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Abstract— This paper addresses an Active Cooperative Per-
ception problem for Networked Robots Systems. Given a team
of networked robots, the goal is finding a target using their
inherent uncertain sensor data. The paper proposes a particle
filter to model the probability distribution of the position of the
target, which is updated using detection measurements from
all robots. Then, an information-theoretic approach based on
the RRT* algorithm is used to determine the optimal robots
trajectories that maximize the information gain while surveying
the map. Finally, a dynamic area weighted allocation approach
based on particle distribution and coordination variables is
proposed to coordinate the networked robots in order to co-
operate efficiently in this active perception problem. Simulated
and real experimental results are provided to analyze, evaluate
and validate the proposed approach.

I. INTRODUCTION

The focus of the MOnarCH (Multi-Robot Cognitive Sys-
tems Operating in Hospitals) project is on social assistive
robotics using networked heterogeneous robots and sensors
to interact with children, staff, and visitors, engaging in edu-
tainment activities in the pediatric infirmary at the Portuguese
Oncology Institute at Lisbon (IPOL), Portugal. The task
on active perception in Networked Robots Systems (NRS)
is an specially relevant task in the project, because social
robots in NRS require as much information as possible about
the environment and the people around to decide the most
suitable behaviors to execute (for instance, to find a lost or
hidden child). The idea is to control a set of Perception-
Oriented robots (PO Mbots, see Fig. 1) to gain information
(based on their on-board sensors) that may be required by
other agents in the system (the medical staff or other robots).

In particular, this paper addresses the problem of searching
a target (for instance, a child) along the different rooms of a
hospital. The proposed method tries to solve the multi-robot,
active perception problem until the child is first detected and
found. The target is assumed to be dynamic but with slower
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Fig. 1: The PO Mbot designed for the MOnarCH project.

dynamics than the robots. This means that the paper does not
solve a pursuit-evasion problem, where the target is hiding.
Instead of moving continuously, the child is considered to be
staying at a certain room, which is unknown for the robots.
Nonetheless, that child may still change to another room
throughout the search, and the NRS should adapt to that
situation in order to find her/him eventually.

This problem is challenging, as multiple robots have to
coordinate in an efficient and coherent manner to find the
target. Also, they only count on limited sensor capabili-
ties (e.g., RFID readers). Negative measurements will be
obtained most of the time (robots explore until they find
the target), which precludes the NRS from using parametric
probabilistic distributions. Therefore, this paper proposes a
Particle Filter to model the belief on the target location. Then,
an information-gain metric based on the entropy associated
with the particle set is used to generate paths for the robots,
using a fixed-depth RRT* planner. Last, it is proposed a
method based on coordination variables to coordinate the
NRS while searching and increase the efficiency in the task.
This method is distributed and scalable, allowing the multiple
robots to converge to a common solution (coherent particle
assignment), but at the same time in a efficient manner (i.e.,
with low computational load).

The authors presented results on active perception for the
same application with a single robot in [1]. However, this
paper addresses Active Cooperative Perception (ACP). That
is, the problem in which several robots actively decide their
motions, taking into account their effects on their sensors,



in order to cooperate to maximize the information related to
some features perceived from the environment.

First formulations of active perception problem [2] were
looking to improve robot localization by controlling its
own motion. In [3], a receding-horizon based algorithm is
proposed to solve the active perception problem applied to
range sensing tasks. More recently, the active perception
problem has been addressed for exploration tasks based on
utility functions [4].

A multi-robot exploration task is addressed as an ACP
in [5] and solved based on Gaussian Processes to model
a spatially distributed static process, RRT algorithms to
plan the paths and max-sum algorithms for the distributed
cooperation. However, this model is not suited to track
dynamic targets. In [6], authors model the ACP problem as
auctioned Partially Observable Markov Decision Processes
(POMDPs) for cooperative tracking applications. Coopera-
tive target-tracking applications under uncertainty have also
been recently addressed as an ACP and solved using an
algorithm based on a decentralized Model Predictive Con-
troller (MPC) [7]. Some other target-tracking applications
have been addressed as an ACP problem [8], [9], [10].
They formulate the problem from different approaches, but
the most accurate ACP algorithms depend on a thoroughly
studied and complex model, only applicable to concrete
small-scale scenarios.

