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Abstract. The paper considers a guiding task in which a robot has to
guide a person towards a destination. A robust operation requires to
consider uncertain models on the person motion and intentions, as well
as noise and occlusions in the sensors employed for the task. Partially
Observable Markov Decision Processes (POMDPs) are used to model the
task. The paper describes an enhancement on online POMDP solvers
that allow to apply them to larger problems. The algorithm is used to
control the robot in real-time for the guiding application. Results in
simulation illustrate the approach.
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1 Introduction

In the last years, there has been an impressive development on localization,
mapping, SLAM and navigation techniques. The scale of the scenarios to which
this techniques can be applied has increased dramatically. But despite all these
advances, achieving long-term autonomy, either in space and time, requires to
enhance the robustness of all these skills. For this, a robot should cope with
imperfect information, failure modes, partial models, etc.

In particular, we are interested in the robust operation of robots in human
inhabited spaces. The FROG FP7 project3 aims to deploy a guiding robot in
touristic sites involving outdoor and partially outdoor scenarios. While robot
guides has been developed since more than a decade [26, 19], the project considers
as new contributions the development of social behaviors and their adaptation by
integrating social feedback, as well as the robust operation in outdoors crowded
scenarios. Furthermore, it aims to demonstrate the operation of the robot for
two weeks at the Royal Alcazar in Seville (see Fig. 1).

Among other activities, one particular application considered in the project
is person guidance. Robustly navigating in these crowded scenarios (the Royal
Alcazar may have around 5000 visits per day) requires to consider issues due

3 http://www.frogrobot.eu
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Fig. 1: The FROG project aims to deploy a guiding robot with a fun personality,
considering social feedback, in the Royal Alcazar of Seville and the Zoo of Lisbon.
Two pictures of the first scenario are presented here. On the right, and initial
design of the robot components can be seen.

to the high dynamics of the environment. Furthermore, guiding a person in this
scenario involves not only ensuring a safe and efficient navigation but also social
interaction and social awareness when achieving these goals.

For this and other applications, a robust operation, like robust navigation,
requires reasoning about all the potential uncertainties present on the robotic
system, due to imperfect models, limited information, errors, noise, etc. One
framework that allows considering uncertainties in a principled way is Partially
Observable Markov Decision Processes (POMDPs) [8]. By using POMDPs, the
uncertainties in the sensors, as well as uncertainties on the models employed by
the robot, are considered when planing the actions that the robot has to execute.

However, the broader application of planning under uncertainties to robotic
systems requires to develop methods that cope with the curse of dimensional-
ity: in this case the planning problems are posed not on the state space, but
on the much harder information space (the space of all potential actions and
observations histories that the robot may perform/gather).

In the paper, we present firstly a method for alleviating the complexity of
online POMDPs, allowing to apply them to larger problems. Then, it is described
how this method can be used to model the task of person guidance. Results in
simulation show the applicability of the approach. The paper finalizes with some
conclusions.

1.1 Related work

POMDPs are increasingly used in robotics [11, 14, 6, 4]. This is due to the de-
velopment of more efficient offline POMDP solvers in the last decade [23, 9, 3].
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However, their broader application to robotics has been precluded due to curse
of dimensionality. Besides offline solvers, online POMDPs have been also consid-
ered [18, 6], as they are more suitable for certain robotic applications. Still they
are affected by the same issues.

Efficient and robust navigation in crowded environments requires taking into
account human behavior models, social constraints and their uncertainties[7].
On one hand, besides the static obstacles the motion of the persons have to be
considered. Typical approaches to human motion prediction simply assume a
constant velocity, which is not valid in most cases. In general, human navigation
intent will depend on the function and structure of the environment [25, 2, 12].

Furthermore, the interaction of the robot and the humans has to be taken into
account to allow for an efficient navigation[27]. In the particular application of
person guidance, in [5] probabilistic models of human-interaction are extracted
from data for the purposes of person guiding. Finally, applications in which
persons are also involved require to consider social constraints, like the human
commitment and goals. Related to the work presented here, the authors in [16]
employ Markov Decision Processes to predict the destination of the persons in
guiding applications. However, the uncertainties on the observation processes
are not considered.

Closest to our work, in [24] a POMDP is also used to infer the intentions
of the person for wheelchair navigation. Similar ideas are considered, but in a
different scenario. Moreover, offline POMDP models are used, so the system has
to be re-planned offline if a different scenario is considered. Our online system
allow to build the models on the fly. Furthermore, the proposed system is able
to work with a larger scenario in terms of state space and observation outcomes.

