results regarding the last version of the robotic system
(iteration 4) are presented. During these last experiments, all macro-actions from
Section 7.2.3 except for the walking side-by-side were integrated and available for
the visitor. Two different kinds of experiments are shown. The first one corre-
sponds to a demonstration with the TERESA robot in an event called ”Faite-vous
Plaisir, Seniors”19, about the well-being of elderly people, and that took place on
October 19, 2016, at the Centre Sportif de l’Aube (Troyes, France). The second

19http://teresaproject.eu/wp-content/uploads/2016/07/TERESA-Dissemination-Press-release.

pdf

http://teresaproject.eu/wp-content/uploads/2016/07/TERESA-Dissemination-Press-release.pdf
http://teresaproject.eu/wp-content/uploads/2016/07/TERESA-Dissemination-Press-release.pdf
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Figure 7.13: Overview of the TERESA consortium studies performed.

one corresponds to the experiment 4 of the project themselves, that took place
at the day centre Les Arcades (Troyes, France), in October and November 2016.

7.5.1 End-user evaluations

Throughout the project, four joint consortium studies were conducted. These
consortium studies were aligned with the integration of the four iterations of the
robotic system and its software. Each of the consortium studies thus directly
followed on the integration and deployment of a new version of the robot. That
had as a downside that the protocols often needed minor adaptations dependent
on the outcomes of the integration and deployment. The upside was that the
protocols could be designed to fit the needs of the project at its different stages
and could be adapted to suit the status of the different modules. This work was
mainly conducted by Jered Vroon, from the University of Twente, and Raphael
Koster, from the Expert Centre in Technologies and Services for the Maintenance
and Autonomy of Elderly (Madopa), as partners of the project. The complete
evaluation can be consulted in (TERESA Consortium, 2016b).

Between July 2014 and October 2016, 45 sessions with the robot were car-
ried out over the course of four consortium studies (TERESA 1a in July 2014,
TERESA 1b in September-October 2014, TERESA 2 in April-May 2015, TERESA
3 in February 2016, and TERESA 4 in October 2016, see Fig. 7.13). All in all,
these sessions involved 100 participants (71 people), including ten members of
the users’ committee, who in nearly all cases had been present at every session
right from the start of the project, and 61 new participants.

In the evaluations, some of the participants were acting as visitors (control-
ling the robot) and other acting as interaction targets. After experiencing the
scenarios, participants were given a questionnaire about their experiences with
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and attitudes toward the system. From those questionnaires, a percentage of
acceptance in different aspects could be obtained. We will comment only the
results that can be related to the robot social navigation, although it is not easy
to isolate and evaluate this part from the general user experiences, as we discuss
later.

It is important to emphasize that we are not comparing the same system
between studies 1 to 3 and consortium study 4. That is, new functionalities were
integrated for the first time. That means that some functionality went from
mostly flawless Wizard-of-Oz-controlled movement (a hidden expert controlling
the robot) to fully integrated autonomous behavior; while the system was more
integrated, intelligent and autonomous, this also necessitated several changes
to accommodate the different dependencies between all aspects of the system.
Furthermore, not only the functionalities of the robot were different, but also
the low-level electronics, the shell and look of the robot, and the interface had
changed (See Fig. 7.14). For this reason, we discuss the results from consortium
study four separately from those of consortium study 1-3. We do also discuss the
relationship between these two versions with the intent of identifying the main
ways in which robot motion was affected by these significant changes.

Figure 7.14: TERESA functionalities added to each version.
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7.5.1.1 Study results

Here we summarize the acceptance of different aspects of the robot motion along
the four consortium studies and therefore the four different versions of the telep-
resence robot. The aspects considered are grouped into these categories:

• Technical skills and ease of use. This category accounts for the tech-
nical difficulty that the user faced when handling the robot.

In the first three consortium studies, the ten longitudinal participants (the
group of people that participated in the four experiments) stated that the
more autonomous the robot became, the easier it was to use for those
controlling it and less technical knowledge was necessary. Despite greater
autonomy of the robot in the version of experiment 3, the new participants
were intimidated by the technical knowledge required instead.

However, in the fourth consortium study, we found that most users were
less enthusiastic. A completely new user interface, including a new system
for manual control of the robot movement based on keyboard (previously
was based on mouse), was employed. In contrast to what was found in
informal prior evaluations of the new interface, the users had difficulty
controlling the robot manually using the arrows on the keyboard. Despite
that users could freely switch between manual and semi-autonomous con-
trol, the participants enjoyed the challenge of directly controlling the robot
and felt a bit disappointed with it - regardless of how effective these modes
of control were from a functional point of view. These issues should prob-
ably be resolved, as they could have a negative effect on the long-term use
of the system.

• Safety. This category considers the reliability and safety that the users
felt about the robot.

In the first three consortium studies, the robot’s autonomous behaviors
seemed increasingly reliable and safe to the ten longitudinal participants.
The rate of distrust among participants went down from 80% for the first
two versions of the robot to 50% for version three. However, a bias in
the protocol should be highlighted: version one of the robot simulated
autonomy through a Wizard-of-Oz concealed from the participants. Dys-
functional behavior was caused deliberately so that reactions to it could be
observed (study conducted by the University of Amsterdam). The major
changes made to the robot’s appearance in the fourth consortium study
caused the participants of the longitudinal study to feel warier again.

Regarding the group of new participants, up to version three, more than
50% of new users were wary of the robot and considered its movements
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unreliable. There was, however, a slight improvement between version 1
and version 3.

The final social navigation system of the robot for consortium study 4 ful-
filled its purpose: a greater feeling of safety and reliability appeared in
new users. Only 27% of users in consortium study four still considered the
robot to be unreliable, compared with 63% at the time of previous consor-
tium study 3. The navigation was more reassuring because of the robot
looks ”medical” according to the opinion of the two groups (longitudinal
and new participants).

