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Abstract— The introduction of robots in urban environments
opens a wide range of new potential applications for ser-
vice robotics. One of these applications is people guidance.
To accomplish this task, the robot needs information about
the position of the person. Sensors embedded in the urban
environment can complement the perception of the robot
in this case. The paper shows how the combination of the
robot sensorial information with that from a camera network
and with a wireless sensor network, is very useful to cope
with tracking failures by being more robust under occlusion,
clutter and lighting changes. The paper summarizes the main
characteristics of the algorithms for tracking with the fixed
surveillance cameras and cameras on board robotic systems. It
also presents results on position tracking by using the strength
of the radio signal from the nodes of Wireless Sensor Network
(WSN). The estimates from all these sources are then combined
using a decentralized data fusion algorithm to provide an
increase in performance. This scheme is scalable, can cope with
communication latencies and degrades smoothly with commu-
nication failures. We present results of the system, operating
in real time, in a large outdoor environment, including 22 non-
overlapping cameras, 30 wireless sensor nodes and one mobile
robot.

I. INTRODUCTION

Many major cities in Europe are looking for means of
reducing the traffic in certain areas, in order to mitigate air
and noise pollution, traffic jams and, in general, to improve
the quality of life. It is intended to develop automatic systems
to perform, in free car areas, services such as person guiding,
people and objects transportation, surveillance, etc. The EU
Project called URUS (Ubiquitous Networking Robotics in
Urban Settings) [1] considered a team of mobile robots, a
set of static cameras and a Wireless Sensor Network (WSN)
for these tasks.

In particular, the application of person guidance requires
the ability to determine and track the position of the person
to be guided. This application requires the collaboration of
different systems, as, in many cases, a single autonomous
entity (i.e. a robot or a static surveillance camera) is not
able to acquire all the information required because of the
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characteristic of the task or the harmful conditions (i.e. loss
of visibility). The set of fixed cameras can obtain global
views of the scene. However, as they are static, they cannot
deal with non-covered zones, shadows can affect the system
and so forth. Robots carry local cameras and can move
to adequate places, reacting to the changing conditions.
However, their field of view is limited and they can lose the
person they are tracking. Wireless devices can also help to
localize the people, by estimating their positions measuring
the signal strength from different static receivers. However,
the resolution obtained is usually low, and depends on the
density of anchored receivers. In this paper we show how the
information from the above different systems can be fused to
improve the performance. In order to cope with scalability,
a decentralized data fusion algorithm is employed. In this
algorithm only local estimation and local communication are
used.

Then, this paper focuses on the perception system of
URUS and the experimental results obtained (see [1] for a
more general description of the project). Next section will
review related work. After an overview of the full system
in Section II, the paper will present the individual input
sensor algorithms. Thus, Sections III and IV summarize the
process to extract information from a set of fixed cameras
and from cameras on board robots. Section V explains the
use of the signal strength from wireless sensors for tracking.
Finally, the results of the tracking from all sensors are used to
infer the position of the person in a global coordinate system
through a data fusion process. This system is described in
Section VI. The paper ends showing results obtained during
the experiments of the URUS project, in an urban scenario
involving 22 fixed cameras, a WSN of 30 wireless Mica2
nodes, and a mobile robot.

A. Related Work

There has been an increasing amount of research on person
tracking in the literature. Most works describe a single
system or algorithm for person tracking using vision, laser
range-finders or other sensors.

Thus, there has been many attempts to track people and
other moving objects using networks of fixed cameras. The
early tracking algorithms [2], [3] require both camera calibra-
tion and overlapping fields of view to compute the handover
of objects of interest between cameras. Others [4] can work
with non-overlapping cameras but still require calibration.
More recent works [5], [6] do not require a priori calibration
to be explicitly stated; instead they use the observed motion
over time to establish reappearance periods between cameras.



Fig. 1: A block description of the URUS perception system. The different subsystems are integrated in a decentralized
manner through a set of decentralized data fusion nodes. Locally, each system can process and integrate its data in a central
way (like the WSN) or in a distributed way (like the camera network). Some systems could obtain information from the
rest of the network even in the case they do not have local sensors.