2 POMDPs in a Nutshell

As commented above, in this paper we will analyze the use of POMDPs to model
navigation tasks like person guiding. Formally, a discrete POMDP is defined by
the tuple 〈S,A,Z, T,O,R,D, γ〉 [8]. The state space is the finite set of possible
states s ∈ S; the action space is defined as the finite set of possible actions a ∈ A
that the robot can perform; and the observation space consists of the finite set of
possible observations z ∈ Z. At every step, an action is performed by the robot,
an observation is made and a reward is given.

After performing an action a, the state transition is modeled by the condi-
tional probability function T (s′, a, s) = p(s′|a, s), allowing to model failures and
uncertainties on the prediction models. In the same way, measurement process
is modeled by the conditional probability function O(z, a, s′) = p(z|a, s′), which
permits to consider non-observability, occlusions, noise, etc.

The reward obtained at each step is R(s, a). The planning objective is to
maximize the sum of expected rewards, or value, for a planning horizon of D
time steps. To ensure that the sum is finite when D →∞, rewards are weighted
by a discount factor γ ∈ [0, 1).
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POMDPs consider that the state is non-observable; therefore, a belief func-
tion b is maintained by using Bayes rule. The belief obtained if we apply the ac-
tion a and get the observation z is b′(s′) = τ(b, a, z) = ηO(z, a, s′)

∑
s∈S T (s′, a, s)b(s).

The normalization constant:

η = P (z|b, a) =
∑
s′∈S

O(z, a, s′)
∑
s∈S

T (s′, a, s)b(s) (1)

gives the probability of obtaining a certain observation z after executing action
a for a belief b. As said above, the objective is to plan a policy which indicates
the action that has to be performed given the information available (summarized
by the belief) a = π(b) and that maximizes the cumulative expected reward, or
value V π(b):

V π(b) = R(b, π(b)) + γ
∑
z∈Z

P (z|b, a)V π(bzπ(b))) (2)

where R(b, a) =
∑
sR(s, a)b(s) is the expected immediate reward4. The value of

the optimal policy is usually denoted by V ∗(b) and associated to it is the optimal
Q function:

Q∗(b, a) = R(b, a) + γ
∑
z∈Z

P (z|b, a)V ∗(bza)) (3)

2.1 POMDP Solver

Modeling a particular robotic task, like person guidance, implies to define the
transition function T (s′, a, s) and the observation model O(z, a, s′). Notice that
both models consider uncertainties, either in the outcome of actions and in the
observation process. These models can be defined by hand or they can be learnt
from data [5].

Once the models are defined, the task is codified into the POMDP by design-
ing an appropriate reward function R(s, a), which indicate the expected behavior
of the robot. Again, this reward function can be defined by hand, or could be
learnt from data [7].

Given the reward and the models, the optimal policy can be obtained by com-
puting the policy π(b) that maximizes (2) using dynamic programming. However,
POMDPs are quite hard to solve (they are PSPACE-complete [15]). Current
offline solvers, like [23, 9, 3], apply some approximations to obtain a solution.
Furthermore, they try to solve the dynamic programming problem over the full
belief state space. These algorithms require to recompute the full policy when
there are changes on the environment dynamics or the sensor models.

As commented above, online solvers are more suitable for some robotic tasks.
An online POMDP solver tries to determine the optimal action for the current
belief point b, and not for all the possible beliefs. To achieve this, it creates

4 bza = τ(b, a, z) will be used to obtain a more compact formula.
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Fig. 2: An AND-OR Belief Tree with 2 actions and 2 observations. The OR-node
(where the robot has to take an action) are represented by triangles and the
AND-nodes by circle (when observations, which are not controlled, are received).
If a repeated belief appears at the same depth, it means that it has an identical
subtree and the same value (like belief b2).

an AND-OR tree by exploring the next beliefs for all possible actions and for
all possible observations starting at the initial belief (see Fig. 2). The dynamic
programming solution to (2) is applied from the leaves to the root, obtaining
the best action.

This tree is created on demand, and can be adapted online if the models or
the reward function change. As we will see, this allows us to model tasks as the
guiding task described below. Furthermore, this kind of structures can be used
to create anytime algorithms [17], in which the time available is used to explore
the tree as deep as possible.

