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Abstract— Motion is an important modality for human-robot
interaction. Besides a fundamental component to carry out
tasks, through motion a robot can express intentions and
expressions as well. In this paper, we focus on a tabletop robot
in which motion, among other modalities, is used to convey
expressions. The robot incorporates a set of pre-programmed
motion animations that show different expressions with various
intensities. These have been created by designers with expertise
in animation. The objective in the paper is to analyze if these
examples can be used as demonstrations, and combined by
the robot to generate additional richer expressions. Challenges
are the representation space used, and the scarce number of
examples. The paper compares three different learning from
demonstration approaches for the task at hand. A user study
is presented to evaluate the resultant new expressive motions
automatically generated by combining previous demonstrations.

I. INTRODUCTION

Natural and multimodal interaction is one of the key
components of social robots [1], [2]. Among the different
modalities that can be used in these interactions, motion is
very important and what distinguishes a robot from other
interactive virtual agents.

Many of the social robots available incorporate a set of
predefined animated motions. For instance, the Choreographe
software [3] used to program Pepper or Nao includes dif-
ferent pre-programmed animations. Here we consider the
research robot Haru [4], which also incorporates a set of
animations created by designers to convey expressions like
agreement or disagreement, happiness, sadness or shyness.
These animations can be considered as discrete open-loop
macro actions that can be used to build complex interactive
behaviors.

In this work we consider the question if such predefined
animations can be combined so to generate automatically
expressions like, for instance, a shy disagreement. Therefore,
the question to address is to determine if it is possible
to combine motions so that the resultant combinations are
legible and express the desired combined expressions.

Several challenges need to be considered. There is the
question on how the motion trajectories should be inter-
polated. The manifold of motions representing a particular
expression is complex and direct interpolation will likely
lead to non-meaningful motions. Learning approaches can
be applied to extract the relevant information, but only a
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handful of animations is available, so the methods should be
non-data intensive.

In this work, we analyze three different techniques from
the literature to interpolate animated motions using the
designed animations as references. The techniques differ on
the way the provided trajectories are used to extract relevant
information and to generate the desired combined expression.
We then perform a user study to evaluate the expressiveness
and legibility of the resultant combined motion for the
different methods.

The paper is structured as follows. Next section reviews
the state of the art. Then, Section III presents the robot
employed in the paper, including the motion degrees of
freedom that can be used to convey expressions. The methods
considered for the combination of expressions are presented
next. Section V describes the evaluation methodology and it
is followed by the results. The paper ends with a discussion
and outlook.

II. STATE OF THE ART

The generation of expressive motion is a relevant topic in
animation [5], [6] and also robotics [7], [8], [9], [10], [11].
The authors of [9] analyze how to move the head of an An-
droid Robot while speaking. In [11] the authors consider how
to express emotions using a robot swarm. Others use robotics
arms to make other people understand their intentions with
the movement [7], [12], or to express basic states as Pleasure,
Arousal and Dominance using different controllers selected
by Fuzzy-logic [10]. The work in [8] presents techniques
to express different motion styles with a robotic arm while
performing tasks.

Most approaches employ Learning from Demonstration
(LfD) techniques [13], [14] to teach robots/animated char-
acters to produce such expressive motion. For instance, [5],
[6] learn how to imitate the style of people walking from
demonstrations by using Inverse Reinforcement Learning
(IRL) [15]. IRL is also used in [8] to transfer motion styles to
the robotic arm by learning cost functions. Other approaches
encode the data from the demonstrations as a Gaussian
Mixture Model (GMM) [16], [17]. Then, Gaussian Mixture
Regression (GMR) [18] is used to generate the new motions.
In general, most of these approaches make use of hundreds
or even thousands of trajectory examples in order to properly
learn the behaviours, considering that each demonstration
has to be conducted by at least one human, training data
are difficult and expensive to produce, and therefore scarce.
Thus, this paper focuses in the development of techniques



Fig. 1: Haru is a tabletop robot for research on social
robotics. Haru has 5 DoF: base rotation, neck tilt, eyes tilt,
eyes roll and eyes stroke. The eyes roll moves synchronously
in opposite direction.

able to perform LfD from little data [19], decreasing the
need of examples from hundreds to dozens.

In this work, we evaluate several LfD approaches for the
generation of expressive motions based on demonstrations
provided by animators. As acceleration patterns of movement
actually convey emotions [20], we will model not only the
motions but also the dynamics by considering time con-
straints into the learning process. In particular, we consider
the use of Task Parameterized Gaussian Mixture Model
(TPGMM) [16], the interpolation between encoded GMM
motions in the manifold of the Symmetric Positive Definite
(SPD) matrices [17], and a supervised learning approach.

III. HARU: A SOCIAL TABLETOP ROBOT

While the approaches presented below for robot mo-
tion interpolation are general and easily adaptable to many
platforms, this section describes the social robot used for
experimentation in order to better understand the methods.