Tracking from mobile platforms like robots in outdoor
scenarios is a hard problem affected by clutter, illumination
changes in the case of vision approaches, occlusions, etc.
Most of the techniques combine people detection and people
tracking modules for the task. The people detection module
tries to obtain person hypotheses analyzing the sensor data,
and is usually computationally demanding. Many classifi-
cation techniques are used for this task, like boosting [7],
SVM [8], etc. The tracking module is usually a feature
tracking algorithm applied to the initial hypothesis given by
the detection module, which can run at higher pace than the
detection algorithm, like CamShift [9]. In most cases, both
modules support each other, so when the tracker is lost new
hypotheses from the detector can be used. More complex
combinations, including what is called cognitive feedback
are also considered [10].

There is also work devoted to the tracking of mobile nodes
by using radio signals, which is the problem of estimating the
position of a mobile node from the signal received by a set of
static devices whose positions are known. A tutorial on the
main issues and approaches for the problem is presented in
[11]. Many algorithms use, beside signal strength, additional
information to obtain range estimates or even direction of
arrival estimates. For instance, [12] considers the use of par-
ticle filters for tracking a mobile node using Time of Arrival,
Difference of Time of Arrival and power measurements,
presenting results in simulation. The work [13] uses the
Doppler shift of interference signals to estimate the velocity
and position of mobile nodes. These approaches require the
precise synchronization of the emission of signals. In our
approach, only signal strength is used, through a calibrated
model for radio propagation. There are approaches in which
this model is learnt; [14] presents an approach in which
Gaussian Processes are used as non-parametric models for
the errors in indoor signal propagation.

The key issue in the paper is to show how the combination
of the local information obtained by the robot with the infor-

mation received from ubiquitous sensors in the environment
can improve greatly the results. Moreover, a decentralized
data fusion approach is employed, producing an scalable
solution with respect to the number of subsystems.

II. URUS SYSTEM OVERVIEW

The URUS system consists of a team of mobile robots,
equipped with cameras, laser range-finders and other sensors
for localization, navigation and perception; a fixed camera
network of more than 20 cameras for environment percep-
tion; and a WSN of 30 Mica2 nodes that uses the signal
strength of the received messages from a mobile device to
determine the position of a person carrying it.

Figure 1 shows a simplified version of the perception
system used in URUS. The system consists of a set of
fusion nodes which implement a decentralized data fusion
algorithm. Each node only employs local information (data
from local sensors; for instance, a subset of cameras, or the
sensors on board the robot) to obtain a local estimation of
the variables of interest (in this case, the position of the
person being tracked). Then, these nodes share their local
estimations among themselves if they are within communi-
cation range. The nodes only use local communications and
data, and then the system is scalable. Also, each node can
accumulate information from its local sensors, so temporal
communication failures can be tolerated without losing in-
formation.

Notice that the way in which a particular fusion node
processes its local data can have a distributed or even
centralized implementation itself. For the camera network,
each fusion node considers information from a small subset
of cameras, which are processed in a distributed way (as
it will be described in Section III), with a separate tracker
obtaining estimations from each camera. For the case of
the WSN, messages from all the network are processed
in a gateway to localize the mobile node using the signal
strength (Section V). Moreover, each robot locally processes
its data (on-board cameras). Then, the local estimations of
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Fig. 2: (a) Tracks on the image plane of 4 different cameras. The identity is correctly handed over the cameras using the
weak cues described in Section III. (b) Estimated position of the person on the experimental site.

the different elements are fused in a decentralized way using
the algorithm presented in Section VI.

Thus, the system is easily scalable: for instance, a new set
of cameras could be included by adding a new fusion node in
charge of these cameras (and maybe a new server to process
the information of these cameras); even robots without local
sensors (receiving information from the rest of the nodes)
could be added to the system.

III. FIXED CAMERA TRACKING

The network of fixed cameras covers a wide area of the
experiment site and therefore, in most cases, they initiate
the person guidance; they are able to track objects of
interest both on and across different cameras without explicit
calibration periods.

Within this paper, the fixed camera tracking algorithm
of Gilbert and Bowden [15], [16] is used. A local tracker
processes the data from each camera. Background modelling
and subtraction is used to identify foreground objects, and
Kalman filtering is used to provide temporal correspondence
between detected objects.

Very interestingly, the trackers are able to learn inter-
camera relationships for inter-camera object handling, even
without camera calibration or overlapping. By using weak
cues, the system is able to incrementally build probability
distributions on the possibility that a person leaving one
camera enters a different camera some time interval after.
This information, combined with color histograms, is used
for inter-camera tracking. More details can be found in [15].

