
IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED MAY, 2018 1

MGRAPH: A Multi-Graph Homography Method to
Generate Incremental Mosaics in Real-Time from

UAV Swarms
J. J. Ruiz1, F. Caballero1 and L. Merino1

Abstract—During the last years, UAVs have proved to be an
essential tool in the mapping industry. Furthermore, the next
generation of UAVs is envisioned to work cooperatively, following
the swarming/teaming concept. This article presents MGRAPH,
a novel approach to generate an incremental mosaic in real-time
from an UAV swarm. The algorithm is based on the generation
and fusion of multiples sub-mosaics represented by homography
graphs. Implementation takes advantage of parallel processing
and UAV metadata to generate a georeferenced mosaic over
a Geographic Information System (GIS). A comparison with
other mosaicking pipelines on three datasets demonstrates that
MGRAPH could be an alternative to address the generation of
mosaics from a swarm of UAVs.

Index Terms—Aerial Systems: Perception and Autonomy,
Mapping, Multi-Robot Systems.

I. INTRODUCTION

IN the following years, UAVs are foreseen to operate in
dynamic, non-hostile environments where initial conditions

will change rapidly, forcing the system to react in conse-
quence. The swarming paradigm implies a higher level of
autonomy, so human intervention is supposed to decrease.
Nonetheless, the added value of this topology consists in the
possibility of obtaining huge amounts of information from
sensors onboard in less time. Processing and fusing this
information as soon as possible may lead to a vital advantage
in future environments [1].

Particularly, cameras on-board the UAVs offer a limited
Field-of-View (FoV) of the scene. Image mosaics have been
widely addressed during the last decade to enhance this limited
FoV, and offer a solid alternative to traditional mapping in
domains such as agriculture, mining or construction [2], [3].
Furthermore, recent research on mosaicking has made great
strides in improving the performance of its algorithms [4],
[5], [6], [7], [8], [9]. For example, in the research carried
out by [4] and [5], the presented mosaicking algorithms were
evaluated in large scale environments. However, according
to the authors, working with these scenarios requires to

Manuscript received: February, 24, 2018; Revised April, 2, 2018; Ac-
cepted May, 19, 2018.

This paper was recommended for publication by Editor Jonathan Roberts
upon evaluation of the Associate Editor and Reviewers’ comments. *The
work of F.C. and L.M. was partially supported by MINECO (Spain) grant
OCELLIMAV (TEC-61708-EXP).

1Juan Jesus Ruiz, Fernando Caballero and Luis Merino are with School
of Engineering, Universidad Pablo de Olavide, Crta. Utrera km 1, Seville,
Spain jjruipav@alu.upo.es, fcaballero@upo.es,
lmercab@upo.es

Digital Object Identifier (DOI): see top of this page.

downscale the original datasets due to memory limitations.
Further research on real-time mosaicking is presented in [6],
[7]. In this case, authors work with highly overlapped datasets
to create the final mosaic. Nonetheless, they do not generate
georreferenced mosaics as an output. Recent research closer to
the MGRAPH scope is analyzed separately. In the work by [8]
(BIMOS), seamless mosaics are generated adopting a multi-
threading strategy, minimizing the time spent in each process.
Although BIMOS can generate incremental results, it does
not use external metadata so the algorithm is not suitable for
images from a multi-vehicle system. Additionally, [9] presents
a Structure from Motion (SfM) algorithm that works with large
datasets in a reasonable amount of time. The main drawbacks
of this approach are that it requires a SLAM system and it is
not possible to work with unconnected mosaics.

Reaching real-time performance requires the parallelization
of parts of the algorithm [10]. As a result, different companies
such as Pix4D1 or PrecissionHawk2 started to offer mapping
services based on a cloud computing architecture. However,
externalizing the mosaicking process to the cloud requires
Internet access.

Cooperative mapping using an UAV swarm could be consid-
ered novel research and imposes different constraints. Firstly,
the mosaicking algorithm should work with images coming
from different heterogeneous sources. Secondly, the system
should be robust enough to work with unconnected mosaics
and provide an incremental output. Finally, the system should
generate mosaics in real-time.

One of the main advantages of using an UAV swarm is
the possibility to cover an area faster than the single UAV
approach. Generating a real-time view of an area covered by
an UAV swarm have potential applications in time-constrained
fsituations such as natural disasters or military applications.
Nonetheless, little attention has been paid to this scenario in
current research.