• Emotions: Stressful/Banal/Challenging/Surprising/Fun. Some im-
pressions and feelings about the robot appearance and behavior are con-
sidered in this category.

Considering the participants of the longitudinal study, in the first three
consortium studies we saw that the more autonomous the robot’s move-
ments became, the less stressful the control activity became. Interestingly,
said stress was at the same time also a source of amusement: it nourished
a sense of challenge in issues surrounding control of the robot, which grad-
ually faded as the robot became more developed. The robot became less
”fun”, banaler and therefore also seemed less innovative.

In the fourth consortium study, the difficulties mentioned above in manu-
ally controlling the system caused considerable stress. Fun was comparable
to that in the third iteration, which may be caused either by this stress or
by the fact that the robot was comparably autonomous.

Regarding the group of new participants, paradoxically, the more autonomous
the robot’s movements became, the less amazing it seemed. Its innovative
nature was more perceptible when users were given the power to control
the robot themselves. The less the participants controlled the robot, the
more they felt stressed about not being behind the controls.

That held true for the semi-autonomous robot in the final session of con-
sortium study 4, whose fun aspect had completely disappeared. That could
be related to the aforementioned paradox, making the robot less fun as it
becomes more autonomous.

7.5.1.2 Introspection and conclusions

As previously commented, for the final consortium study in October 2016, the
TERESA robot’s interface and appearance were thoroughly overhauled. The
changes made between the old and new versions of the robot are so major that it
is worthwhile comparing the acceptability of the old version (TERESA1-3) with



7.5. Integrated experiments 141

that of the new (TERESA 4). Changes to the robot’s interface, its appearance,
its hardware, and its software all had a direct impact on the robot’s acceptability
for users.

While taking into account that comparing these versions is difficult precisely
because of these differences, we try to identify here the main ways in which robot
motion was affected by these changes.

When comparing the acceptability of the old and new versions of the robot,
an important outcome is that, with the version of the robot used in the last con-
sortium study (the one with better autonomous capacities), participants indicate
that they want to retain access to and control of the robot.

That seems a paradoxical and unexpected finding for a project aimed at
developing the autonomy of a telepresence robot. Instead of focusing on the in-
teraction with the people in the scene while the robot is autonomously navigating
or accompanying someone, the users (elderly) feel the necessity of controlling the
robot, even if that penalizes the attention devoted to the interaction. The reason
exposed was that they had the feeling of being dominated by technology.

For these reasons and considering the previous results, the general evaluation
of a social robot is complex. A lot of different component needs to work together,
and small details in one of them can have a direct impact on the perception of the
others by the users. Thus, the isolated evaluation of the different components of
the full system becomes difficult to determine. In this sense, concluding about
the acceptability of the ”social” autonomous navigation cannot be fairly done.

7.5.2 Centre Sportif de l’Aube

As commented, the robot was demonstrated during an event about the well-being
of elderly. The place of the event consisted of an area of 25 x 28 m approximately
counting with a main hall with two corridors and stairs, and two rooms (Fig. 7.1
shows the robot at the main hall). Several booths of different companies were
there.

During the demo, the robot TERESA could be used by any visitor. The au-
tonomous navigation and conversation capabilities were activated. Many people
were visiting the different stands walking around or standing conversing while
having a coffee which turns the environment challenging for navigation.

The robot was working successfully the whole day in that environment, from
9.30 to 17.00. Figure 7.15 shows some instants of one navigation through the
environment. A video of the experiment can be accessed at the D4.3: Navigation
Demonstrator webpage20.

20http://robotics.upo.es/teresa/teresa-d43.html

http://robotics.upo.es/teresa/teresa-d43.html
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Figure 7.15: Some instants of different trials at the Centre Sportif. Top: ”robot
view”. Bottom: some pictures of the demo.

7.5.3 Les Arcades

The final experiments of the project took place at the elderly day centre ”Les
Arcades” in Troyes, France, from October 24th to November 2nd 2016. Figure
7.16 shows some pictures of people interacting with the TERESA robot at Les
Arcades. A full description of the experiments can be found in the Deliverable
D6.6 (TERESA Consortium, 2016b).

The different navigation macro-actions (except the walking side by side) were
employed during Experiment 4. Figure 7.17 shows an illustrative example of the
approaching macro-action where the robot performs an approach to the indicated
person by the user to initiate an interaction. Another example, in this case for
navigation to waypoint macro-action, can be seen in Figure 7.18.

The videos of many sessions of experiment 4 can be consulted in the D4.3:
Navigation Demonstrator webpage where the behavior and transitions between
the different modules of the integrated system can be observed. Explanations
about the information represented in the videos are also provided.

7.6 Conclusions

This Chapter presented the integration of some of the techniques developed in
this thesis in the real robot of the European project TERESA (TElepresence
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Figure 7.16: Pictures of Experiment 4 at Les Arcades.

REinforcement learning Social Agent). We focused on the navigation system
developed for the project, which has been augmented with different social nav-
igation skills. The system and relations between the different modules involved
were described. Moreover, the different experiments and evaluations performed
in real environments are presented.

The navigation stack considers global planning, local planning, and execu-
tion. Normative social behavior was included in cost functions, and social con-
straints learned from demonstrations. Thus, the novel learning algorithm pre-
sented in Chapter 6 has been applied to endow the TERESA robot with social
navigation capabilities. That has been compared to non-human aware stacks
and shown how it led to different motion behaviors.
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Furthermore, the learning framework presented in Chapter 5 was also em-
ployed for the task of approaching a person to interact with socially. The adap-
tation and use of the TERESA robot were explained. Also, the integration of the
learned behavior with the other available actions in the system was described.