Although not used by the system to estimate the
inter-camera relationships, the cameras are homography-
calibrated, so it is possible to obtain a 2D estimation on
the position of the people tracked in the map of the URUS
scenario. Figure 2 shows an example, in which a person is
tracked using 4 different cameras with little or no overlap

at all (and its identity maintained) using the techniques
described in [15]. The figure shows the estimated position of
the person using only information from the camera network.

IV. ROBOT CAMERA TRACKING

The robots carry on-board cameras that are used for person
guiding. This cameras can be used to obtain local estimations
on the position of the person to be guided. The algorithms
employed for this are based on a combination of state-of-
the-art algorithms for person detection and tracking.

The person detection algorithm applied to the image is
the one in [17]. This detection module is launched when
the robot is requested to guide a person and it is close to
the location where the person is waiting. Once the person is
detected, it is tracked by using a tracking algorithm which
is based on the CamShift technique [9]. While the algorithm
is able to handle temporal occlusions, the tracking system is
not enough to maintain the track on the person continuously
due to changes in illumination, the changing field of view
of the camera due to the robot motion, or even the person
going out of the field of view. Therefore, the results from the
tracking and the detection applications are combined, so that
the robot employs the person detector whenever the tracker
is lost to recover the track. The algorithm determines that
the person is lost employing some heuristics, like the track
going out to the limits of the image or size restrictions on
the blob. As a result, the robots can obtain estimations of the
pose of the person on the image plane.

Some improvements can be applied to the features in
order to cope with illuminations changes [18]. However, in
general, these algorithms are not robust enough to be able to
guide one person through the whole scenario. Furthermore,
they can track the wrong people sometimes. Moreover, from
information from one camera alone it is not possible to
estimate the full 3D position of the person. Next sections will



Fig. 3: Particles (red) are used to represent person hypothe-
ses. The signal received by a set of static nodes can be used
to infer the position of the node. The filter is initiated when
the first message is received by sampling uniformly from a
spherical annulus around the receiver. Map information is
also taken into account (only free spaces within the annulus
are considered).

show how the combination of the local camera information
and the information from the other subsystems (camera
network and WSN) can overcome these problems.

V. WIRELESS SENSOR NETWORK TRACKING

A network of wireless Mica2 sensor nodes is also consid-
ered. The signal strength received by the set of static nodes
(Received Signal Strength Indicator, RSSI) can be used to
infer the position of a person carrying one of the nodes
(the emitter). The algorithm to estimate and track the node
position is based on particle filtering. In the particle filter, the
current belief about the position of the mobile node is defined
by a set of particles {x(i)

t }, which represent hypotheses about
the current position of the person that carries the node (see
Figure 3).

In each iteration of the filter, kinematic models of the
motion of the person and map information are used to predict
the future position of the particles. The likelihood of these
particles is updated any time new messages are received
from the static network. The technique is summarized in
Algorithm 1, where zjt is the measurement provided by each
static node j, consisting of its position xj and the strength
RSSIjt of the received signal from the mobile node. Next
subsections further describe the main steps in this algorithm.

A. Prior, prediction and importance functions

The filter is initialized with the first message received
from the mobile node, considering an uniform distribution
on a spherical annulus around the receiver. The map of the
scenario is taken into account when sampling from this prior
(see Figure 3), considering that the person is not inside any
building.

Algorithm 1 {x(i)
t , ω

(i)
t ; i = 1, . . . , L} ← Parti-

cle filter({x(i)
t−1ω

(i)
t−1; i = 1, . . . , L}, zjt = {xj , RSSIjt })

1: for i = 1 to L do
2: x

(i)
t ← sample kinematic model (x(i)

t−1)
3: end for
4: if Message from network zjt then
5: for i = 1 to L do
6: Compute d(i)t = ‖x(i)

t − xj‖
7: Determine µ(d(i)t ) and σ(d(i)t )

8: Update weight ω(i)
t = p(RSSIjt |x

(i)
t )ω

(i)
t−1 with

p(RSSIjt |x
(i)
t ) = N (µ(d

(i)
t ), σ(d

(i)
t ))

9: end for
10: end if
11: Normalize weights {ω(i)

t }, i = 1, . . . , L

12: Compute Neff =
1∑L

i=1(ω
(i)
t )2

13: if Neff < Nth then
14: Resample with replacement L particles from

{x(i)
t , ω

(i)
t ; i = 1, . . . , L}, according to the weights

ω
(i)
t

15: end if

Each time step, the position of the particles are predicted
from their previous position (Line 2 of Algorithm 1). The
prediction function uses a Brownian motion model [19]. This
model is combined with map information to discard unfeasi-
ble motions (like going through walls); particles arriving at
occupied places are rejected and substituted by new sampled
particles. Other prediction models could be used as well.