In this paper, a novel mosaicking pipeline called MGRAPH
(Multi-GRAPh Homography-based method) is presented. The
aim of this algorithm is to generate incremental mosaics in
real-time from a swarm of UAVs. To this end, the mosaicking
pipeline has been split into different sub-processes, most of
them running on the GPU side. An important contribution of
this research is the generation and fusion of different sub-
mosaics, represented in the system as graphs. Due to this

1https://cloud.pix4d.com/login
2http://www.precisionhawk.com/es/precisionmapper



2 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED MAY, 2018

Fig. 1. (Top-Left) Information exchange between the UAV swarm, the GCS and MGRAPH. (Top-Right) General algorithm work-flow: (A) Metadata extraction.
(B) Feature detection. (C-D) Graph registration. (E) Non-linear optimization. (F) Mosaicking update. (Bottom) Resulting datagram from MGRAPH: image
identification (blue), absolute translation in pixels (tx,ty), scale factor and relative angle in degrees (α) (orange), geographic information (yellow) and raw
image (black).

characteristic, MGRAPH can work with datasets indepen-
dently of the order the images are injected into the system,
making this algorithm suitable to work with an UAV swarm.
Finally, MGRAPH does not generate mosaics as a single
file but represents the final result as an overlay over a GIS.
This approach allows to minimize the processing time and
georeference different mosaics in a global context.

The remainder of this article is organized as follows: Section
II describes briefly the MGRAPH workflow. In Section III,
a more in-depth explanation about the algorithm is made.
Section IV details the mosaic generation. Section V shows the
experimental validation of the proposed method while Section
VI presents comparative results with respect to other methods
in the state of the art. Finally, Section VII summarizes the
result of this research and draws conclusions.

II. SYSTEM OVERVIEW

MGRAPH is composed by two separate processes: an
external visualizer usually integrated in the Ground Control
Station (GCS) and the mosaicking algorithm. As shown in
Fig. 1, a datagram containing identification parameters and the
image data is sent to MGRAPH. In this process, MGRAPH
extracts the embedded metadata containing information from
the UAV and computes the graph where the image has been
inserted and its position within the graph. This information is
used by the GCS in order to update the position of the image
in the mosaic.

The current implementation of MGRAPH takes advantage
of the separation in both CPU and GPU sub-processes so they
can be hosted in different machines. This separation allows
to split the computation not only into processes but also in
hardware, offering a scalable solution if different UAV swarm
sizes are considered. For instance, several instances of feature
detectors and pose estimators can be executed in parallel in
order to balance the algorithm workload.

Although a more in-depth explanation is made in following
sections, a brief description for each phase in MGRAPH is
introduced according to Fig. 1. First (A), information from
the GCS is extracted in order to initialize the arriving picture
with the embedded geographic information. Then, the gateway
sends the image to an idle feature detector that extracts the
main image features using a binary descriptor (B). After
that, the graphs management process determines if the new
image matches an existing graph or not. To this end, different
pose estimator processes are used in parallel to estimate
feature matches between images (C) and to compute an initial
homography estimation (D). With this information, the current
list of graphs is updated and a non-linear optimization is per-
formed (E). Finally, MGRAPH returns to the GCS information
regarding the mosaic output.

III. THE MGRAPH ALGORITHM

A. Graphs and motion model
In the context of this research, each mosaic is represented

by a graph, denoted as g = (V,E), where V is a set of vertices
and E is a set of edges, formed by pairs of vertices. Vertices
on graphs represent images in the mosaic. An edge e = {i, j}
has as endpoints vertices i and j, and is created if there exists
a relative homography transformation Hi, j between the two
images.

We will consider that Hi, j represents a relative homogra-
phy from vertex j to vertex i. In the case of the absolute
homography of the same vertex i, the second parameter will
refer to the reference vertex as Hi,R. Furthermore, we restrict
these homographies to similarity transformations, defined as
follows:

Hi, j =


scosα −ssinα ∆x

ssinα scosα ∆y

0 0 1

 (1)



RUIZ et al.: MGRAPH: A MULTI-GRAPH HOMOGRAPHY METHOD TO GENERATE INCREMENTAL MOSAICS IN REAL-TIME FROM UAV SWARMS 3

where (∆x,∆y) represents a relative translation in pixels, α the
relative rotation in radians and s the scale factor in both axis.