Some other problems related to cooperative perception,
such as cooperative surveillance or cooperative patrolling
have been solved based on area allocation [11], [12]. In any
case, the coordination of multiple robots becomes more chal-
lenging as the number of robots increases. The algorithms
based on coordination variables have been successfully ap-
plied to similar allocation problems obtaining distributed and
very scalable solutions [13], [12]. Moreover, in [14], authors
prove that the algorithms based on coordination variables
can achieve the desired solution for distributed coordination
problems.

The remainder of the paper is as follows: Section II defines
formally the ACP problem addressed in this paper; the pro-
posed approach is developed in Section III; the architecture
of the NRS for ACP is defined in Section IV; Section V
provides simulations and real experimental results to validate
the proposed approach; and Section VI concludes the paper.

II. PROBLEM STATEMENT

Given a team of m networked mobile robots equipped with
the appropriate sensors, it is required to plan their motion
to look for a target moving into a defined space S ∈ R2.
Therefore, the objective is planning cooperatively the paths
of the robots to maximize the certainty on the position target
in the future, given the received measurements. The position
of the target at time t is defined by pt.

Each robot ri receives the following inputs:
1) Its current pose at time t, qi,t = [xi,t yi,t θi,t]

T .
2) The most recent reading of its sensor at time t, zi,t ∈
{False, True}, which defines the positive (True) or
negative (False) detection of the searched target.

3) The probabilistic model of the sensor able to detect
the target, referred to the robot pose. This description
may be non-parametric.

4) Optionally, the initial probability distribution over the
position of the target. It may be non-parametric. If this
distribution is not provided to the robot, it can assume
an uniform distribution through the whole map.

From the information provided by the robots (both their
poses and their sensor’s readings), the task of finding the
position of the target in an arbitrary environment may be
formally described as the problem of maximizing a defined
metric of confidence over the probability of the target’s
position, i.e.,

Pr(pt|q1,0:t, z1,0:t,q2,0:t, z2,0:t . . . ,qm,0:t, zm,0:t),

where qi,0:t = 〈qi,0, qi,1, . . . , qi,t〉 and zi,0:t =
〈zi,0, zi,1, . . . , zi,t〉 represent the history of poses and the sen-
sor readings of the i−th robot from time 0 to t. Unlike other
typical estimation problems, a key issue here is that most of
the readings provided by the robots will be negative readings
(target not detected) during the exploration. Moreover, for
this application of service robots working in a hospital, it
is reasonable to believe that the robots will have access to
a reliable map of the scenario and will be able to localize
themselves with a degree of uncertainty that is negligible
with respect to the uncertainty in the target (child) position.

III. PROPOSED APPROACH

This paper proposes decoupling the ACP problem into
two different, but inter-connected, tasks: estimating the target
position based on the previous motion and sensor readings
from the robots; and planning the motion of the robots in
order to improve the estimation of the target position. Each
of these tasks will be addressed in the following sub-sections.

A. A particle filter to model the target position

As most of the readings during the exploration process
will be negative, the target position pt may be difficult
to approximate using a parametric model. In this paper,
a Particle Filter (PF) is proposed to model the uncertain
position of the target, where the particle set is the set of
possible solutions (particle positions pj) with an associated
importance (particle weights wj). The advantages of a PF to
model the target position in a similar problem were described
in [1].

A PF algorithm is implemented taking into account that
the particle set B has to be updated based on the readings of
all the robots. See [15] for more details and background on
PFs. Some details about the specific implementation in this
paper are the following:

1) Initialization stage: If the initial set of particles with
their respective weights is not provided as input to the
algorithm, an initialization stage is required. It creates an
uniform distributed set B of N particles, sampling N valid
positions pj ∈ S, ∀j = 1, . . . , N from the environment
and assigning the same normalized weight to each of the
particles, wj ← 1/N,∀j = 1, . . . , N .



