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Abstract. This paper addresses the problem of teaching a robot in-
teraction behaviors using the imitation learning paradigm. Particularly,
the approach makes use of Gaussian Mixture Models (GMMs) to model
the physical interaction of the robot and the person when the robot is
teleoperated or guided by an expert. The learned models are integrated
into a sample-based planner, an RRT*, at two levels: as a cost func-
tion in order to plan trajectories considering behavior constraints, and
as configuration space sampling bias to discard samples with low cost
according to the behaviors. The algorithm is successfully tested in the
laboratory using an actual robot and real trajectories examples provided
by an expert.

1 Introduction

In the TERESA Project3, telepresence robots are enhanced to navigate au-
tonomously in social settings. The project considers the development of tech-
niques for safe and efficient obstacle avoidance while reaching navigation goals.
This task becomes more challenging when people are considered and explicitly
modeled into the navigation approach.

Human-aware, or social, navigation is a complex task that has been addressed
using different approaches in the robotics community. Many novel approaches are
based on learning socially acceptable behaviors from real data collected under
various social situations, avoiding the need of a handcrafted explicit formulation
of the behaviors. For instance, supervised learning is used in [16] to learn ap-
propriate human motion prediction models that take into account human-robot
interaction when navigating in crowded scenarios. Unsupervised learning is used
by Luber et al., [11] to determine socially-normative motion prototypes, which
are then employed to infer social costs when planning paths. A model based on
social forces is employed in [7], where the parameters for the social forces are
learnt from feedback provided by users.

An additional approach is learning from demonstrations, or imitation learn-
ing, [2]: an expert teaches the robot how it should navigate among humans. We
3 http://teresaproject.eu/
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can leverage the fact that we have a telepresence robot in the TERESA Project,
so we can extract useful information from the users of the robot (on the pilot
side). Having examples of (teleoperated) robot paths and the relevant configura-
tions (features) of the performed task opens the door for extracting the relevant
relations or constraints that best represent such kind of paths. The main hy-
pothesis is that these paths enclose the social implications that a human takes
into account when he is performing such task, at least in the same situations
performed in the experiments.

Inverse Reinforcement Learning (IRL) [1] techniques are a good candidate
to derive such models: a reward (or cost) function is recovered from the ex-
pert behavior, and then used to obtain a corresponding robot policy. In [8], a
path planner based on inverse reinforcement learning is presented. IRL for social
navigation is also considered in [13].

The above mentioned approaches typically make use of discrete Markov De-
cision Processes (MDPs) as the underlying model. However, it is complex to
encode general problems with MDPs due to its computational complexity [12].
Our objective is to use state of the art sampling-based planners, as optimal
Rapidly exploring Random Trees (RRT*), to be able to work on continuous con-
figuration spaces. These planners already reason about obstacles present in the
environment, and the goal is to incorporate into them information about the
social task at hand from data.

Gaussian Mixture Models (GMMs) offer a flexible framework to model the
relationships between the relevant features that arise when the robot is per-
forming a particular navigation task. GMMs are a well-suited representation for
unsupervised extraction of continuous feature distributions, and they have also
shown their utility as models for robot skills representations in Programming by
Demonstration (PbD) settings [3].

In [5], the author presents a PbD framework in which GMMs are used to
retrieve the statistical constraints of several demonstrations of a particular task,
in a manner similar to the approach in [4]. After that, a sampled-based planner
based on RRT is used. In this paper we aim to go a step further and use GMMs
to incorporate robot navigation behavior into a cost-based RRT* planner. The
goal is to find a safe path which imitates a behaviour by remaining within sta-
tistically determined constraints. For doing this, we propose, first, to bias the
RRT* random samples towards the regions of the configuration space that com-
ply with the model of the task extracted from data and, second, including a new
cost function into the RRT* planner to better account for paths that follow the
learned behaviors. At the same time, this permits better generalization to new
situations by still finding short length paths for different conditions.

The paper is structured as follows: Section 2 takes care about the tasks
being demonstrated by the user while Section 3 introduces GMMs. Section 4
details how the GMM can be included into the RRT* planner. Then, Section 5
presents the experimental setup, the metrics and some simulations to validate
both GMM learning and its integration with a sampling-based planner. Finally,
Section 6 shows the conclusions and future works.
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2 Demonstrated Tasks

As described before in the introduction, human-awareness is critical for a suc-
cessful deployment of a robotic application in a space shared with persons. In the
TERESA Project we are interested in several social situations, such as avoiding
people while navigating, approaching a person to start a conversation, following
a person or keep a conversation while moving to another place. For the sake of
simplicity, in this work we focus in two particular tasks in order to illustrate this
approach.