The navigation stack has been successfully deployed and tested in real envi-
ronments. The results of controlled experiments and evaluations of the system
were presented here. Moreover, we showed the tests performed at the Centre
Sportif de lAube, in Troyes, France, during a one-day event (uncontrolled sce-
nario). It also includes videos of the tests in the elderly care center Les Arcades,
where the robot was working with the navigation stack during several trials for
two weeks.

Through the experimentation with the real robot in real environments, we
stated the importance of a reliable perception system for the surrounding peo-
ple. However, this a problem not fully accomplished yet. Correct detection and
tracking of people positions and orientations, or even head or gaze direction,
is crucial for a correct understanding of the social situation. Light conditions,
robot movement, partial occlusions and many other factors concern the detection
problem. Better detection algorithms and more advanced data fusion from dif-
ferent sensors are required. In our case, false positive detections (some examples
can be seen in Fig. 7.17 and 7.18) led the robot to show an unusual behavior in
some particular cases.
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Figure 7.17: Approaching an interaction target at Les Arcades. The robot is
commanded, through the interface, to approach the person with identifier 366
(in the interface, the user just have to click on an oval that appears on the
person).
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Figure 7.18: Navigation to a waypoint at Les Arcades. The robot is commanded,
through the interface, to go to a certain predefined waypoint (in the interface,
the user just have to click on the name of the waypoint where she/he is interested
to go).



Chapter 8

Fully Convolutional Networks to learn
human-aware path planning

”They’re here!”
Poltergeist, 1982

This Chapter presents an approach to learn path planning for robot social
navigation by demonstration from a different perspective than those presented in
previous chapters. We make use of Fully Convolutional Neural Networks (FCNs)
to learn from expert’s path demonstrations a map that marks a feasible path to
the goal as a classification problem. The use of FCNs allows us to overcome the
problem of manually designing/identifying the relevant features for the task of
robot navigation, as we identified in Chapters 3 and 6. The method makes use of
optimal Rapidly-exploring Random Tree planner (RRT∗) to overcome eventual
errors in the path prediction; the FCNs prediction is used as cost-map and also
to partially bias the sampling of the configuration space, leading the planner
to behave similarly to the learned expert behavior. The approach is evaluated
in experiments with real trajectories and compared with Inverse Reinforcement
Learning algorithms that use RRT∗ as the underlying planner.

8.1 Introduction

In Chapter 6, we presented an IRL approximation for learning human-aware
navigation behaviors. It uses a RRT∗ planner instead of an MDP to overcome
some of the computational drawbacks of the MDPs (Pérez-Higueras et al., 2017).
Besides that, most of the IRL techniques present other issues when the task to
be learned is complex, like the human-aware navigation. In these cases, we
have to manually design the structure of the reward and features involved in
the task. In many cases, the designed reward probably is not able to recover
the underlying demonstrated behavior properly. Even though the weights of the

147
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cost function can be learned from expert demonstrations, we still need to define
a set of features functions that describe the state space and the relation between
them.

However, in the last years, the use of deep neural networks in IRL problems
is bringing good results. Neural networks, as function approximators, permit
the representation of nonlinear reward structures in domains with high dimen-
sionality. Some authors have already applied deep networks to the problem of
human-aware robot navigation among others. In (Chen et al., 2017a), a Re-
inforcement Learning approach is applied to develop a socially-aware collision
avoidance system where a deep network is employed to learn multi-agent cross-
ing trajectories. Also, Deep Q-networks have been used in (Sharifzadeh et al.,
2016), to solve the MDP step of an IRL algorithm for the task of driving a car.
Furthermore, the well-known Maximum Entropy IRL (Ziebart et al., 2008) al-
gorithm is extended in (Wulfmeier et al., 2015) to use deep networks, and its
application to path planning in urban environments is presented in (Wulfmeier
et al., 2016). Another example is (Shiarlis et al., 2017b) in which a deep network
is employed to learn from demonstration a robot control policy for the task of
keeping the correct distance and orientation in a conversation with humans.

In this Chapter, we present a different approach to those commented above
and the ones presented in Chapters 5 and 6. Here, we propose a learning from
demonstration strategy for the task of human-aware path planning that avoids
the explicit representation and definition of the cost function and its associ-
ated features. The proposed method does not follow the classical IRL approach.
Instead, the problem is formulated as a classification task where a Fully Con-
volutional Network (FCN) is used to learn to plan a path to the goal in the
local area of the robot in a supervised way, using the demonstrations as labels.
This general approach is then combined with an optimal path planner to solve
the task efficiently and to ensure collision-free paths, similarly to the sampling
bias performed in Chapter 5. Thus, the contribution presented in this chapter
is twofold: 1) a novel approach for learning human-aware path planning from
demonstrations based on Fully Convolutional Networks and 2) the combination
of this information with an RRT∗ planner to enhance the planner capabilities
while it behaves similarly to the expert behavior.

8.2 Learning to plan paths with FCNs

In this section, we present our approach to learning from demonstrations to
plan human-aware paths in 2D environments for robot social navigation. We
propose using a Fully Convolutional Network to learn, from the expert’s path
demonstrations, to predict the correct path to the goal according to the current
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Figure 8.1: Left. Example of input grid to the network. Obstacles, goal position,
and people positions and orientations are included. The robot is always located
in the center of the image and looking to the right direction, so the rest of
elements are properly oriented around the robot. Right. Respective label used
for learning with the path to the goal.

obstacles and people in the vicinity of the robot, without explicitly defining the
environment features used. Unlike Deep-IRL approaches, which try to learn the
cost function that the expert is following in an MDP framework, our goal is to
directly predict the path to the goal given the information from obstacles and
persons.

The path predicted by the FCN is then combined with a RRT∗ planner to
perform the navigation task efficiently and to prevent the robot from collisions
or prediction fails.