2) Prediction stage: The current position for each particle
is predicted, at each iteration, based on its previous position
and the motion model of the target. In this paper, a random
walk is assumed as motion model based on a normal dis-
tribution centered in the previous particle with a standard
deviation σ. However, nothing precludes the method from
using more complex prediction models for the particles.

3) Update stage: Based on the readings from the robots,
the particle weights are updated applying the Bayes’ rule
based on the sensor model and the sensor readings. Note
that this process considers readings from all the robots.

4) Re-sampling stage: At each iteration, this stage creates
a new particle set B from the old one. Basically, this
process removes particles with low weight and replaces them
duplicating the ones with high weights. The final particle set
will consist of N particles with the same weight 1/N .

B. An entropy-based path planning for information gain
Given the aforementioned PF to model the position of

the target, the objective of maximizing the confidence over
the position of the target pt is equivalent to minimizing the
entropy of the particle set B. So, the task of planning the
motion of the i−th robot to improve the estimation of the
target position may be formally described as the problem of
finding a sequence of its K following poses q̂∗t+1:t+1+K , for
some K > 0, that minimizes the entropy H of the predicted
particle set:

H (Pr(pt+1+K |q1,0:t, z1,0:t, . . . ,qm,0:t, zm,0:t, q̂t+1:t+1+K))
(1)

Rapidly-exploring Random Trees (RRT ) [16] are well-
suited strategies to this problem. They are computationally
efficient anytime algorithms. Moreover, some variants like
RRT ∗ [17] are optimal and can be adapted to minimize the
entropy of a particle set. However, instead of looking for a
defined goal position, the objective here is to minimize the
predicted entropy (1). In [10], authors propose a similar ap-
proach and formulate information-gathering RRT variants,
but assuming some energy and time constraints not necessary
for ACP.

In this work, a fixed-depth RRT ∗ is proposed. The process
is as follows: generating a fixed-depth tree, evaluating the
cost (entropy of the “predicted” particle set) at each node of
the generated tree and generating a path with the minimum
accumulated cost from the robot pose qi,t. Then, as the PF
provides a equally-weighted particle set, this method will
tend to generate paths that cross zones with high density of
particles and avoid zones without particles.

Calculating the entropy of a probability density function
(in this case, the particle set) may be computationally too
expensive. However, there are approximations [18], [19] that
are computationally efficient for this type of distributions.
Concretely, this method uses the approximation based on the
entropy H of a Gaussian Mixture defined in [19]:

H ≤
N∑
j=1

wj(−log(wj) + 0.5log(2πe)2σ4) (2)

where wj is the weight of the j−th particle of the PF, and
σ is the standard deviation for the target position.

Even with this approximation (2), the method should
store a version of the particle set at each possible future
pose (node) while expanding the tree, in order to calculate
correctly the predicted entropy. These sets are computed from
the particle set in the parent node, applying the different
stages of the PF. However, assuming that the robots move
much faster than the target, the motion of the particles may
be ignored. Thus, it is not required to store the particle
positions (only their weights) nor compute the prediction
and re-sampling stages. Note that motion models could still
be used and prediction and re-sampling steps be included
when building the planning RRT, but at the expense of more
memory. Moreover, in theory, each node should consider two
possible readings from the sensor (negative and positive)
when branching, so the amount of particle sets to store
would increase exponentially. However, since the problem
formulated in this paper focuses on the search part, and not
on tracking the target actively, it is reasonable to consider that
most observations will be negative, as positive observations
would imply the completion of the task. Therefore, only
negative measurements are considered when computing the
planning tree. Nonetheless, no assumptions are made about
the sensor model, which may include false positive and false
negative rates.

C. A dynamic weighted area allocation to coordinate multi-
ple robots

The previous subsection proposes a method to plan the
motion of a robot individually, without taking into account
the plan of the rest of the robots. If all the robots receive the
same target estimation (defined by a PF which takes into ac-
count readings from all robots), as they are not coordinated,
they may plan to move towards the same positions. It is easy
to deduce from (2) that this would be a non-efficient solution
(because it does not minimize the entropy).