Avoiding The robot avoids an standing person that is facing to it. The avoid-
ance maneuver can be performed by passing through by the left or by the
right.

Approaching The robot approaches a standing person in an arbitrary orienta-
tion. When the person is looking towards the robot, it performs the shortest
path to approach the person. When the standing person is back to the robot,
the demonstration trajectories do not follow the shortest path. Rather, the
robot tends to take curving paths, also by the left or by the right.

In this work, a Giraff robot is teleoperated by an expert. This user is asked
to demonstrate the previous tasks as accurately as necessary a number of times
by means of piloting the robot.

3 GMMs for interaction modeling

A proper choice of the relevant features f = [f1, f2, . . . , fn]
T when encoding a

particular navigation task is crucial, as it provides part of the solution to the
problem of defining what is important to imitate. In this paper, we have consid-
ered as features the distance and the relative angle between the robot and the
person in the scene, logged with a timestamp. The features extracted at each
time instant are the distance to that person (d) and the relative angle (θ). Thus,
a set composed by N datapoints ζ = {ζj}Nj=1 of D = 2 dimension is considered,
where time is left out because the dynamics of the behaviours are not considered
in this paper.

According to a previous work [14], the features (d−θ) considered here allows
us to model the tasks at hand. However, the selection of features is not a limi-
tation of the technique, and other features can be added for more complicated
tasks, including those ones that can describe the dynamics of the task execution,
like time and velocities.

From the demonstrated trajectories of the features D, it is possible to extract
a GMM, so that the probability of a particular combination of feature values is
given by:

p(f |D) =
k∑
i=1

ωiN (f ;µiD, Σ
i
D) (1)
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with k Gaussian modes. The GMM is then described by the set of parameters{
ωi, µ

i
D, Σ

i
D
}K
i=1

, respectively representing the prior probabilities, centers and
covariance matrices of the model. The prior probabilities, ωi, satisfy ωi ∈ [0, 1]

and
∑K
i=1 ωi = 1.

GMM parameters are learnt by using the Expectation-Maximization (EM)
algorithm [6] that is seeded with an initial estimate of density centers calculated
with the k-means algorithm. A drawback of EM is that the optimal number of
components k in a model may not be known beforehand. One usual criterion
for model selection is the Bayesian Information Criterion (BIC) [15], but for the
experiments presented in this work, we have tested empirically the best number
of components that can fit the demonstrated example.

4 The reproduction planner

RRT* [10] is a technique for (asymptotical) optimal motion planning. It considers
that a cost function is associated to each point x in the configuration space (a
vector representing the position of the robot in our case). The RRT* seeks to
obtain the trajectory ζ∗ that minimizes the total cost along the path c(ζ). It does
so by randomly sampling the configuration space and creating a tree towards the
goal. The paths are then represented by a set of discrete configuration points
ζ = {x1,x2, · · · ,xN}. Each point of the trajectory can be also associated to the
values of the features for that point, so that it can be also seen as a trajectory
described in feature space ζ = {f1, f2, · · · , fN}. This paper extend the standard
RRT* algorithm with the learned GMM at two levels:

1. Including a new task-similarity cost into the evaluation of the node’s costs.
The GMM obtained encompasses the most likely configurations of the task.
Thus, when a node is proposed to be added to the RRT* tree, a cost based
on the GMM is derived and used. The objective is to increase the cost of
those configurations that are unlikely according to the learnt GMM. Thus,
the likelihood is inverted to obtain that cost. Notice that the likelihood is
a density of occurrence, so it is necessary to give a low bound to keep the
inverse within the interval [0,1]. To this end, it has been chosen to truncate
the likelihood to a certain low value δ.

2. Providing the planner with the most likely subspace to perform the sampling
of the RRT*. If the RRT* knows what are the most likely paths, then we
can bias the sampling of the configuration space to these areas, reducing the
probability of sampling useless states and, hence, reducing the computational
costs to obtain a solution. A parameter determines the amount of GMM bias
introduced into the planner.