The optimal movement of an ortho-mapping camera on-
board an UAV can be decomposed in a two axis translation
and one axis rotation. Therefore, the motion model Hi, j is a
4-DoF transformation, as commonly used in previous research
[8].

The validity of this approach considers a planar geometry,
where the altitude of the UAV is large when compared
with the variations in height of the map. Additionally, the
camera is assumed to be gyrostablized in UAV ortho-mapping
approaches, so that roll and pitch angle can be considered
negligible, reinforcing our choice of a 4-DoF model for Hi, j.

Each graph has a reference vertex (R) associated to an
identity transformation (HR = I). Any other vertex in a graph
can be related to its reference vertex by means of an absolute
homography, that can be obtained by composition:

Hi,R = Hi, j ·H j,R (2)

Notice that a given vertex might be connected to several
vertices through different edges. As it will be explained in
following sections, the strong edge is used to compute the
absolute homography, while the rest of edges (defined as
weak edges) are only taken into account in the optimization
problem. Therefore, the resulting oriented graph contains at
least one edge indicating the path to the reference vertex and
different weak edges showing neighborhood relationship. The
orientation of the path represents the unique way to calculate
the absolute homography.

B. Image reception and feature extraction

Initially, MGRAPH receives an image structure, including
an ID, an UAV identifier and some metadata containing infor-
mation from the sensors on-board the UAV (GPS and attitude
data), see Fig. 1. After that, the content of the image itself
is sent to the first idle feature detector process. In this step,
binary keypoints and descriptors are computed using the GPU
version of the ORB algorithm [11]. If the number of retrieved
keypoints is less than a threshold, the image is dropped and
not considered in this iteration. This might happen in presence
of blurred images or flying over untextured areas such as seas,
desserts or large countryside terrains. Since time per iteration
is a critical measure to reach real-time processing, the ORB
algorithm was selected over other alternatives such as SURF
[12].

C. Neighborhood selection

Pairwise selection is the first step before adding a new image
as a vertex in a graph. To this end, a zero-overlapping distance
is calculated by using information from the metadata and the
camera calibration. Assuming a completely orthogonal camera
to the terrain (see Fig. 2), the size of the footprint in the
horizontal axes can be calculated as Fw = 2 · h · tan(FoV/2)
where h is the flight height and FoV the camera’s horizontal
field of view. Taking into account the aspect ratio of the image

Fig. 2. Definition of the maximum distance (Dmax) used by MGRAPH for
the neighborhood selection process. The footprint of the image (Fw and Fh)
can be calculated as a function of the Field-of-View of the camera and the
flight height.

(AR), the footprint size in the vertical axes can be calculated
as Fh = Fw/AR. Finally, the maximum distance Dmax is:

Dmax = 2 ·
√

F2
w +F2

h (3)

This distance corresponds to a zero percentage overlap
between spatially neighbor images in both axis as shown in
Fig 2. Hence, for each graph it is possible to calculate a
candidate list whose elements are images located at a distance
to the current image below Dmax. By using this criteria, a
full comparison is avoided in each iteration and only a local
neighborhood is used.

D. Relative homography estimation

After creating the sorted candidate lists, each pairing set
is sent to a different process in order to compute a relative
homography matrix. To this end, descriptors are matched by
a BruteForce algorithm (GPU version) using the Hamming
distance [13]. A first set of matches passes through a ratio-
distance filter in order to reject some outliers before applying
the Random Sampling and Consensus (RANSAC) method.
The homography estimation algorithm is based on the 2D
affine estimator from [8]. Information about good matches and
the initial homography estimation are sent back to the main
process.

E. Graphs management

The next step involves the addition of the current image to
the graph system. Let G = {g1,g2,g3, . . . ,gn} be the current
set of graphs in the system, and img the current image. The
algorithm used to initialize the img into the graph system is
shown in Algorithm 1.