The branching factor in AND-OR POMDP trees is |A||Z| where |A| is the
number of actions and |Z| is the number of observations, and the number of leaves
nodes for a tree of depth D is (|A||Z|)D, that is, exponential on the planning
horizon. Exploring all the nodes to obtain the optimal action is, therefore, not a
option. In [18], a classification of POMDP online algorithms can be found, and
also three strategies that are employed to improve the computing time required
to choose the best action:

– Monte Carlo sampling algorithms: minimize the branching factor by sam-
pling a subset of observations.

– Heuristic search algorithms: guide the search of the most relevant branch
nodes.

– Branch and Bound algorithms: Prune nodes that are suboptimal compared
to other that have already been expanded.

We have developed an additional improvement that can be applied with
any of the previous strategies. The main idea is to take advantage of the true
topology of the belief space, which is actually a graph instead of a tree. For this,
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we introduce a pseudo-metric into the belief space to determine if two belief
points are actually the same, that is, if we are revisiting a belief point, which
then does not have to be expanded again within the AND-OR tree.

In this paper we employ a first idea in that direction. In the expansion of
the AND-OR tree, if the next belief to be expanded is similar to a saved belief
at the same depth, that belief will not be expanded because its value is already
calculated (see Fig. 2). The similarity between two belief points in the tree b and
b′ is computed by using the Jensen-Shannon divergence DJS(b‖b′) [1] (its square
root is actually a true metric):

DJS(b‖b′) =
1

2
(DKL(b‖b+ b′

2
) +DKL(b′‖b+ b′

2
)) (4)

where

DKL(b‖b′) =
∑
s∈S

b(s) ln
b(s)

b′(s)
(5)

The Algorithm 1.1, called FSBS, proceeds via look-ahead search up to a
fixed depth d. We use the structure of the RTBSS algorithm proposed by [18] to
elaborate the FSBS, which therefore also prunes branches on the tree which are
suboptimal by using lower and upper bounds on the optimal value function. In
particular, the algorithm uses the max-planes lower bound [21] of the optimal
value implemented in [22] (line 3). The δ function determines how the FSBS
algorithm propagates this lower bound from the leaves up to the root.

δ(b, 0) = LowerBound(b) (6)

δ(b, d) = max
a∈A

(R(b, a) + γ
∑
z∈Z

Pr(z|b, a)δ(bza, d− 1)) (7)

To determine the similarity between beliefs, we keep a node list for each depth
d, nodeListd. Every node contains the following items: the belief b; an action; and
the accumulated reward if that action is applied to the belief, δ(b, d). We only
keep the beliefs up to depth D − 1 because the leaf nodes cannot be expanded.

The function orderbyAccReward in line 5 is used to find the accumulated
rewards that are obtained when we apply each action to the current belief.

For each action at depth d, the orderbyAccReward function looks for a sim-
ilar belief in nodeListd, b

′, considering a similarity threshold th. If a belief is
successfully found, the accumulated reward that was already stored, δ(b′, d), is
assigned to it, and if not, it is assigned as ∞ in order to get expanded first.
The orderbyAccReward function returns a list, sorted by accumulated reward,
in which each element contains the following items: the action associated; the
accumulated reward if this action is applied to the input belief if exists; and a
variable that indicates whether the resulting belief is already in a depth on the
tree or not.

In line 12-13 we reuse the accumulated reward if a similar node is found at the
same depth. In this case, we stop expanding along that path. If not, we expand
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Algorithm 1.1: FSBS Algorithm

1: function FSBS(b, d, th)
2: if d == 0 then
3: return LowerBound(b)
4: end if
5: {st1, st2, ..., st|A|} ← orderbyAccReward(b, d, th)
6: LT (b)← −∞
7: i← 0
8: while i < |A| AND sti.AccReward > LT (b) do
9: a← sti.IdAction

10: rAcc← sti.AccReward
11: LT (b, a)← −∞
12: if sti.isFoundSimilar then
13: LT (b, a)← Reward(b, a) + γrAcc
14: else
15: LZ(b, a)←

∑
z∈Z

P (z|b, a)FSBS(bza, d− 1, th)
16: LT (b, a)← Reward(b, a) + γLZ(b, a)
17: saveNode(b, a, d, LZ(b, a))
18: end if
19: LT (b)← max{LT (b), LT (b, a)}
20: end while
21: return LT (b)
22: end function

and keep the node (line 15-18). To finish we choose the action that maximizes
the accumulated reward (line 21).