8.2.1 Input and output of the network

We consider a local navigation task in a 2D space of size 10 × 10 m2, centered
on the robot, which is always in the center and oriented to the right. Thus, the
sensor data are transformed according to the robot local coordinate frame and
used as input to the network. No other information is employed, so the network
has to derive the features of the task based on the provided state information.

The sensor data based on laser scans and point-clouds is projected in a 2D
grid of 200×200 pixels with a resolution of 0.05 m/pixel. As we are considering
the task of social navigation, we need to be able to detect people. So, for real
conditions, the same people detection and tracking system used in TERESA
(Chapter 7) is employed here to provide information about the position and
approximated orientation regarding the robot position and orientation. This
data is also included in the 2D grid, where the people are marked using circles
and triangles to indicate the orientation. The goal is also marked on the grid as a
small circle. No prior information about the area, like global maps, is employed
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Figure 8.2: Proposed network architecture. The network is composed by two
branches, a global-coarse branch that extracts high-level features of the input
grid and a local-fine branch that make use of these features and the original
input grid to generate the final path.

in this case, but it could also be combined easily. This grid is used as a gray-scale
image where the background color is black and each element previously described
takes a different gray intensity. These values are normalized to be in the range
[0, 1] before serving as input to the FCN. An example of the input gray-scale
image of the network can be seen on the left image of the Fig. 8.1.

The output of the network is an approximated path from the center (robot
position) to the goal marked on a grid, which has the same size as the input. We
can see an example on the right image of the Fig. 8.1.

8.2.2 Network architecture

Path planning problems are especially characterized by the existence of global
information in its formulation, as a goal destination among others. That means
the points of the path are not only affected by local information, but also from
global information. This information is critical to optimize the path searching
policies. For instance, the robot needs to know where to go before plan the best
trajectory from its current position.

The importance of the global information has been considered into the de-
sign of the proposed neural network architecture, presented in Fig. 8.2. The
architecture is inspired by the global-coarse to local-fine deep learning architec-
ture presented by (Eigen et al., 2014). Thus, the proposed structure is divided
into two major branches: a global-coarse estimation that sequentially subsample
the input grid while applying larger kernels in order to extract global high level
features of the input, and the local-fine branch that make use of the extracted
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Figure 8.3: Upper left. Example of output plan of the network. Down right.
RRT∗ path using the network prediction with a bias of the sampling of 70 %.
Robot position is the center of the image. Orange lines show the obstacles.
People position and orientation are indicated with green cylinders and arrows.
The goal is represented by the golden arrow. The planner tree is drawn in white
color.

global features and the original input grid to build the final path considering
local information and global constraints.

Notice how the proposed network does not make use of fully connected lay-
ers, which significantly reduces the total number of parameters to one hundred
thousand approximately. Instead, an output layer with 1x1 kernel size is used
to generate the output grid with the path.

8.2.3 Integration with the RRT* planner

The final step consists in combining the path predicted by the FCN with a RRT∗

planner to perform the navigation task efficiently and to prevent the robot for
collisions or prediction fails.

The planner uses the path prediction following the same idea that we em-
ployed in Chapter 5: first, as a cost function to connect the tree nodes; and
second, to partially bias the sampling of the state space, taking a higher per-
centage of samples from the areas where the predicted plan is. That allows to
guide the sampling process efficiently to areas of interest and thus, reaching an
optimal path faster.
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Figure 8.4: Visual comparison of 6 pairs of labels and network predictions from
the testing dataset. For each pair, the label is represented in red line on the left
image, and the prediction is shown in green color on the right image.

The path prediction from the network and the resulting RRT∗ path for the
same example presented in Fig. 8.1 are shown in Fig. 8.3. As can be seen, the
resulting path is very similar to the demonstrated one.

The percentage of samples drawn from the path prediction or a uniform dis-
tribution is an important parameter. Keeping a percentage of uniform sampling
allows the planner to be still able to find a path to the goal when the prediction
is not complete or fails. In this case, we have used a 70 % of samples from the
path prediction.

8.3 Deep Network Validation

We first validate the deep learning approach by testing the performance of the
network prediction. A dataset of 10500 trajectories has been used to validate
the capability of the proposed FCN to learn to plan paths. The dataset has been
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Table 8.1: Mean Squared Error (MSE) reached in the different stages with dif-
ferent set of trajectories

Learning set Validation set Testing set

MSE 0.0073 0.0067 0.0094

created by randomly generating positions and orientations for the robot, the goal
and different number of people around in different scenarios within a large map.

Regarding the generation of demonstration paths to the goals in the scenar-
ios, a RRT∗ planner with a pre-defined cost function has been employed. In
particular, as a cost function, we employ the same weighted linear combination
of five features that we used in Chapter 6 for robot social navigation. Recall
that these features are based on distance metrics as the Euclidean distance to
the goal and the closest obstacle. Also, metrics regarding the people in the vicin-
ity of the robot are taken into account. The Euclidean distances and orientations
concerning the people in the scene are used through three Proxemics functions
placed in front, back and sides of each person.

From the dataset, 10000 trajectories are used in the learning process, while
the remaining 500 trajectories are reserved for testing the network after learning
finishes. Also, during the learning, 100 trajectories were taken from the learning
set as a validation set for overfitting checking. The results in terms of Mean
Squared Error (MSE) between the pixel values of the network output and the
respective image label for the different sets of trajectories are presented in Table
8.1. As can be seen, the error committed in the testing set keeps low regarding
the error reached in the learning set.

Furthermore, a visual comparison of some network predictions corresponding
to some of the 500 trajectories of the testing set is presented in Fig. 8.4. The
images are presented in pairs with the demonstrated path in red in the left image,
and the respective prediction on the right image in green. As can be observed,
the predictions fit the expert’s paths very well.