For each graph, a candidate list is created based on the
neighborhood selection criteria and using the metadata from
the image (line 4). Then, features from each candidate are
matched against the current image. The candidate is added to
a special vector sorted by the number of matches (lines 5-8) if
this number is greater than a fixed threshold. For every filtered
candidate, a relative homography is computed (relHomo in
line 10). The first candidate in the sorted list is used to insert
the image in the specific graph, adding a strong edge and
computing the absolute homography for the new vertex (lines



4 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED MAY, 2018

Algorithm 1: Graphs insertion algorithm
Input: Image img to be processed and graphs graphs
Output: Matched graphs

1 function processImage
2 matchedGraphs← null
3 foreach g ∈ G do
4 candidates←

g.getNeighborhood(img.position)
5 foreach c ∈ candidates do
6 matches← g.computeMatches(c, img)
7 if matches.size > thresh then
8 sortCandidates.addSorted(c,matches)

9 foreach sc ∈ sortCandidates do
10 relHomo← computeHomography(sc, img)
11 if !g.containsVertex(img) then
12 g.addVertex(img)
13 matchedGraphs.addSorted(g)

14 if sc.index == 0 then
15 g.addStrongEdge(img,sc)
16 g.computeAbsHomo(img,sc,relHomo)

17 else
18 g.addWeakEdge(img,sc)

19 g.addConstraints(img,sc)

20 return matchedGraphs

11-16). If the candidate does not represent a strong edge, a
weak edge is added to the vertex (lines 17-18). In any case,
the constraints for the optimization problem are added (line
19). Finally, the total number of matched graphs is returned
(line 20).

As a consequence of the previous algorithm, three possible
cases are considered. First, it is possible that the current image
does not match any of the existing graphs. In this case, a new
graph with the current image as the reference vertex is created.
Second, the image only matches one graph. In this case there
is nothing left to do. Third, it is possible that the current image
matches more than one graph. In this case, the current vertex
becomes a trigger vertex T and starts a special process called
Graph Fusion.

This fusion is defined as the process of concatenating two
graphs (denoted as primary and secondary) by means of a
common vertex in both structures. As a result, the secondary
graph is reallocated in the reference system of the primary
graph, deleting this graph after completion. The selection
of the secondary graph is based on the number of vertices.
However, if both graphs have the same size, the graph with
more inliers with the trigger vertex will be selected as primary.

After defining the graph roles, an adjacency list from T
to the rest of vertices in the secondary graph is created. An
adjacency list is the representation of every edge in the graph
as a list [14]. In the context of this research, every entry in the
list is a tuple of two vertices and an attribute indicating if the
edge is strong or weak. The objective of this list is to define the

Fig. 3. (Top) A new image (called trigger vertex, T) matches two graphs
simultaneously. (Bottom) As a consequence, the secondary graph (top image,
in green) is referenced to the primary graph (in red). After fusion, the
secondary graph is deleted. Dashed lines represents weak edges meanwhile
stroke lines represent strong edges.

entrance order of vertices coming from the secondary graph
into the primary graph. Assuming an adjacency list composed
by n tuples (v0,v1, type), representing the vertices IDs and
the edge type, the following algorithm is executed for each
element in the list:

1) If the tuple type is a 0 (weak edge), get the corre-
sponding v0 and v1 from the primary graph and add
the residuals to the optimization problem. If v0 or v1 are
not present, push this tuple at the end of the list and
continue with the next iteration.

2) If the tuple type is a 1 (strong edge), execute:

a) Get the first vertex in the tuple v0 from the primary
graph.

b) Retrieve the relative homography between vertices
from the secondary graph Hv1,v0 . This homogra-
phy was already computed in the past, when the
original edge was created.

c) Add a new node v2 in the primary graph with
absolute homography Hv2,R = Hv1,v0 ·Hv0,R.

d) Add the corresponding edge and the residual to the
optimization problem of the primary graph.

An example of a graph fusion is shown in Fig. 3. The red
graph is selected as primary and the green graph as secondary.
The following adjacency list can be computed from green
graph:

X = [(T,2,1),(T,3,0),(2,3,1),(2,1,1),(1,R,1)] (4)

The first tuple (T,2,1) creates the node 5 in the primary graph
(number 2 in the secondary graph) by using a strong edge
previously calculated. The second tuple (T,3,0) indicates a
weak edge for vertices T and 3. Since vertex 3 has not been
added yet, this value is pushed at the end of the list. In the
following iterations, the tuples (2,3,1), (2,1,1) and (1,R,1) are
added as vertices 6, 7 and 8 in the primary graph. Finally, the
tuple (T,3,0) is processed again and a weak edge is added for
vertices 4 and 6 in the primary graph.



RUIZ et al.: MGRAPH: A MULTI-GRAPH HOMOGRAPHY METHOD TO GENERATE INCREMENTAL MOSAICS IN REAL-TIME FROM UAV SWARMS 5

If the current image matches more than two graphs, the
same algorithm is executed between graph pairs until only
one graph is left.