We calculate the optimal policy as:

π∗(b,D) = arg max
a∈A

(R(b, a) + γ
∑
z∈Z

P (z|b, a)FSBS(bza, D − 1, th)) (8)

This is applied in each planning iteration. At every iteration, the optimal
action is applied and then a new forward search is performed, in a receding
horizon fashion.

The algorithm has been tested in benchmark problems showing that using
this similarity measurements it is possible to obtain a similar expected solution
by expanding several orders of magnitude less nodes [1] than state of the art
algorithms. In particular, Fig. 3 shows the comparison of the original RTBSS
algorithm and the FSBS algorithm for the RockSample benchmark [20]. More
details can be found at [1].

3 Modeling the guiding task as a POMDP

In a guiding application, the robot has to guide a person or group of persons
towards a common destination. The typical solution to the problem is to plan a
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Fig. 3: Expected accumulated reward (right vertical axis) and execution time
(left vertical axis) for RTBSS and FSBS using the JS divergence (RockSample).
Different thresholds in the JS divergence (horizontal axis) are considered to
determine if two belief points are the same in the tree. The larger the thresholds
the less nodes are expanded. It can be seen that for thresholds between 0.3 and
0.5 in the similarity the expected reward is very similar, but the execution time
is two orders of magnitude lower.

path towards the destination and then follow the path by controlling the speed
of the robot by using some feedback on the person being guided, like laser, visual
information or a combination of them [13].

This requires having an estimation of the position of the person. However,
imperfect sensors, false positives, occlusions, etc, may lead to uncertainties on the
person position. In particular, vision algorithms can be affected by illumination
changes, which makes it hard to track robustly a person being guided.

Moreover, one of the main sources of uncertainty in this problem is that the
person may change his/her mind, or decide to stop for a while at a different
interest point in his way to the destination. From a social point of view it is
important that the robot considers the person goals while guiding the person,
in order to wait for the person or even to change its goal accordingly. However,
the robot cannot have a direct observation on this person goal.

As assumptions, we will assume that the robot has a map of the scenario. This
map also includes a model of potential interest points for persons, determined
beforehand by using information about the typical tours performed by tourists.
This map can be also learnt by using data gathered by the robot [12].

Once the person selects a destination, a path planner determines a path
towards this destination. In order to model the problem by using the POMDP
framework described above, this path is then discretized into a set of points with
a granularity that can be adjusted (1.5 meters in the current implementation).
The map of the scenario is analyzed to discover if in the way towards the final
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Fig. 4: The model employed: the planned path (in green) is discretized. At each
point, the bars blue and red indicate the estimated belief on the robot and person
positions respectively. Furthermore, the yellow circles indicate the current robot
belief on the person goal. The sizes are proportional to the marginal probabilities.

destination there are points that may be of interest for the person and are
considered as intermediate goals.

The state space S is then composed by the position of the robot and the
person within the discretized path, as well as the estimated goal of the person.
The robot will maintain, thus, a belief state (a probability distribution) over its
pose, the person position and the person intention (see Fig. 4).

The belief state is initialized to the initial position of robot and person in
the tour, and the goal is initially set as the destination selected (the end of the
path).

3.1 Observation model

The robot sensors considered are the output of the localization system and a
camera for person tracking.

The localization of the robot is provided by a map-based Monte-Carlo local-
ization algorithm using the laser data of the robot. By using this algorithm, the
robot can know its position within the path. The accuracy of the algorithm for
different parts of the map is known beforehand and is included into the POMDP
model. This model assigns some probability of obtaining a robot position mea-
surement in the surroundings of the real position (for instance, in the corridor
that can be seen in Fig. 4, the robot has some uncertainty in its position on the
direction of the corridor because of the symmetry of the scenario; this can be
included into the observation model).

For person guidance, a visual tracker is employed. The tracker is able to cope
with illumination changes and it is quite robust [10]. However, the current robot
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Fig. 5: Prediction models (arrows): the robot (red) and the person (green) can
move forward or stay. If the robot decides to proceed forward it will reach the
next point on the trajectory with certainty. The motion of the person is uncertain
and will also depend on the presence of intermediate goals (yellow). Observation
models: the robot can detect with its camera if the person is within its field of
view (blue polygon) with high probability. This field of view is about 3 meters
long. The position of the robot is obtained by the localization system with a
precision depending on the place in the map (green rectangle).

system cannot orient the camera independently. Furthermore, it is only able to
track the person if it is below a certain distance threshold from the camera. On
the other hand, it is able to recognize persons that has already seen before, so
if a person goes out and back into the field of view it will recognize him.