An interesting and unexpected outcome of the proposed network is its capa-
bility to generate more than one valid path when the goal can be similarly reached
by following different homotopies, even when the learning has been made with
a single trajectory per example. Figure 8.5 shows two examples of prediction in
two valid homotopies. This information is easily handled by the RRT∗ planner
which will select the shorter path.

The source code of the network and all the datasets used in the experiments
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Figure 8.5: Example of two cases where the network learn to plan in different
valid homotopies. The demonstrated path is shown in red color on the left images
while the respective prediction is shown in green color on the right side images.

can be found in the Github repository of the UPO Service Robotics Lab1.

8.4 Path Planning Evaluation

The feasibility of the proposed approach is demonstrated for human-aware plan-
ning by learning in a small dataset of real robot trajectories. Then we compare
the resulting trajectories with a ground-truth set and two IRL algorithms of the
state of the art that learn the cost function of a RRT∗ planner as a weighted
linear combination of features.

8.4.1 Dataset

A dataset of 300 trajectories has been recorded in different simulated environ-
ments with static people around and where the robot was controlled by a human
expert who tried to perform an accurate human-aware navigation to the goal.

1https://github.com/robotics-upo/upo_fcn_learning

https://github.com/robotics-upo/upo_fcn_learning
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This dataset is sorted in 3 sets, where 250 demonstration paths are used for
learning, and 50 are used for testing the results. The difference between sets is
that the 50 paths chosen for testing (and thus the 250 for demonstration) are
different for each set.

Is noteworthy that, regarding deep learning with FCNs, a dataset of 250
demonstrations for learning human-aware navigation can be considered very
small. We will show that even with this small information the presented ap-
proach can equal or overcome the result of two state-or-the-art IRL algorithms.

8.4.2 State-of-the-art algorithms

The performance of our approach is tested against two IRL algorithms of state
of the art: RTIRL (Pérez-Higueras et al., 2017) and RLT (Shiarlis et al., 2017a).
Both try to learn the weights of a linear combination of features used as cost
function of a RRT∗ planner using the same set of demonstrated trajectories.
The first one is presented in Chapter 6 of this thesis and is based on a Maximum
Entropy approach (Ziebart et al., 2008) that replace the MDP by an RRT∗

planner. The second one is an adaptation of the Maximum Margin Planning
algorithm (MMP) (Ratliff et al., 2006) to work with a RRT∗ planner.

We have used with these algorithms the extended set of features specifically
designed for robot social navigation of Section 6.3. The set is a compound with
five features. Three of them are based on distances and orientations between
the robot and the people in the scene and are coded through three Gaussian
functions placed in front, back and side of each person in the scene. Then, two
more features measuring the distance to the goal and distance to the closest
obstacle are also considered. It is important to remark that our approach, on
the contrary, is fed with just the raw laser data and the position and orientation
of people in the form of an image, as explained in Section 8.2.1.

The implementation of the IRL algorithms used for comparison can be found
in the module upo nav irl2 of the Github repository from the UPO Service
Robotics Lab.

8.4.3 Metrics

In order to compare the planned paths with the ground-truth paths, we use
the same Trajectory Difference Metric (TDM) that we employed in Chapter 5
(Eq. 5.8), which is based on a directed distance measure between two paths:

TDM(ζ1, ζ2) =

∑N
i=1 d(ζ1(i), ζ2)

N
(8.1)

2https://github.com/robotics-upo/upo_nav_irl

https://github.com/robotics-upo/upo_nav_irl
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Figure 8.6: Average distance metric µ and standard errors for the three ap-
proaches in the three sets of trajectories of test.

where the function d(ζ1(i), ζ2) calculates the Euclidean distance between the
point i of path ζ1 and its closest point on the path ζ2, and N stands for the
number of points of the path ζ1. This distance in then combined to obtain a
final metric of path comparison µ:

µ(ζ1, ζ2) =
TDM(ζ1, ζ2) + TDM(ζ2, ζ1)

2
(8.2)

Moreover, a comparison between the difference in the feature counts of the
ground-truth paths and the planned paths is also employed, as the feature counts
play a key role in the IRL approaches (Pérez-Higueras et al., 2017; Shiarlis et al.,
2017a). According to the path cost calculation presented in Eq. (6.2) of the
chapter 6, the calculation of the feature count of a path is defined as:

F (ζ) =

N−1∑
i=1

f(ζ(i)) + f(ζ(i+ 1))

2
‖ζ(i+ 1)− ζ(i)‖ (8.3)

where f(ζ(i)) indicates the vector of features values for point i of path ζ, and
‖ζ(i+ 1)− ζ(i)‖ is the Euclidean distance between the points i and i+ 1 of the
path ζ. Even though our FCN approach does not make use of such features, we
also compute their counts for the resultant trajectories.

8.4.4 Comparative results

We first train the RLT, RTIRL, and FCN approaches with the learning set, and
then compare the results using the testing set. We obtain the results for the
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Path comparison TestSet 1, Scenario 12

Demo paths

RLT paths

RTIRL paths

FCN paths

Path comparison TestSet 1, Scenario 13

Demo paths

RLT paths

RTIRL paths

FCN paths

Path comparison TestSet 2, Scenario 15

Demo paths

RLT paths

RTIRL paths

FCN paths

Path comparison TestSet 2, Scenario 45

Demo paths

RLT paths

RTIRL paths

FCN paths

Path comparison TestSet 3, Scenario 4

Demo paths

RLT paths

RTIRL paths

FCN paths

Path comparison TestSet 3, Scenario 1

Demo paths

RLT paths

RTIRL paths

FCN paths

Figure 8.7: Visual comparison of paths in some scenarios for each testing set, in
which the FCN-RRT∗ approach fails (left side images) or fits the demonstrations
paths (right side images).
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Figure 8.8: Cumulative error in the distance metric µ for the different approaches
in the three sets of trajectories for testing.

three different data combinations described above.