The main advantage of this approach is that we can work
with datasets independently of the order the images are in-
jected to the system. Different graphs that initially could be
considered isolated can be connected to another graph through
the graph fusion mechanism if the trigger image is introduced.

F. Non-Linear Optimization

Each node i belonging to a certain graph holds an absolute
homography matrix Hi,R. This matrix is initialized as the con-
catenation of the different relative transformations of strong
edges from i to the reference frame R. Nonetheless, each
relative homography has its own drift, so cascading them into
an absolute homography can lead to cumulative errors. In order
to minimize this effect, a global optimization is performed.
According to the assumption of planar geometry in Section
III-A, each pair of matched points (pi, p j) in two images i and
j are related by a homography Hi, j satisfying pi = Hi, j · p j.
Since the objective is to optimize the absolute homography of
each image inside a graph, it is possible to express the previous
relation as pi = Hi,R(H j,R)−1 · p j . Therefore, the function to
minimize is defined as:

f = ∑
i

∑
j
∑
p

d(pi,Hi,R(H j,R)−1 · p j) (5)

where i and j are images with P correspondences, (pi, p j) are
the matched points and finally d(pi,Hi,R(H j,R)−1 · p j) repre-
sents the geometric distance resulting from the reprojection.
Due to the non-linear nature of the problem, the optimal
parameters are determined using a non-linear optimization
algorithm implemented in the C++ Ceres library [15].

In MGRAPH, since time constraints are critical and the
convergence time of the optimization problem increases with
the number of residuals, some strategies have been adopted.
For instance, every graph has its own optimization prob-
lem and it is only executed every ten new images for two
seconds maximum. Although this restriction does not assure
convergence, an intermediate solution is given until the next
optimization. Additionally, only the best 20 matches are used
to generate the initial homography estimation so the number
of residuals is more controlled.

IV. MOSAICKING OUTPUT

In common mosaicking pipelines, the blending step occurs
at the end of the process. This step implies allocating enough
memory to create a seamless mosaic using the optimized
homographies previously calculated. Despite the efforts for
using CPU parallelization in previous research [8], the time
spent in generating the seamless mosaic increases notably with
the resolution and the number of images selected.

In this context, MGRAPH skips the traditional blending
process. As previously shown in Fig. 1, MGRAPH returns
a datagram to an external GCS containing information about
the absolute homography of an image i in the graph g. In
the GCS side, every image is already loaded in memory.

Fig. 4. Generation of the mosaic as an overlay in the GIS. A image i in
a graph g is updated with the output generated by MGRAPH. A similarity
transformation applies a translation (∆x,∆y), a rotation (α) and a scale factor
(S) to the image i in relation to its reference frame (R) in the graph g.

When it receives the result from MGRAPH, the GCS updates
the absolute position, rotation and scale factor of the object
corresponding to Image i with relation to the reference object
of graph g.

In the example shown in Fig.4, the generation of a single-
graph mosaic in the GCS is shown. The reference frame
(R) is located using the metadata from sensors on-board
the UAV (latitude, longitude and heading). Additionally, the
corresponding zoom level is calculated taking into account this
metadata and the camera model. Every time an update from
MGRAPH is received, the corresponding image recalculates
its absolute position and orientation (∆x,∆y, s and α) regarding
the reference frame in its graph.

As a result, this approach is suitable to create incremental
mosaics. Unfortunately, it introduces some drawbacks. De-
pending on light conditions, flight height and image overlap,
skipping the blending part might cause visual artifacts. How-
ever, these drawbacks are considered acceptable when a real-
time estimation is required. The creation of small seamless
mosaics is considered as further work to complement this real-
time view of the mosaic.

V. EXPERIMENTATION

In order to evaluate the performance and accuracy of
the proposed algorithm, two datasets have been selected: a
publicly available dataset (Golf course3) and Drone airfield.
The Drone airfield has been used with MGRAPH in order
to check the performance and quality with large datasets. The
Golf course dataset has been used to simulate a swarm dataset
in order to address the on-line estimation with real data. The
selected hardware for the experimental setup was an Intel Core
i7 (4th Gen) 4800MQ with 32GB of RAM memory and a
NVIDIA GPU GTX870m.