5 Experimental Results

5.1 Gathering the data for learning

Several experiments were performed to retrieve exemplary trajectories to feed
the GMM learning phase. Those experiments took place inside a clear room,
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free of obstacles between the person and the robot while performing the scenes
described in Section 2. A set of 9 trials for each homotopy in each task were
logged. The study was recorded using a motion capture system (OptiTrack) and
the robot and person’s poses were extracted automatically from the data.

The gathered data is used to derive the GMM models of the features using
the method described in Section 3, one model for each task. Those models are
then integrated in the RRT* as explained in Section 4. This method is called
GMM-RRT*. A set of GMM models in x − y space have been also derived in
order to test the GMM-RRT planner [5], used as a baseline. The parameters used
was k = 19 GMM modes (for each task and method) and a value of δ = 0.001.

5.2 Metrics

We propose two metrics to compare the obtained paths from the different plan-
ners and with respect to the demonstrated trajectories, as used in [9]:

The first metric is called Trajectory Difference Metric (TDM), which is de-
fined as follows:

TDM(ζD, ζP ) =
1

|ζD|

|ζD|∑
i=1

min ζD(i)ζP =
1

|ζD|
1

|ζP |

|ζD|∑
i=1

|ζP |∑
j=1

min ζD(i)ζP (j) (2)

where ζP (j) and ζD(i) are the points of the two trajectories ζP and ζD to be
compared, and ζD(i)ζP (j) is the distance between two points. |ζD| and |ζP |
are the number of samples of each trajectory. This metric gives an idea of the
similarity of two given trajectories. The final metric is given by the averaged
value of this metric for all the planned and demonstrated trajectories:

TDM =
1

|D|
1

|P |
∑
D,P

TDM(ζD, ζP ) (3)

where D and P are the number of Demonstrated and Planned trajectories, re-
spectively.

The second metric is the resulting averaged trajectory length ratio le, ex-
pressed as the mean of the ratio of the absolute value of the difference between
the planned trajectories and the demonstrated trajectories lengths divided by
the demonstrated trajectories length:

le =
1

|D|
1

|P |
∑
D,P

|l(ζD)− l(ζP )|
l(ζD)

(4)
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Fig. 1: Mean cost value and the standard deviation obtained for an GMM-RRT*
with (red and green, subindex bc) and without (blue, subindex c) GMM sampling
bias.

5.3 Results

Costs Evaluation This section is oriented to evaluate the convergence speed of
the RRT*-base planner to the optimal path in term of costs. Figure 1 shows the
evolution of the solution path cost versus the number of iterations using 100%
and 0% GMM bias, for the “Avoiding a Person” task. The allowed planning time
for this comparison was 100 seconds in order to converge to the optimal cost. It
can be seen in this example how the planner that includes the GMM sampling
is faster.

Metrics performance For the following results a mixed-sampling strategy
has been adopted: 95% of the time a GMM sampling is employed, while the
remaining 5% it is the uniform sampling. We aim to take advantage of the learned
models and also allow a degree of randomness when sampling configurations.
This feature is only applicable to the GMM-RRT* planner presented in this
paper. The construction and the use of the GMM model for the GMM-RRT
planner must satisfy certain restrictions that make sampling possible only on
consecutive nodes. For further details please consult [5]. The planner is given
enough planning time to converge. Figure 2 shows a complete set of 25 trials for
each task, homotopy and planner, with the parameters explained before.

Regarding on how well both planners imitate the demonstrated trajectories,
Table 1 shows the values obtained when the different planners are used in both
tasks based on the metrics related in Section 5.2. It can be seen in that table
that the planner proposed in this work outperforms in nearly every homotopy
considered.

Figure 3 shows the same comparison of the metrics for different planning
times for the GMM-RRT* approach, in contrast with the metric values obtained
for the GMM-RRT (first two columns in the figure).
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a) Task 1: Avoid a Person. b) Task 2: Approach a Person.

Fig. 2: Demonstrated (green) and planned trajectories (red for GMM-RRT* and
blue for GMM-RRT) are depicted. The “Start” and “Goal” states are also shown,
while the “Person’s” gaze is represented by a triangle.