A straightforward manner to solve this problem is to
generate the robot motion plans in a centralized and ordered
manner. The first plan would be generated in an independent
manner, but the following plans would be based on the
predicted particle sets left by the previous plans. However,
this solution would imply the synchronization of the robots’
motion, as well as delays and high computational costs that
increase with the number of robots.

Therefore, this paper proposes an area division approach
to coordinate the robots from in a distributed manner with a
minimum information interchange among them. The idea is
to divide the whole environment into as many areas as robots,
such as each robot can generate its motion plans to search the
target in its assigned area. It ensures that two robots do not
move through the same zone, “cleaning” the same particles.
Concretely, the proposed approach considers the particle set
B received from the PF to generate dynamically equally-
weighted areas to be allocated among the robots (Dynamic
Weighted Area Allocation). As the particle set B is updated



Fig. 2: Snapshot from a simulation with 4 robots, where the
Dynamic Weighted Area Allocation has been used. It shows
the particle subsets (defined with different colors) assigned
to each robot. A video from this simulation can be viewed
in https://youtu.be/qrt5xPvjVwg.

by the PF, this method updates the set of particles assigned
to each robot.

Distributed particles allocator: An allocator method is
proposed here to assign the particles from a provided set,
among the robots. The proposed method does not assign
directly an area to each robot ri, but a subset of particles Bi.
However, as the entropy-based motion planning presented in
Section III-B generates paths tending to avoid zones without
particles, the robot will move only through the area where
its assigned particles are. Therefore, implicitly, this method
assigns an area to each robot.

The method is distributed and based on coordination
variables [20]. The variables are the particle set B and
the amount of robots in the system m. If all robots apply
the method using the same coordination variables as input,
non-overlapping (disjoint) particle subsets are obtained in a
distributed manner, see Fig. 2. Note that all robots reach a
common solution without explicit negotiation among them.

This method makes two assumptions. First, it assumes that
the robots are ordered by an index i. Second, two positions,
pini and pend, are previously defined in the map to be used
as references to group and divide the particles among the
robots. They may be defined arbitrarily, but they have to be
common for all the robots.

Algorithm 1 describes the method. It runs as follows.
Given the robot index i and the amount of robots m, each
robot knows how many robots has on its “left” mleft and
on its “right” mright (being “left” and “right” theoretic ref-
erences depending on the robot indexes and not, necessarily,
physical locations). Then, the divide method is applied
twice. The first time, it divides the particle set B provided
by the PF into two subsets: one for the robots on the right of
the i−th robot and another for the robot itself and the robots
on its left. This last subset is noted as Baux, being waux

j its
particle weights. The second time, it divides the particle set
Baux into two subsets: one for the robots on the left of the
i−th robot and another for the robot itslef, which will be the
particle set returned as output.

Algorithm 2 implements the divide method. It receives
a particle set B′, two positions (p1 and p2) and two desired
weights (w1 and w2). Two empty particle subsets B1 and
B2 are created and associated with the received positions
and desired weights. Each particle in B′ is initially assigned

Algorithm 1 Distributed particles allocator

Require: B : Set of N particles defined by particle positions
{pj} and weights {wj}

Require: m : Number of robots
Require: i : Robot’s index
Require: pini and pend : initial and end positions.
mleft ← i− 1
mright ← m− i
w1 ← mleft+1

m
w2 ← mright

m
Baux ← divide(B, w1, w2, pini, pend)
w1 ← mleft

m

∑N
j=1 w

aux
j

w2 ← 1
m

∑N
j=1 w

aux
j

Bi ← divide( Baux, w2, w1, pend, pini)
return Bi : Set of particles assigned to the i−th robot

to the subset whose position is nearer. If, after assigning a
particle, the sum of weights of the particles assigned to that
subset is higher than its desired weight, the farthest particle
from this set is taken out and assigned to the other subset.
It returns the first subset B1 as output.