A. Golf course dataset
Having multiple UAVs flying at medium altitude in a large

enough area is a risky and costly task, and we did not have

3https://dronemapper.com/sample data



6 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED MAY, 2018

Fig. 5. (Left) Sequential MGRAPH execution of the Golf course dataset, reordered to simulate a swarm of 16 UAVs. At the begginning, two different graphs
(red and green) are generated separately. (Center) Then, a trigger vertex (circled in blue) activates the graph fusion procedure. (Right) Final graph topology
and result.

the resources to perform such experiment at this moment.
Furthermore, it is difficult to find a public mapping dataset
taken by more than one UAV. For this reason, this single-UAV
dataset was specially selected due to its flight pattern. It was
reordered to generate 16 rows, 8 from East to West and 8 from
West to East, simulating a swarm of 16 UAVs. A set of 104
1000x750-pixel images was used. Additionally, the injection
of images into the system was simulated by alternating one
image per UAV in each iteration.

Figure 5 shows the initial state of the mosaic where two
different graphs are generated (left). At some point, an arriving
picture matches both graphs and a graph fusion process is
started (center). After that, the graph topology and the final
result are shown (right).

The time spent in the whole process was 32 seconds.
This time includes graphs generation, graph fusion, non-linear
optimization and periodically output generation to the GCS.
The main goal of this dataset was to demonstrate the possi-
bility of working with unconnected high-resolution datasets,
creating separate graphs and generating an usable output in a
reasonable amount of time.

B. Drone airfield dataset

The Drone airfield dataset was taken by a single Sky-
walker X5 Flying wing4 customized with a Raspberry camera
as the image sensor. The objective of this dataset was to
test MGRAPH in a real environment with a large dataset,
composed of 1436 pictures (1296x972 pixels) that covered
an area of 2 by 1.5 km. In this case, camera calibration
parameters were used in order to undistort images before
processing. Simulating the injection rate of one picture per
second, MGRAPH generated an output before the next image
arrived. Every ten images global optimization was performed
for two seconds (maximum), generating small delays.

During the processing of this dataset, small isolated graphs
were created due to texture of the terrain. However, along the
next tracks of the UAV, the small graphs were fused to the main
graph due to the side overlap of the new images. In terms of
performance considering an offline analysis, MGRAPH took
308 seconds to generate the final result that is illustrated in
Fig. 6.

4https://hobbyking.com/es es/skywalker-x-5-fpv-uav-flying-wing-
1180mm.html

Fig. 6. Drone Airfield dataset composed by 1436 pictures.

VI. COMPARATIVE RESULTS

This section evaluates the benefits and drawbacks of
MGRAPH with respect to two different methods: a cloud-
based mapping solution and the public state-of-art algorithm
BIMOS [8]. Three datasets have been selected for the bench-
mark: Aukerman5, Golf course6 and Quarry7, which are
publicly available for download and incorporate geolocation
metadata through embedded EXIF geotags. Before processing
the images, it is assumed that they are undistorted. Finally, the
hardware used is the same as in Section V.

A. Cloud-based mapping comparative

As a result of the development of both telecommunications
and UAVs, different companies in the mapping industry started
to offer their solutions as cloud-based services. For instance,
Precision Hawk recently unified their products and released
Precision Mapper, a cloud-based photogrammetry software
for off-line aerial imagery processing8. Figure 7 illustrates
the resulting mosaic from both the cloud-based service (left)
and MGRAPH (center and right). Particularly, the Aukerman

5https://github.com/OpenDroneMap/odm data aukerman
6https://dronemapper.com/sample data
7https://www.sensefly.com/drones/example-datasets.html
8http://www.precisionhawk.com/es/precisionmapper



RUIZ et al.: MGRAPH: A MULTI-GRAPH HOMOGRAPHY METHOD TO GENERATE INCREMENTAL MOSAICS IN REAL-TIME FROM UAV SWARMS 7

Fig. 7. (Left) Cloud-based output of the Auckerman dataset compared with the output generated by MGRAPH (center) and the graphs generated (right).

Fig. 8. (Left) BIMOS output of the Quarry dataset compared with the output generated by MGRAPH (center) and the graphs generated (right).

Fig. 9. (Left) MGRAPH output of Golf course dataset compared with the output generated by BIMOS (center) and Precision Mapper (right).

TABLE I
EXPERIMENTAL RESULTS FROM THE THREE DATASETS COMPARATIVE. MINIMUM VALUES ARE REPRESENTED IN BOLD.