Therefore, the model considers a high probability of detection when the per-
son is in the field of view of the camera (see Fig. 5), while accounting for a small
possibility of misdetections.

3.2 Prediction function

The action space of the robot considered here is to continue to the next discrete
point on the trajectory or to wait for the person (it controls the speed in a on/off
fashion, although this is implemented smoothed in the velocity controller).

The robot actions are modeled as deterministic (that is, the robot will reach
the next point if commanded so, even though the possibility of crowded places
in the scenario may be modeled).

The motion of the person is uncertain, though. The model employed considers
that the person will adapt to the robot pace, but he may wander a bit, so there is
some small probability that the person stays at his current position. Furthermore,
the intentions of the person will depend on the place he is transversing. If the
person is close to an intermediate goal, then the person may decide to stop by.
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Table 1: Comparative table for a planning depth of 5

Algorithm Number of nodes Time (s.) Averaged Reward

RTBSS 7776 6.75 241.52

FSBS (threshold 0.3) 108 0.1 238.34

Therefore, in those cases there is a larger probability of staying and changing
the person goal.

3.3 Design of the reward function

The main design choice in a POMDP is the reward function, with which we
encode the desired behavior of the robot. For this task, the objective is to follow
the path, guiding the person and adapting to the person motion and intentions.
Furthermore, it is important not to lose the person.

Therefore, the robot receives a positive reward if it goes towards the goal of
the person and maintains the person below a certain distance. A larger reward
is received if the final destination is reached than for the intermediate goals.
However, the robot receives a penalization if it proceeds towards a different
goal than that of the person (the person may stop for a while in one of the
intermediate goals). This requires to reason about the potential intentions of the
persons.

Besides, the actions are penalized so faster achievements are preferred.

4 Simulations

In order to analyze the modeling of the task by using POMDPs, in this sec-
tion we present some results obtained by applying the mentioned algorithm in
simulations. In the simulation, the robot is controlled by the algorithm, while
the person is simulated by a robot teleoperated by a person. Figure 6 shows the
typical execution of the algorithm.

In the example, the trajectory selected is discretized into 27 zones, in which
2 intermediate goals, besides the final destination, are identified, giving a state
space of dimension |S| = 2187 (27× 27× 3), with |A| = 2 potential actions and
|O| = 54 potential observations (the position of the robot and if the person is
see or not by the camera tracker). An AND-OR tree for this problem and depth
5 contains more than 1010 nodes.

Table 1 shows a comparison of the number of nodes and reward obtained
by different methods and a planning depth of 5. As it is seen, the presented
algorithm can run in real-time, obtaining a similar reward as the one obtained
by the algorithm RTBSS [18].

Fig. 7 describe some of the situations encountered in the execution. It can be
seen how the system is able to reason about its limitations in its sensor data and
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Fig. 6: Typical execution of the POMDP controller guiding the person (green)
towards the destination.

in the models in order to adapt itself to the situation. In the set of simulations,
the average distance between the robot and the person is of 2.04 meters.

5 Conclusions

The paper has presented the application of POMDPs to navigation tasks, in
particular a robot guiding task. POMDPs are a way of reasoning about the un-
certainties of the system when controlling the robot, which allows to enhance the
robustness of the robot operation. In order to apply these methods to robotics,
it is needed to develop techniques able to cope with larger state, action and
observation spaces. The paper presents one method to alleviate the complexity
of POMDPs. Using this method it is possible to apply a POMDP model to the
guiding task in real-time.

As a future work, we will perform actual experiments in a guiding setup, and
compare the technique with other approaches for guiding [16].

Furthermore, the FSBS method will be extended to build belief graphs, which
should reduce further the number of expanded nodes, allowing to cope with larger
problems. Furthermore, nothing precludes to use the same ideas for continuous
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representations of the belief space, as well as considering continuous actions,
which is very relevant for robotic applications.