Algorithm 2 Method to divide a particle set into two
weighted subsets, being i, j = 1, ..., size(B′) and k, l = 1, 2
with k 6= l.

Require: B′ : Set of particles {partj} to be divided. It is
defined by particle positions {p′j} and weights {w′j}

Require: w1 and w2 : Desired sum of weights that should
have the generated subsets B1 and B2, respectively.

Require: p1 and p2 : positions around which the particles
from B1 and B2 have to be grouped, respectively.
- Create the empty sets B1 and B2

- Initialize the weights assigned to each side w1
c and w2

c

to zero
for all parti ∈ B′ do

- Assign parti to the nearest subset Bk, depending on
pk
- Update the weight of the subset wk

c

if wk
c > wk then

- Take out the farthest particle partj to pk from Bk

- Assign partj to the other set Bl

- Update the weights wk
c and wl

c

end if
end for
return B1

This distributed algorithm is fast convergent. Also, its
complexity cost does not depends on the number of robots m,
but on the number of particles N (which could be configured
depending on the requirements). The divide method runs
at most N + N

2 = 3N
2 particles assignation or re-assignation

(in the worst case scenario, when all the particles are nearer
to the same set position); and Algorithm 1 executes at most
twice the divide method. Then, the algorithm runs at
most 3N iterations, even less because the second method



execution does not use the whole set of N particles but
a subset. Furthermore, although the PF updates the set of
particles continuously, the particles allocation process has
not to be made continuously but only when a new plan has
to be generated by the entropy-based motion planning.

D. Discussion

The method for particle assignment ensures a distributed,
coherent allocation, since all robots use the same coor-
dination variables. This means that no particle is doubly
assigned nor remains unassigned. Algorithm 1 is consistent
by definition: given m robots and N particles, each robot
will assign N/m particles to itself. Regarding the divide
method, a simple example may illustrate how it runs and
how the overlapping and non-assignment issues are avoided.
Consider a simple scenario with 3 particles and 2 robots.
Each particle will have a weight of 0.333 and each robot
should assume weights w1 = w2 = 0.5. Assume that the
three particles are closer to the first position reference p1
than to the second reference p2. The first particle part1,
then, is assigned to the first subset of particles B1. The
second particle part2 is also assigned to B1, but as w1

c =
0.66 > w1 = 0.5, the farthest particle from p1 (e.g., part1)
is removed from B1 and added to B2. The same happens
with the third particle part3. Finally, B1 = {part2} and
B2 = {part1, part3}. From the other robot point of view,
the procedure is similar but assuming opposite inputs. So,
the obtained set of particles is B1 = {part1, part3} and
B1 = {part2}, which is consistent.

Algorithm 1 considers two consecutive divisions to remove
particles assigned to the other robots to the right and to the
left (being “left” and “right” theoretic references depending
on the robot indexes and not, necessarily, physical locations).
This is justified because the procedure is performed in a
distributed manner but it should still be coherent (without
overlapping particles). Each division considers just two sides
and two references positions. Performing the particle assign-
ment with a single division procedure between m robots
would require of m fixed reference positions to obtain a
coherent particle allocation in a distributed manner.

Another aspect for discussion is the criterion to assign
particles to each subset. Algorithm 2 does not impose a
specific type of distance. The experiments in this paper
consider Euclidean distance, as it was enough to achieve a
good performance. Nonetheless, alternative distances may be
used without problem. In complex scenarios, using Euclidean
distances may lead to assignments where the particles are not
easily reachable by the robots. However, since our particle
assignments are dynamic, this situation, even inefficient,
would be temporal and the system would adapt eventually
to explore the whole scenario.

IV. MULTI-ROBOT SYSTEM ARCHITECTURE

Figure 3 summarizes the multi-robot system architecture.
There is a common PF module. This PF receives poses and
sensor readings from all the robots and provides continuously
a probability distribution about the target position. The

Fig. 3: Multi-robot architecture.

system could also be modified to implement distributed PF
modules for each robot, but it should be ensured that they
all converge to the same particle set.