MGRAPH BIMOS PRECISION MAPPER

Times (s) Rep. error (px) Times (s) Rep. error (px) Times (s)

Dataset #Imgs Sizes tPROC tBLEN Avg Std tPROC tBLEN Avg Std Upload Processing

Quarry 210 1152x864 94.59 – 11.15 17.73 88.48 1805.14 10.21 17.67 500 1200

Golf 104 1000x750 32.23 – 7.23 14.61 94.46 502.94 6.54 50.86 200 202

Aukerman 77 1224x918 19.64 – 9.53 16.56 47.66 498.58 8.40 20.65 150 553

dataset was selected for this comparison and the results are
shown in Table I. Since the final user is isolated from the
mosaicking pipeline, the selected metric is based on the total
waiting time, split into upload and processing time.

Taking into account the results from Table I, MGRAPH is
much faster than the results obtained by Precision Mapper and,
more importantly, it offers incremental solutions. On the other
hand, the total time spent by the Precision Mapper approach
highly depends on the network status. Finally, since isolated
graphs from MGRAPH are not shown in the final result,
Precision Mapper obtains more accurate results in areas where

MGRAPH presents some artifacts.

B. BIMOS comparative

The second pipeline to be compared with is called BIMOS
[8]. This publicly available stack introduces a generic image
mosaicking algorithm that produces seamless composites, us-
ing a multi-threading approach in a ROS-based environment.
While there are different assumptions behind the proposed ap-
proach and BIMOS, we consider BIMOS a solid reference to
evaluate the re-projection errors, the mosaic and the processing
times obtained by MGRAPH. Two are the main differences



8 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED MAY, 2018

of MGRAPH with respect to BIMOS: i) the integration of
multiple disconnected graphs during the mosaicking process
and ii) considering the metadata associated to the images
to build georreferenced mosaics and to provide candidate
matching pairs.

Figure 8 shows the difference between both algorithms
for the Quarry dataset. In this case, the output quality is
similar, presenting the same artifacts in the bottom part of
the mosaic. Table I compares different quality metrics for the
selected datasets. Processing time is significantly lower in the
MGRAPH case due to its mosaic generation approach. In the
case of BIMOS, the generation of a seamless mosaic delays
considerably the performance of the algorithm. Nonetheless,
the time spent before blending is quite similar. Although
BIMOS does not use GPS for registration, MGRAPH includes
the graph generation and graph fusion procedures in tPROC.
Additionally, BIMOS uses a keyframe selector that decides
if the image is part of the final result. These reasons could
explain the difference in time for the Quarry Dataset. In
terms of reprojection error, there is no significant difference
between measures (about 1 pixel), although BIMOS obtains
a slightly better result. This might be caused by the shorter
time dedicated by MGRAPH for graph optimization (up to two
seconds every 10 images), while BIMOS was configured with
for up to 30 seconds every 30 images plus up to 600 seconds
before blending. Better re-projection errors can be obtained
if larger times are allowed in the optimizer, it is a trade-off
between quality and processing time.

C. Triple comparative

The Golf Course dataset was tested in both alternatives, as
shown in Fig. 9. In this case the final mosaic looks similar
with all methods. Also, the time spent by MGRAPH was
clearly shorter than Precision Mapper and BIMOS. Finally, the
Drone airfield dataset was also benchmarked against BIMOS
and Precision Mapper. In the case of BIMOS, due to the
known limitations of the blending submodule in the OpenCV
stack, a memory allocating error occurred. On the other hand,
with Precision Mapper it was impossible to upload the dataset
because the camera model was not in their database.

VII. CONCLUSIONS AND FUTURE WORK

The main purpose of the research presented in this paper
has been to introduce MGRAPH, a novel mosaicking pipeline
specifically designed to work with images from an UAV
swarm. From the research that has been carried out, it is
possible to conclude that MGRAPH can generate an output
faster than other solutions, thanks to its incremental output
generation approach. Additionally, the proposed graph-based
approach allows to transparently integrate numerous image
streams from different UAVs, independently of the order
injection. MGRAPH has been tested using publicly available
datasets and successfully benchmarked against a web-based
mosaicking system and a state-of-art method obtaining better
results in terms of performance. Moreover, it was demonstrated
that MGRAPH can work with large datasets in a reasonable
amount of time.