First, the average values of the distance metric (Eq. 8.2) between the planned
paths and the 50 ground truth trajectories of each testing set are shown in Fig.
8.6. As can be seen, the performance of the three approaches is very similar.
Even though no further information is provided to the FCN approach, it can
learn an adequate representation of the task and equals the results obtained by
the other two algorithms that use a pre-defined set of features engineered for
human-aware robot navigation.

Moreover, a visual comparison of the paths for two examples of each testing
set can be seen in Fig. 8.7. For each testing set, a scenario in which the FCN-
RRT∗ plans in a different homotopy from the demonstration is showed on the
left side. On the right, it is shown a scene where the proposed approach fits the
demonstration, and the other algorithms fail.

Figure 8.8 shows a comparison of the cumulative density functions of the
distance metric µ for the different approaches in the three sets of trajectories
for testing. Again, the performance of our approach was similar to the other
approaches without explicit information of the navigation features.
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Figure 8.9: Cumulative error in the average feature count difference for the 3
approaches in the 3 sets of trajectories for testing.

Finally, we make a comparison regarding the manually-designed features. We
compare the differences in the feature counts of the planned paths concerning
the ground-truth paths of the three testing sets. Figure 8.9 shows the cumulative
density functions of the average feature count difference. It is interesting to see
how the RTIRL and RLT obtain similar results while our method underscores
in two of the sets, but the resulting paths are very similar according to Fig.
8.8. That is an expected result given that the navigation features have not been
specified to our approach, so the FCN could likely converge to another set of
features that also leads to a good imitation of the demonstration trajectories.

8.5 Conclusions

This Chapter presents an approach for learning human-aware path planning from
demonstrations in static scenarios based on the integration of FCNs and RRT∗.
The introduction of FCNs to learn the path planning based on demonstration
allows us to address the problem without the need of hand-crafted social navi-
gation features as many other IRL approaches in the state of the art, like those
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presented in Chapters 3 and 6. Additionally, the integration of the predicted
path with RRT∗ guarantees an optimal feasible path no matter the situation,
similarly to the partial bias of the space sampling presented in Chapter 5.

The full approach has been tested with a set of real trajectories and bench-
marked with state-of-the-art algorithms for human-aware navigation learning
with good results. Our approach offers very similar metrics without defining the
navigation features. Also, the prediction of plans in different and equally valid
homotopies enhances the flexibility of the approach. Besides, the neural network
prediction has also been successfully tested with a large dataset to validate the
predicted paths.

Definitely, FCNs are a promising tool to capture the underlying behavior
showed in the demonstrations. They allow us to overcome some of the problems
encountered in the other approaches presented in this thesis. A further compari-
son with different network architectures and mainly, learning from demonstration
in dynamic scenarios should be taken into account.



Chapter 9

Conclusions and Future Work

”Hasta la vista, baby.”
Terminator 2: Judgement Day, 1991

Human-aware robot navigation is a hard problem due to the high complexity
of the interactions that take place in populated environments. In this thesis,
we have presented methods to enable mobile robots navigating in a socially
compliant way, and that improve the behavior of traditional motion planning
methods in social scenarios.

Instead of trying to describe and mathematically define all those interac-
tions, we took a different approach. We studied and extended the capabilities of
Learning from Demonstration (LfD) techniques to acquire the underlying social
constraints from human examples of good behaviors and also to transfer these
behaviors to unseen scenarios.

9.1 Discussion

In Chapter 3, we proposed the first approximation to human-aware navigation
based on Inverse Reinforcement Learning (IRL). The fundamental concept was
to learn from human demonstrations some basic social navigation behavior at a
reactive motion level. Two simple discrete-MDP models (and combinations of
them) to capture the behavior were presented. A public annotated dataset of
real pedestrians was employed to extract the demonstration for learning. Then,
the control policies obtained by solving the MDP models were compared with
the human trajectories and a policy based on Proxemics theory. The results
indicated that the proposed approach improves the Proxemics-based policy and
can be used to transfer partial human navigation behavior into the low-level
navigation controller of a mobile robot. However, these results can be improved.
The computational complexity to solve MDPs led us to a gross discretization
of the feature and control spaces to keep the MDP computationally tractable.

161
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It turned out that the learned policies were not able to retrieve all the key-
insight involved in social navigation. Therefore, a richer set of features, including
velocity-based features, and more complex models can be considered.

The reward cost functions learned with the technique presented in Chapter 3,
were employed to extend a robot local motion planner for obstacle avoidance
with social skills. It was successfully integrated into the robotic tour guide of the
European Project FROG, as shown in Chapter 4. On the one hand, the approach
was satisfactorily compared with a non-social approach and a Proxemics-based
approach. Moreover, the experiments and evaluations performed with the real
robot in the project scenarios stated the success of the robot to perform robust
and partially social navigation in very challenging and crowded environments.
On the other hand, the ”social” skills acquired were insufficient, as commented
previously, and the kinematic constraints of the FROG robot did not allow it
to have the required quick and agile movements according to the surrounding
pedestrians.

The limitations imposed by the MDPs and the regular reactive motion plan-
ners applied to social navigation, as observed in the previous Chapters, motivated
us to use a more flexible planner, like RRT∗, for human-aware navigation in a
local area. The use of RRT∗ also allows to work in continuous spaces and scales
better than MDPs with larger state spaces and higher dimensionality. Thus, a
different framework for modeling human-robot interactions based on imitation
learning and sampling-based planners for execution was presented in Chapter
5. The approach made use of Gaussian Mixture Models (GMMs) to statisti-
cally model the physical interaction of the robot and the person when the robot
is teleoperated by an expert demonstrating a task. Then, the learned models
were integrated into a RRT∗ sampling-based planner at two levels: guiding the
sampling step of the state space and including a cost term of the cost function
employed by the RRT∗. The idea was to exploit the benefits of the GMM to
characterize the demonstrated tasks and the flexibility of the RRT∗ to overcome
unseen situations. The approach was successfully tested in two particular naviga-
tion tasks: avoiding a standing person from two specific angles and approaching
a person. However, this approach is very focused to mimic the demonstrations
provided, unlike the IRL method that tries to learn the underlying demonstrated
behavior. Therefore, it is difficult to apply the proposed approach to the general
problem of human-aware navigation which involves several complex interactions
and variability.