Task 1: Avoiding a Person Task 2: Approaching a Person
Planner TDM (m) le(%) TDM (m) le(%)

Rigth Homotopy
GMM-RRT* 0.0565 ± 0.0152 3.66 ± 2.64 0.0906 ± 0.0176 3.69 ± 2.54
GMM-RRT 0.0803± 0.0205 4.00± 2.51 0.0917± 0.0161 4.96± 3.45

Left Homotopy
GMM-RRT* 0.0484 ± 0.0109 4.96± 2.37 0.0612 ± 0.0218 4.22 ± 2.50
GMM-RRT 0.0676± 0.0169 4.31 ± 3.1 0.0666± 0.0169 4.56± 3.62

Frontal Homotopy
GMM-RRT* 0.0376± 0.0141 11.35± 5.35
GMM-RRT 0.0337 ± 0.0184 8.55 ± 3.34

Table 1: Trajectory quality for both tasks. Smaller values are better for all met-
rics. The best values are highlighted in boldface.
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Fig. 3: Mean and standard deviation of the metrics for different planning times
and the “Avoiding a Person” task.

We have started with a planning time of 1.5 seconds because it is the mean
time in which the proposed GMM-RRT* planner is able to find the first solution



8

for the tasks presented here and for the bias of 95%. For 3 seconds the GMM-
RRT* obtain comparable results on the TDM metric.

Managing the Homotopies As commented in Section 2, the tasks being
learned by the robot may be composed by several homotopies. Figure 4 illustrates
the models of the Approaching a Person task.

Fig. 4: First-Left: The model includes the three demonstrated homotopies.
Second-Left to Right: One model per each demonstrated homotopy.

This is a clear disadvantage of the GMM-RRT planner. Not only the social
situation has to be known beforehand to choose between the homotopy models,
but also once a model has been selected, it can occur that an obstacle hampers
the execution of the plan. In such a situation, both planners can take advantage
of the variability in the execution of the demonstrated task, encoded by the
GMMs covariance matrices, to avoid the obstacle, but sometimes this could not
be enough. For instance, in the situation shown in Fig. 5 it can be seen how the
GMM-RRT planner is not able to find a free path to the goal, although it exists.
However, the GMM-RRT* planner presented here is able to naturally choose
between the available homotopies to reach the goal.

Fig. 5: “Avoiding a Person” task. Shadowed area represents an obstacle. Left:
Model includes 2 homotopies, used by GMM-RRT*. Planning time: 3 secs. Right:
Only right homotopy, used by GMM-RRT. Planning time: 100secs.

Generalization Regarding to the generalization of the proposed approach to
other scenarios, the approaching a person task is modified so an obstacle (as a
rectangular shadowed area in Fig. 6) is introduced in the robot path to its goal:
The GMM-RRT* planner still can reach the goal due to the mixed-sampling
strategy adopted: the uniform bias sampling allows to random explore the state
space outside the learned demonstrations.
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Fig. 6: Left: Simulated trial without uniform sampling. Right: 95% GMM and
5% uniform sampling.

The simulations shown in Fig. 6 were within a 100 seconds time horizon.
A 100% GMM sampling was not able to find a path that can handle with the
obstacle included. If a mixed-sampling strategy is allowed, within the same time
horizon, it can be seen how the goal is reached successfully. The percentage of
bias, thus, offers a trade-off between the imitation capabilities and the planning
time required to obtain a path. An adaptive solution that modifies this bias after
obtain a first good path is left for future work.

6 Conclusions and Future Work

In this paper we present a planning algorithm based on RRT*, which is capa-
ble of infer the most suitable socially-aware paths in two situations (or tasks):
avoiding a standing person and approaching forwards or backwards a standing
person. Both tasks are statistical characterized from real experiments by using
two different GMMs, which are later used in two ways: to guide the state-space
sampling step and to include a cost term into the standard RRT* algorithm.

We evaluate the approach presented here jointly with a state of the art algo-
rithm based on RRT and GMM. The comparison includes a metric performance
to measure the similarity between the planned trajectories with the learned ones,
for different planning times, and how both approaches perform in simulated sce-
narios that can include slightly differences from where they were learned.

Although the RRT based planner is quicker to get a suitable path, the ap-
proach presented here is able to manage homotopies and generalizes better when
tackling with unexpected situations (such as obstacles).

Both tasks described in this work are only a simple and specific use case
of the proposed planner. As future work we plan to evaluate the use of other
features including velocity, time and some environment descriptors that could
improve the generalization of the learned behavior to these and new tasks. Also,
we will perform real user tests to analyze how the learning affects the readability
of the learned behavior.
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