As future work, it is intended to test MGRAPH in a real
UAV swarm scenario to check that there is not any perfor-
mance degradation and the generation and fusion of graphs is
performed properly. Furthermore, avoiding the blending part
can lead to artifacts in the mosaic. A partial seamless mosaic
is proposed to be generated on demand to palliate the artifacts.
Moreover, temporal constraints needs to be verified in order
to maintain the real-time execution. The optimization problem
has been identified as the main temporal bottleneck in the
system. Further research is needed to minimize this effect.
Finally, considering GPS data into the optimization problem
can lead to better alignments [16] and thus is also proposed
as future work.

REFERENCES

[1] Kolling, A., Walker, P., Chakraborty, N., Sycara, K., and Lewis, M.,
“Human Interaction with Robot Swarms: A Survey,” IEEE Transactions
on Human-Machine Systems, vol. 46, no. 1, pp. 9–26, 2016.

[2] Elibol, A., Gracias, N., Garcia, R., Gleason, A., and Gintert, B.,
“Efficient autonomous image mosaicing with applications to coral reef
monitoring,” 2011.

[3] Navia, J., Mondragon, I., Patino, D., and Colorado, J., “Multispectral
mapping in agriculture: Terrain mosaic using an autonomous quadcopter
UAV,” in 2016 International Conference on Unmanned Aircraft Systems,
ICUAS 2016, pp. 1351–1358, 2016.

[4] Pinto, A. M., Pinto, H., and Matos, A. C., “A Mosaicking Approach
for Visual Mapping of Large-Scale Environments,” Proceedings - 2016
International Conference on Autonomous Robot Systems and Competi-
tions, ICARSC 2016, pp. 87–93, 2016.

[5] Moussa, A. and El-Sheimy, N., “A fast approach for stitching of
aerial images,” in International Archives of the Photogrammetry, Remote
Sensing and Spatial Information Sciences - ISPRS Archives, vol. 41,
pp. 769–774, 2016.

[6] Nam, D. and Aouf, N., “Automated Mosaicing for Improving Vehicle
Situational Awareness in Real Time,” IEEE Intelligent Vehicles Sympo-
sium, Proceedings, no. Iv, 2017.

[7] Richmond, K. and Rock, S. M., “An operational real-time large-scale
visual mosaicking and navigation system,” in OCEANS 2006, 2006.

[8] Garcia-Fidalgo, E., Ortiz, A., Bonnin-Pascual, F., and Company, J. P.,
“Fast image mosaicing using incremental bags of binary words,” Pro-
ceedings - IEEE International Conference on Robotics and Automation,
vol. 2016-June, pp. 1174–1180, 2016.

[9] Bu, S., Zhao, Y., Wan, G., Li, K., Liu, Z., and Han, J., “Map2DFusion
: Real-time Incremental Aerial Images Mosaic Based on Monocular
SLAM,” pp. 4564–4571, 2016.

[10] Alamareen, A., Al-Jarrah, O., and Aljarrah, I. A., “Image mosaicing us-
ing binary edge detection algorithm in a cloud-computing environment,”
International Journal of Information Technology and Web Engineering,
vol. 11, no. 3, pp. 1–14, 2016.

[11] Rublee, E., Rabaud, V., Konolige, K., and Bradski, G., “ORB: An
efficient alternative to SIFT or SURF,” in Proceedings of the IEEE
International Conference on Computer Vision, pp. 2564–2571, 2011.

[12] Bay, H., Ess, A., Tuytelaars, T., and Van Gool, L., “Speeded-Up Robust
Features (SURF),” Computer Vision and Image Understanding, vol. 110,
no. 3, pp. 346–359, 2008.

[13] Garcia, V., Debreuve, E., Nielsen, F., and Barlaud, M., “K-nearest
neighbor search: Fast GPU-based implementations and application to
high-dimensional feature matching,” in Proceedings - International
Conference on Image Processing, ICIP, pp. 3757–3760, 2010.

[14] Singh, H. and Sharma, R., “Role of Adjacency Matrix & Adjacency List
in Graph Theory,” International Journal of Computers & Technology,
vol. 3, pp. 179–183, 2012.

[15] Sweeney, C., Sattler, T., Hollerer, T., Turk, M., and Pollefeys, M., “Op-
timizing the viewing graph for structure-from-motion,” in Proceedings
of the IEEE International Conference on Computer Vision, vol. 2015
Inter, pp. 801–809, 2015.

[16] Ferrer, J., Elibol, A., Delaunoy, O., Gracias, N., and Garcia, R., “Large-
area photo-mosaics using global alignment and navigation data,” in
Oceans Conference Record (IEEE), 2007.