The low flexibility of the previous approach to generalize to unseen scenarios
and to cover the diverse situations that arise in navigation motivated us to ex-
plore the possibilities of the IRL techniques again. We devised a novel learning
algorithm combining the Inverse Reinforcement Learning (IRL) concepts and a



9.1. Discussion 163

RRT∗ planner, as presented in Chapter 6. The aim was to learn from expert’s
path demonstrations the weights of the RRT∗’s cost function that leads the plan-
ner to behave similarly to the demonstrated examples. The proposed method is
simple to implement and allows to overcome the commented problems associated
with IRL based on discrete-MDPs. Furthermore, the use of the RRT∗ permits to
deal with larger scenarios (regarding people and features) than previous discrete-
MDP-based approaches, like the ones presented in Chapter 3. The approach was
validated against a ground-truth cost function and two related algorithms from
the state-of-the-art. The results showed that the approach was able to approxi-
mate the demonstrated cost function and to obtain behaviors more similar to the
demonstrations than similar state-of-the-art algorithms. However, the proposed
approach can be extended in different directions: firstly, the learning considers
only static scenarios, so a richer set of features, including the velocities of people
and the robot beside considering the kinodynamic constraints into the planner,
could improve the behavior in dynamic scenarios. Secondly, the identification of
the relevant features involved in the social interaction is not clear, so other tech-
niques to learn also the features from the demonstrations could be considered.

This latter approach was employed to learn the weights of the cost function
employed in the social navigation system of the telepresence robot of the Euro-
pean TERESA project. Also, the unsupervised learning approach presented in
Chapter 5 was satisfactorily applied to the task of approaching a human interac-
tion target. The successful integration of these approaches and the experiments
and evaluations performed encompassed in the TERESA project were presented
in Chapter 7. The comparison of the TERESA navigation system with non-
social approaches stated that the system was able to acquire some social skills.
The TERESA platform was also lighter and agiler than the FROG robot, what
eased the movement of the robot and thus, better social interaction was achieved.
However, a holonomic platform could even improve the movement in navigation.

Finally, in Chapter 8, we addressed the issue of manually designing/identifying
the cost-map and the relevant features involved in the task of human-aware path
planning. To overcome this, we made use of Fully Convolutional Neural Net-
works (FCNs) to learn from expert’s path demonstrations a map that marks
a doable path to the goal as a classification problem. Then, the FCN path
prediction was used as cost-map and also to partially bias the sampling of the
configuration space of a RRT∗ planner, leading the planner to navigation plans
similar to the demonstrated ones. The use of FCNs allowed to face the learning
problem without the need of hand-crafted features as many other approaches in
the state-of-the-art. The approach was tested with a set of real trajectories and
benchmarked with a state-of-the-art algorithm and the IRL algorithm proposed
in Chapter 6. The results indicated that the approach was able to equal the
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performance of these algorithms without the need of defining the environmental
features. Therefore, the use of FCNs seems to be a handy and appropriate tool
for robot social navigation. A comparison of different network architectures could
be considered, and a modification of the process to learn in dynamic scenarios
could improve the quality of the path planning in such populated scenarios.

All in all, this thesis posed a set of different methods and techniques, always
from a perspective of Learning from Demonstration, applied to the problem of
human-aware navigation. We aimed at capturing the underlying behaviors of
human experts demonstrating social navigation tasks and transfer these behav-
iors to a mobile robot. The various drawbacks found in the development of the
different techniques presented have been addressed with new approaches. So,
the work presents a clear evolution from the first approaches to the latest ones.

9.2 Future work

The methods and approximations developed in this thesis still present some
questions and hindrances to be addressed in future work. We indicate them here
along with other open issues in the general problem of human-aware navigation
of mobile robots.

A common and remarkable issue of the approximations proposed in this thesis
is that they learn from demonstrations in static situations where the pedestrians
are still, and dynamic features of the environment are not taken into account.
In this sense, the local motion controller learned in Chapter 3 could be extended
with features related to the pedestrian velocity. Moreover, the addition of time
and other velocity-related descriptors to the unsupervised learning proposed in
Chapter 5 could be explored. In the case of the learning algorithm presented in
Chapter 6, the use of features related to pedestrians is not enough. How to pro-
vide the demonstrations and how to reproduce the situations during the learning
process need to be determined. One option could be to split the demonstrations
in sequences that are then reproduced backward during the learning. Finally, the
approach based on Fully Convolutional Networks, Chapter 8, could be adapted
to dynamic scenarios by exploring the use of recurrent networks and providing
the demonstrations as sequences of images regarding different time steps of the
trajectory. In particular, the use of Long short-term memories (LSTM) could be
studied. They are networks with loops in them, allowing information to persist.
This can help to predict the pedestrians’ trajectories and plan the robot’s path
accordingly.

In this sense, new works on the prediction of pedestrians’ movement in the
computer vision community using deep neural networks should be considered (Yi
et al., 2016; Su et al., 2016, 2017). Other relevant references based on modeling
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the pedestrian’s trajectories are (Kim et al., 2015), or (Karamouzas et al., 2014)
in which a model crowd prediction is derived from data.