Note that, although the motion planning module of each
robot receives only a subset of particles from its distributed
allocator, the robot reading and pose are used by the PF
module to update the whole set of particles. This means that,
if a robot crosses a zone with particles assigned to another
robot while is moving to its assigned zone, its readings
will be used to update those particles’ weights. Moreover,
as the particle set is continuously updated and particles
are dynamically re-assigned, the system is robust against
unexpected behaviors (e.g., a robot moving too slow or too
fast). Finally, as the robots cannot cover all the particles and
those are moving (based on the PF prediction stage), the
”clean” areas could be filled out again by the nearest particles
and, hence, clean areas can not be fully ruled out.

V. VALIDATION RESULTS

The proposed system has been implemented over ROS
(Robotics Operating System [21]) and validated in both sim-
ulations and real experimental tests. Onwards, it is assumed
that the NRS is searching for a child wearing a Radio
Frequency Identification (RFID) tag. Robots are assumed
to be equipped with RFID readers, which detection model
is defined by Fig. 4. This model defines the probability of
detecting an RFID tag around the RFID reader. Also, each
robot has a map of the scenario and is able to localize itself
integrating laser measurements with the Adaptative Monte-
Carlo Localization (AMCL) method. The motion model of
the child is unknown and, then, a random walk is considered
(modeled as a normal distribution centered in its current
position with an standard deviation σ.



Fig. 4: Sensor model used during the tests. The image scale
is 2 × 2 meters and the degree of white color indicates
probability of detection.
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Fig. 5: Average time required by the robots to explore the
environment (blue) and to find a valid path (red), with
increasing path size for the RRT* planner.

A. Performance analysis

A set of more than 100 simulations have been run using the
implemented system to analyze its overall performance. The
scenario is defined by two rectangular rooms (see Fig. 2).
The robots are in the large room (40 × 8 m2) and have no
access to the small room (2 × 2 m2. The objective is to
find a target, who will be in the small room. As the robots
cannot go into the small room and detect the target, they
have to ensure that the target is not in the large room (when
all the particles from the PF are in the small room). For all
simulations, the reference positions used by the distributed
allocator were pini = (−25, 0) m and pend = (25, 0) m.
As expected, there were no overlapping particle assignments
during these simulations.

First, the system is evaluated to analyze the influence
of the motion planner. These simulations consider 4 robots
with maximum speed of 2m/s, a σ = 0.15 for the target
motion model and a PF with N = 1000 particles. A relevant
parameter in the fixed-depth RRT* planner is the horizon or
maximum path size K. Increasing this parameter leads to a
less greedy solution, but it requires a higher computational
cost. Figure 5 shows results depending on the maximum path
size for the RRT* planner and confirms these expectations.
The results also show that from a certain value (15 for this
scenario), the improvement regarding the completion time is
no longer relevant. This completion time is defined as the
time that the team of robots needs to be confident that the
target is not in the accessible zone. It means the time required
to ”clean” all the particles from the accessible zone.

In order to analyze the influence of the PF and the dis-
tributed allocator, the proposed algorithm (using a common
PF-based estimator and the Dynamic Weighted Area Assign-
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Fig. 6: Average time required by the robots to explore the
environment, depending on the number of robots m.

ment PF-DWAA), has been compared with the following
approaches:
• A common PF but without distributed allocation (PF-

noDWAA). There is a common PF updated with sensor
readings from all robots, but the particle set is not
divided and allocated to the robots.

• An approach (noPF-noDWAA) where each robot uses
its own PF (which is not updated by the sensor readings
from the rest) and the particle set is not divided either.

The maximum path size is set to 20, the maximum robot
speed to 1 m/s, σ = 0.05 and N = 2000. Figure 6
summarizes the obtained results. It shows a better behavior
using PF-DWAA). Furthermore, the tests showed that the
number of robot collisions using PF-DWAA) was much
lower than those using the other approaches (even more,
using noPF-DWAA, because the robots use the same particle
set and tend to move to the same zones).