B. The likelihood function

The likelihood function p(RSSIt|xt) plays a very impor-
tant role in the estimation process, since each time a message
is received this likelihood is used to update the particles
weights (Lines 5 to 9). The likelihood models the correlation
that exists between the distance that separate two nodes
and the RSSI value, although this correlation decreases
with the distance between the two nodes, transmitter and re-
ceiver [20]. This is mainly caused by radio-frequency effects
such as radio reflection, multi-path or antenna polarization.

The model used here considers that the conditional density
p(RSSIjt |xt) can be approximated as a Gaussian distribution
for a given distance djt = ‖xt−xj‖ between the mobile node
and static node j, as follows:

RSSIjt = µ(djt ) +N (0, σ(djt )) (1)

where the functions µ(djt ) and σ(djt ) are non-linear functions
of the distance (which itself is a non-linear function of the
state). These functions are estimated during a calibration
procedure (the form of the functions and the calibration
procedure are described in [20]).

C. Filter evolution

Although Section VII will show additional results, Figure
4 presents the evolution of the particles for a particular



tracking experiment performed at the experimental site. 500
particles are employed, and the algorithm runs at more than
1 Hz. When the filter converges to a Gaussian distribution,
the estimated mean and covariance can be fed to the de-
centralized fusion system that will be explained in the next
section.

VI. DECENTRALIZED DATA FUSION FOR PEOPLE
GUIDANCE

Using the trackers described above, the camera network,
the robots and the WSN will be able to obtain local estima-
tions of the position of the people on the image plane or in
a 3D coordinate system. That information provided by each
tracker, characterized as Gaussian distributions (mean and
covariance matrix), can be fused in order to obtain a more
accurate estimation of the 3D position of the person.

As commented in Section II, the idea is to implement
a decentralized fusion approach, in which each node only
employs local information (data only from local sensors,
for instance, a camera subnet, or the sensors on board the
robot), and then shares its estimation with other nodes (see
Figure 1). Thus, scalability and robustness are improved and
bandwidth requirements alleviated. This fusion algorithm is
based on an Information Filter and is described in [21], [22].
Here, the main concepts are summarized.

A. Delayed-State Information Filter

The Information Filter (IF), which corresponds to the dual
implementation of the Kalman Filter (KF), is a suitable
approach for decentralized state estimation. Whereas the KF
represents a Gaussian distribution on the state xt using its
first µt and second Σt order moments, the IF employs the so-
called canonical representation. The fundamental elements
are the information vector ξt = Σ−1

t µt and the information
matrix Ωt = Σ−1

t . Prediction and updating equations for the
(standard) IF can also be derived from the standard KF [21].
In the case of non-linear prediction or measurement models,
first order linearisation leads to the Extended Information
Filter (EIF).

A Delayed-State Information Filter maintains not just the
last state, but a belief over the full trajectory of the state up
to the current time step t, denoted by Ωt and ξt.

B. Decentralized Information Filter

The main interest of the IF is that it can be easily
decentralized. In a decentralized approach, each urban robot
or ubiquitous entity represents a node i within the network,
which employs only its local data zit to obtain a local
estimation of the person trajectory (given by ξi,t and Ωi,t)
and then shares its belief with its neighbours. Therefore, each
node i will run a Delayed-State EIF using only its local
information, and will fuse locally the received information
ξj,t and Ωj,t from another node j in order to improve
the local perception of the world. Ideally, the decentralized
fusion rule should produce the same result locally as that
obtained by a central node employing a centralized filter. In
[21] the authors propose the next fusion rule:

Ωi,t ← Ωi,t + Ωj,t −Ωij,t (2)

ξi,t ← ξi,t + ξj,t − ξij,t (3)

The above equations mean that each node should sum up
the information received from other nodes. The additional
terms Ωij,t and ξij,t represent the common information
between the nodes. This common information is due to
previous communications between nodes, and should be
removed to avoid double-counting of information (known as
rumour propagation [23]). As long as a tree-shaped logical
topology in the perception system (no cycles or duplicated
paths of information) is assumed, this common information
can be maintained by a separated EIF so-called channel
filter [24].