Regarding this latter approach, the use of FCN to learn the relevant features
involved in the task from nearly raw sensory input delivers promising results.
The study of different networks architectures and the comparison of their results
can be considered. Moreover, the recent Deep-IRL concepts, like the Maximum
Entropy Deep IRL approach (Wulfmeier et al., 2015, 2016), could be employed to
modify the learning algorithm presented in Chapter 6 to remove the dependency
on the manually-designed RRT∗ cost function.

Another point that can be further studied is the performance of the RRT∗

path planner. Through this thesis, a 2D no-kinodynamic version of the RRT∗

algorithm has been extensively used. The need of fast re-planning in the chang-
ing social environments did not allow us to include the kinodynamic constraints
in the path planning phase what increases the computational cost significantly.
Some steps in that direction were taken in the approximations presented in Chap-
ters 5 and 8, in which we partially reduced the sampling space of the RRT∗ to
areas of interest, therefore removing unnecessary computations. However, this
needs to be further studied and improved to be able to compute the kinodynamic
constraints at high frequency. Considering the kinodynamic constraints allows
to predict robot positions in concrete future steps, and therefore, it opens new
possibilities to plan ”social” trajectories.

Finally, although it is not directly addressed in this thesis, there are still
some other general open issues in the field of human-aware navigation that are
worthy to mention.

One of them is the perception of people in the robot’s vicinity in real en-
vironments. The detection of a person is not enough to perform good ”social”
navigation. Determining the correct body orientation and also the head orien-
tation can give important information to infer the person’s intentions and act
accordingly. Many works consider the use of artificial markers or the deployment
in very controlled environments to provide a correct detection. For instance, the
method for approaching people presented in Chapter 5, was successfully tested
by using a motion capture system that provided accurate people positions and
orientations to the robot. By contrast, with the TERESA detection and track-
ing system onboard the robot, we had problems to detect the correct orientation
of the person to approach, which led to a bad approaching behavior under real
uncontrolled conditions. Therefore, more accurate and advanced perception sys-
tems that can be executed on-board are required to fulfill the goal.

Another problem is the robot motion. As we experienced with the FROG
robot, and partially with TERESA, in Chapters 4 and 7, social robots need to be
able to quickly adapt to the dynamic conditions of the environment with rapid
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and also smooth movements. One the one hand, fast computational algorithms
able to process all the sensors data and plan the robot motion in a few millisec-
onds are required. On the other hand, agile kinematics and a lighter mechanical
design are also needed. Faster and more accurate actuators will improve the
robot response, and omnidirectional kinematics seems to ease the smoothness
and agility of the robot.
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R. Ramón-Vigo, N. Pérez-Higueras, F. Caballero, and L. Merino. A framework
for modelling local human-robot interactions based on unsupervised learning.
In International Conference on Social Robotics, pages 32–41. Springer Inter-
national Publishing, 2016.

C. E. Rasmussen and C. K. I. Williams. Gaussian Processes for Machine Learn-
ing. MIT Press, 2006a.

C.E. Rasmussen and C. Williams. Gaussian Processes for Machine Learning.
The MIT Press, 2006b.

N.D. Ratliff, J.A. Bagnell, and M. Zinkevich. Maximum margin planning. Inter-
national conference on Machine learning - ICML ’06, 23:729–736, 2006. ISSN
17458358. doi: 10.1145/1143844.1143936.

N.D. Ratliff, D. Silver, and J.A. Bagnell. Learning to search: Functional gradi-
ent techniques for imitation learning. Autonomous Robots, 27(1):25–53, 2009.
ISSN 1573-7527. doi: 10.1007/s10514-009-9121-3.

J. Rios-Martinez, A. Spalanzani, and C. Laugier. Understanding human interac-
tion for probabilistic autonomous navigation using risk-rrt approach. In 2011
IEEE/RSJ International Conference on Intelligent Robots and Systems, pages
2014–2019, Sept 2011. doi: 10.1109/IROS.2011.6094496.

C. Rosmann, W. Feiten, T. Wsch, F. Hoffmann, and T. Bertram. Efficient
trajectory optimization using a sparse model. In 2013 European Conference on
Mobile Robots, pages 138–143, Sept 2013. doi: 10.1109/ECMR.2013.6698833.

C. Rosmann, F. Hoffmann, and T. Bertram. Planning of multiple robot trajecto-
ries in distinctive topologies. In 2015 European Conference on Mobile Robots
(ECMR), pages 1–6, Sept 2015. doi: 10.1109/ECMR.2015.7324179.

S. Satake, T. Kanda, D. F. Glas, M. Imai, H. Ishiguro, and N. Hagita. A robot
that approaches pedestrians. IEEE Transactions on Robotics, 29(2):508–524,
April 2013. ISSN 1552-3098. doi: 10.1109/TRO.2012.2226387.

S. Satake, K. Hayashi, K. Nakatani, and T. Kanda. Field trial of an information-
providing robot in a shopping mall. In 2015 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS), pages 1832–1839, Sept 2015.
doi: 10.1109/IROS.2015.7353616.



180 BIBLIOGRAPHY

G. Schwarz. Estimating the dimension of a model. The Annals of Statistics, 6:
461–464, 1978.

F. Setti, C. Russell, C. Bassetti, and M. Cristani. F-formation detection: Indi-
viduating free-standing conversational groups in images. PLoS ONE, 10(5):
1–32, 2015. ISSN 19326203. doi: 10.1371/journal.pone.0123783.

S. Sharifzadeh, I. Chiotellis, R. Triebel, and D. Cremers. Learning to Drive using
Inverse Reinforcement Learning and Deep Q-Networks. In NIPS workshop on
Deep Learning for Action and Interaction, 2016.

K. Shiarlis, J. Messias, M. van Someren, S. Whiteson, J Kim, J Vroon,
G. Englebienne, K. Truong, V. Evers, N. Pérez-Higueras, I. Perez-Hurtado,
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