B. Use case in complex scenario

A second set of simulations have been run to test the
approach under more realistic conditions. A more complex
scenario with connected rooms is used so that three robots
search for a child moving. In this case, non-ideal RFID
readers are used, with a False Negative rate of 5% and a
False Positive rate of 0.5%. The reference positions chosen
for the distributed allocator were pini = (−45.0, 0.0) m and
pend = (45.0, 0.0) m, N = 1000, σ = 0.15 and maximum
path size for the RRT* planner was 10. In this scenario,
the proposed method PF-DWAA has been compared with
PF-noDWAA and with another coordinated approach with a
fixed area allocation. Without coordination, the robots tend
to explore areas reaching an inefficient solution (see Fig. 7).
Figure 8 show how the robots behave using the proposed
method PF-DWAA. A video with the full simulation and
comparison with the fixed area allocation method can be
viewed in https://youtu.be/535hFsdmahs.

The results show that the proposed solution is able to
adapt quickly to the target motion and exploits better the
robots capabilities to explore the environment. The robots
change dynamically their exploration area to maximize the
probability of detection. Apart from the required time to
detect the target, which depends on the target motion, the



Fig. 7: Snapshot from a simulation with three robots and
without allocator module. Green and blue robots generate
paths to explore the same area.

main advantage of PF-DWAA is its capability to adapt the
motion of the robots toward zones with more probability of
detection. As shown in Fig. 8, once the child is detected by
one of the robots the rest of the robots moves toward her/him,
allowing the system to keep a high certainty about its
location. However, using the fixed area allocation approach
(see simulation video), each robot continues patrolling its
assigned area, even once the child has been detected by
a robot. When the child moves away from this robot, the
certainty about its location is decreasing because the rest of
the robots did not get closer.

C. Real experiments

The system has also been validated experimentally using
two actual PO Mbots (see Fig. 1) that, using the proposed
algorithms and their on-board RFID readers, have to find a
person in a closed environment defined by a corridor and two
rooms not accessible for the robots (see the map in Fig. 9).
The reference positions used by the distributed allocator
were pini = (3.85,−14.1) m and pend = (3.85,−13.9) m.
Moreover, N = 5000, σ = 0.05 and maximum path size for
the RRT* planner was 20.

Figure 9 shows the most relevant information generated
and used by the proposed methods. A sequence of snapshots
of the experiment are shown in Fig. 10, with the target esti-
mation, the particle assignments and the robot trajectories.

During the experiment, the child (target) was not in the
corridor but in one of the rooms. As the robots could not
access the rooms, they were not able to detect the target,
but once they finished exploring the corridor they were sure
that it was in one of the rooms. Finally, each robot warded
a different room in front of its door. Note that, in case that
the robots were not using the distributed allocator module,
both robots could tend to move together and finish warding
the same room.

VI. CONCLUSIONS

The ACP problem posed here considers a NRS searching
for a moving target. This paper proposes an approach based
on three key issues: a Particle Filter to estimate the target po-
sition, a Dynamic Weighted Area Assignment to coordinate
the robots and a entropy-based motion planner to generate
each robot path.

The approach has shown to be helpful in this exploration
application, where most robot readings are negative (target
not detected) and the target motion model is unknown but
with slow dynamics.

The robots are coordinated based on a particle allocation
using a computationally efficient and fast convergent algo-
rithm which generates non-overlapping subsets of particles.
As the motion planning algorithms tends to generate paths
towards the zones with higher density of particles, the robots
do not cross their motion plans. The provided experimental
results (both in simulation and physical tests) validate the
system. Moreover, they proved how the system was able
to compute solutions in a distributed and efficient manner
with multiple robots in coordination, improving alternative
methods; even making use of limited RFID sensors with
negative information mostly. The proposed system is partially
distributed. Although each robot self-assigns its own sub-set
of particles and plans its own path, the PF based estimator
is common for all of them. Therefore, the future work will
be directed towards studying different data fusion techniques
to generate common particle sets from asynchronous com-
munication among the robots. This would lead to a totally
distributed solution for the problem.
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