It is important to remark that, using these fusion equations
and considering trajectories (delayed states), the local filter
can obtain an estimation that is equal to that obtained by
a centralized system [21] (provided that enough time has
passed to allow the information to flow through the different
network nodes). Another advantage of using delayed states
is that the belief states can be fused asynchronously without
missing information. Each sensor can accumulate evidence,
and send it whenever it is possible. Also, asequent and
delayed measurements can be incorporated in the filter.

However, as the state grows over time, the size of the
message needed to communicate its belief also does. For
the normal operation of the system, only the state trajectory
over a time interval is needed, so these belief trajectories
can be bounded by marginalizing out old states. Note that
the trajectories should be longer than the maximum expected
delay in the network in order not to miss any measurements
information.

Finally, when no assumptions about the network topology
can be made (e.g. due to the existence of mobile objects, pos-
sible losses of communication links, etc), another option to
remove the common information is to employ a conservative
fusion rule, which ensures that the system does not become
overconfident even in presence of duplicated information at
the cost of losing optimality in the fusion. For the case of
the IF, there is an analytic solution for this, given by the
Covariance Intersection algorithm of [25].

C. Data association

Each fusion node of the system should be able to asso-
ciate its local observations with the current tracks. In the
case of the camera network, this is done by combining
the inter-camera information and geometric information. As
commented in Section III, the system is able to handle inter-
camera tracking without calibration, using as weak cues
reappearance probabilities and color information. Therefore,
the system uses this information for data association. As
this scheme may fail, the non-associated observations are
also passed through a data association procedure based on
the Mahalanobis distance, using the estimated global person
position obtained using the homographies.
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Fig. 4: A sequence of the 500 particles employed in the filter for this experiment. Red points represent the particles. Yellow
points represent the static nodes, being the green one the emitter at each frame. A person carrying the mobile node travels
from right to left in the corridor at the bottom.

The data association in the case of the WSN node is
straightforward, as the messages from the WSN are tagged
with an ID.

The image tracker in the case of the robots maintains
the identity of the tracked people while they are on the
image plane. The Mahalanobis distance is also used to
associate new measurements with previous tracks. Moreover,
the decentralized nodes should be able to associate the
received tracks with the local tracks. For this track-to-track
fusion, the Mahalanobis distance is used again.

VII. EXPERIMENTAL RESULTS

The techniques described above were tested during the
experimental sessions of the URUS EU Project. These ex-
periments were carried out at the Barcelona Robot Lab,
which is an outdoor urban experimental robotics site located
at the UPC (Universidad Politécnica de Cataluña) campus
Nord. In order to build the system of Section II, 22 fixed
color video cameras were installed and connected through a
Gigabit Ethernet connection to a computer rack, as well as
wireless sensor nodes for localization purposes and 9 WLAN
antennas with complete area coverage.

URUS proposed people guidance as one of the possible
applications for the above urban scenario. First, by means
of a mobile phone, a person calls for a robot in order to
receive the service. Then, the closest available robot with this
functionality approaches and identifies the person, and guides
him/her to the requested final destination. In all this process,
the decentralized data fusion between the ubiquitous sensors
is essential in order to help the robot with the guidance task.

A. Robot and WSN

In order to illustrate the benefits from the data fusion
process, a first setup is presented here. This setup considers
information from one camera on board the robot Romeo (4-
wheel vehicle, see Figure 7) and the WSN (30 nodes). The
objective was to track the position of a person cooperatively
while the robot was guiding.

In this case, just two nodes of the decentralized fusion
scheme were used: one on board the robot and one for

(a) (b)

(c) (d)

Fig. 5: (a) The person was carrying a Mica2 node during
the experiment. (b,c,d) The robot was able to obtain local
observations on the image plane of the face of the person.

the WSN. These nodes locally integrated information from
a monocular camera (see Figure 5) and from the signal
strength-based estimations (Section V, see Figure 5a), re-
spectively.

Figure 6 shows the X and Y estimations obtained by the
robot alone and when the robot combines its information
with the one provided by the WSN. In this case, as ground
truth we have the trajectory of the robot measured by its
navigation software. The person is following behind the robot
(see Figure 7) (which in this trajectory means that the X
coordinates of the person are larger than that of the robot)
and some meters beside the robot (a lower Y coordinate).