Regarding the use of POMDPs for navigation tasks in pedestrian environ-
ments, one of the main issues is the design of the reward functions to define
the particular task. A more interesting approach is to learn the reward function
from demonstration or examples from humans [7]. This will also allow to con-
sider social behaviors into the navigation stack, by transferring the way human
guides behave to the robot.
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11. López, M., Bergasa, L., Barea, R., Escudero, M.: A navigation system for assis-
tant robots using visually augmented POMDPs. Autonomous Robots 19(1), 67–87
(2005)



14

12. Luber, M., Tipaldi, G.D., Arras, K.O.: Place-Dependent People Tracking. Interna-
tional Journal of Robotics Research 30(3) (March 2011)

13. Merino, L., Gilbert, A., Capitan, J., Bowden, R., Illingworth, J., Ollero, A.: Data
Fusion in Ubiquitous Networked Robot Systems for Urban Services. Annals of
Telecommunications, Special Issue Ubiquitous Robots 67 (2012)

14. Ong, S., Png, S.W., Hsu, D., Lee, W.S.: POMDPs for Robotic Tasks with Mixed
Observability. In: Proc. Robotics: Science and Systems, RSS (2009)

15. Papadimitriou, C., Tsitsiklis, J.N.: The complexity of markov decision processes.
Mathematics of Operations Research 12(3), 441–450 (1987)

16. Perrin, X., Colas, F., Pradalier, C., Siegwart, R.: Learning to identify users and
predict their destination in a robotic guidance application. In: Howard, A., Iag-
nemma, K., Kelly, A. (eds.) Field and Service Robotics, Springer Tracts in Ad-
vanced Robotics, vol. 62, pp. 377–387. Springer Berlin Heidelberg (2010)

17. Pineau, J., Gordon, G., Thrun, S.: Point-based value iteration: An anytime algo-
rithm for POMDPs. In: Proceedings of the Sixteenth International Joint Confer-
ence on Artificial Intelligence (IJCAI). IJCAI, Acapulco, Mexico (2003)

18. Ross, S., Pineau, J., Paquet, S., Chaib-draa, B.: Online planning algorithms for
POMDPs. Journal of Artificial Intelligence Research (2008)

19. Siegwart, R., Arras, K.O., Bouabdallah, S., Burnier, D., Froidevaux, G., Greppin,
X., Jensen, B., Lorotte, A., Mayor, L., Meisser, M., Philippsen, R., Piguet, R.,
Ramel, G., Terrien, G., Tomatis, N.: Robox at Expo.02: A large-scale installation
of personal robots. Robotics and Autonomous Systems 42(3-4), 203–222 (March
2003)

20. Smith, T., Simmons, R.: Heuristic search value iteration for POMDPs. In: Proceed-
ings of the 20th conference on Uncertainty in artificial intelligence. pp. 520–527.
AUAI Press (2004)

21. Smith, T.: Probabilistic Planning for Robotic Exploration. Ph.D. thesis, The
Robotics Institute, Carnegie Mellon University, Pittsburgh, PA (July 2007)

22. Smith, T.: ZMDP software for POMDP and MDP planning.
http://www.cs.cmu.edu/ trey/zmdp/ (2012)

23. Spaan, M.T.J., Vlassis, N.: Perseus: Randomized point-based value iteration for
POMDPs. Journal of Artificial Intelligence Research 24, 195–220 (2005)

24. Taha, T., Miro, J., Dissanayake, G.: Pomdp-based long-term user intention predic-
tion for wheelchair navigation. In: Robotics and Automation, 2008. ICRA 2008.
IEEE International Conference on. pp. 3920–3925 (2008)

25. Thompson, S., Horiuchi, T., Kagami, S.: A probabilistic model of human motion
and navigation intent for mobile robot path planning. In: Gupta, G.S., Mukhopad-
hyay, S.C. (eds.) ICARA. pp. 663–668. IEEE (2009)

26. Thrun, S., Beetz, M., Bennewitz, M., Burgard, W., Cremers, A.B., Dellaert, F.,
Fox, D., Hahnel, C.: Probabilistic algorithms and the interactive museum tour-
guide robot minerva. The International Journal of Robotics Research 19, 972–999
(October 2000)

27. Trautman, P., Krause, A.: Unfreezing the robot: Navigation in dense, interacting
crowds. In: IROS. pp. 797–803. IEEE (2010)



15

(a) (b)

(c) (d)

Fig. 7: a) The initial situation: the estimated goal (in yellow) is the initial des-
tination. b) The robot and the person (the belief on their positions in blue and
red, respectively) are approaching a potential intermediate goal. Therefore, the
robot puts some probability mass on this goal (yellow), as well as the one at the
final destination. This provokes that the robot slows down, as it considers that
the person may stay at the intermediate goal. c) The person stays for a while
in the intermediate goal, but then proceeds. When doing this he goes out of the
field of view of the camera. However, the models and the Bayes filter allow to
use this negative information to infer the motion of the person and the robot
proceeds towards the final destination again. The belief on the potential goals
change (yellow). d) The robot and person reach the final destination.