It can be seen how the introduction of the WSN reduces
the uncertainty; as we have a monocular camera, the uncer-
tainty on the person position is quite big in both axes when
the robot is alone. In this case, the initial position of the
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Fig. 6: Tracking using one on-board camera and the WSN.
Black: robot alone. Green: robot and WSN. Dashed lines
are the sigma intervals and the blue solid line represents the
robot trajectory.

Fig. 7: Tracks obtained by the camera network.

person is computed assuming a known height of the face. In
the second case, the 3D estimation of the WSN is used to
initiate the filter.

B. Robot, WSN and camera network

In this setup an experiment on a larger area is shown. This
time one robot, the WSN and 7 fixed cameras were used.
Again, there was a person following the robot whose position
had to be estimated. The setup of the perception system was
one decentralized fusion node on the robot, one for the data
from the WSN and 2 fusion nodes for the fixed cameras,
one integrating measurements from 3 camera trackers and
the another from 4 cameras.

Figure 7 shows some examples of the tracks obtained by
the camera network. Along the trajectory there were gaps in
the camera coverage. Moreover, the The robot lost at times
the object is following due to the changes in illumination,
etc.

(a)

(b)

Fig. 8: Estimated position of the person (blue) compared to
the position of the robot (green). Dashed lines represent the
standard deviation of the estimation. (a) Complete trajectory.
(b) An interval of the trajectory. The person was following
the robot with the same X coordinate up to time 80 sec-
onds. Then the robot changed orientation. The person was
separated from the robot around 3-4 meters.

Figure 8a shows the estimated position of the person with
the full system running. The total length of the experiment
was around 350 meters and 5 minutes. The person was
usually besides the robot (which means that the X or Y
coordinates are the same). The system was able to maintain
the estimation of the person position for the full trajectory.
There was WSN coverage between 0 and 150 seconds,
approximately. Figure 8b shows an interval of the trajectory.
In this part, only WSN and robot information were available.
Although the WSN measurements have low accuracy, they
allow the system to bound the error from the robot monocular
camera. At time 75 approximately, the person entered under
coverage of the camera network, which led to a big reduction
in uncertainty.

During all the above experiments, the communication
between the fusion nodes on board the robot and the fusion
nodes related to the camera network and the WSN was
done using WiFi and 3G. A software running on the robot
was able to measure the quality of the WiFi links, and to
switch to 3G whenever this quality dropped below a certain
threshold. The switching between communication networks
created from time to time communication breakdowns of
several seconds. Moreover, although 3G had a more stable
coverage in the scenario, it had also lower bandwidth and
higher latencies than WiFi. In order to tackle these problems,
it was crucial the use of a decentralized system with delayed
states, as in the meantime, the local nodes were accumulating
information. When the communication links were recovered,
the nodes exchanged their estimations. Moreover, as delayed



states were considered, this delayed information (and also
information delayed due to the latencies) could be fused in
a correct way, and no information was lost.

VIII. CONCLUSIONS

In urban scenarios, the cooperation between mobile robots
and ubiquitous sensors can provide solutions to problems in
which single, even if powerful, systems can fail. Very com-
plex algorithms employing just one source of information
are usually unable to cope with all the potential situations in
these scenarios, affected by changes in illumination, clutter,
and in which a wide area must be covered. The combination
of complementary systems can be useful for this problem.

This paper has presented a system that aims to use multiple
sensors to accurately track people within a guidance applica-
tion. The system uses extensively data fusion procedures to
incorporate all the information available. Scalability is an
issue in these systems, and thus decentralized algorithms
are required. The system presented is a mixture between
distributed or centralized subsystems that are linked through
a decentralized data fusion scheme. The addition of new
robots or sub-nets of cameras does not affect the rest of
the perception system in terms of storage, as only local
communication and local processing is used. The algorithms
are real-time and have been tested in the urban scenario
proposed by the URUS Project, consisting of a camera
network with 22 cameras, a WSN with 30 nodes and mobile
robots.

Future developments include the integration of active
sensing behaviors in the system. The WSN can be actively
controlled to save energy, activating those nodes more useful
for tracking. Next steps also include closing the loop, and
developing more complex robot navigation algorithms for
social people guiding by robots. This will be the focus of
the FROG European project: besides positioning information,
information like human commitment will be extracted and
used to develop robot motions that are socially acceptable .
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