This paper makes use of the Haru robot [4], a new tabletop
robot with 5 degrees of freedom (see Fig. 1). This is a
platform for research on social robot interaction. It includes
speakers to reproduce sounds, microphones, LCD screens in
the eyes to reproduce videos on them, and LEDs for the
eyebrows and the mouth. There are 5 motors that control
base rotation, neck tilt, eyes tilt, eyes roll and eyes stroke.

Haru provides a set of software tools to create/modify
animations, and also a simulator to check such animations
before transferring them to the actual robot. We call anima-
tion to the combination of one or more robot actuation or
interaction modalities in a predefined period.

In this work we limit the animations to motor movements
purely. Videos and sound produce expressions easier and
more recognizable than movement. So we center our work
only in the interpolation of motor movements in the articular
space. To test those interpolations, all LEDs are turned off,
no sound is reproduced and the eyes videos are neutral green
eyes that blink every few seconds in loop. This way, we
can better evaluate the impact and quality of the produced
animations.

Expression Intensity Posx Posy
Happy 3 0 0.3
Happy 7 0 0.7

Shy 3 0.3 0
Shy 7 0.7 0
Sad 3 0 -0.3
Sad 7 0 -0.7

Agree 3 0.2121 0.2121
Agree 7 0.495 0.495

Disagree 3 0.2121 -0.2121
Disagree 7 0.495 -0.495

TABLE I: Table of the expressions, their intensities and the
values of the codification that we are using to classify them
in the Plutchik’s wheel.

IV. ROBOT ANIMATION INTERPOLATION IN THE
ARTICULAR SPACE

The aim of this paper is to automatically generate ani-
mations that represent one or more expressions from a few
handmade samples. We use 10 samples provided by human
designers as training data, each conveying an expression
with a different intensity. These expressions are ”Happiness”,
”Shyness”, ”Sadness”, ”Agreement” and ”Disagreement”.
Animations are rated according to its intensity, a value
between 1 and 10. The larger the intensity, the stronger will
be the animation. The sample animations used in this paper
have intensity 3 and 7.

Our objective is to automatically generate animations
that express the expressions ”Happy-Agree” (Happiness and
Agreement), ”Shy-Agree” (Shyness and Agreement), ”Shy-
Disagree” (Shyness and Disagreement) and ”Sad-Disagree”
(Sadness and Disagreement).

All interpolations will be made at the intermediate point
between the two animations, in order to ease their later
recognition, so the interpolation ”Shy-Agree” is equivalent
to ”Agree-Shy”. In this work we will only use interpolations
between animations with the same intensity to generate ani-
mations that express other expressions, but the interpolation
can be done in an equivalent way to obtain other expressions
with different intensities.

Each animation consists of the continuous time evolution
of the 5 degrees of freedom, and it is labeled with the expres-
sion and its intensity. We encode these two later variables as
continuous values by mapping them to the ”Plutchik’s wheel
of emotion” model [21] (see Fig. 2), which is extremely
used in psychology to classify the human emotions. Thus,
each animation has two parameters associated, which are
the position of the expression that tries to reproduce in the
Plutchik’s wheel, in ”x” and ”y”. According to Plutchik’s
wheel, expressions with higher intensity should be near [0,0],
but we decide that [0,0] is a neutral expression, and the unit
circle contains the expressions with higher intensity (Table
I). While this model is applied for humans, it gives an idea
of ”closeness” between expressions.

1Source: http://www.copypress.com/blog/your-fragile-emotions-illustrated. On Date:
22/10/2015.



Fig. 2: Plutchik’s wheel of emotions. Image extracted from
the web1.

The objective of the interpolation is to generate the trajec-
tories of the 5 joints of the robot given as inputs the desired
expression and intensity (using its position in the Plutchik’s
wheel) and a vector of time instants for the trajectory. Next
we present the methods considered.

We select three methods to do the interpolation: the first
one, the TPGMM [22], uses a model to map the expressions
and a data augmentation technique; the second one, the
Binary Regression Decision Tree (BRDT) [23], also uses
the map of expressions, but not the data augmentation; the
last one, the Geodesic interpolation proposed by Jaquier and
Calinon [17], do not use the map, neither the data aug-
mentation. These methods are specially suited for working
with small datasets. The TPGMM and Geodesic interpolation
exploit the structure of the information in order to decrease
the required amount of examples, while the proposed BRDT
is simple enough to guarantee good generalization even with
scarce data.

A. Task Parameter Gaussian Mixture Model

The first method we consider is the TPGMM [22]. This
method employs a Gaussian Mixture Model (GMM) to learn
a representation of all the training animations.

In the GMM, we encode the training data as the joint
distribution P

(
ξ I ,ξ O

)
∼ ∑

K
i=1 πiN (µi,Σi), being ξ I the

inputs (a vector of time instants and the expression position
in the wheel), ξ O the outputs (the 5 values of the actuators for
each of the time instants) and πi the weights of the different
modes in the GMM (each with its mean µi and covariance
Σi). We use the notation of [22]:
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Fig. 3: Shy on red, Agree on blue and the interpolation of
both, Agree-Shy, on green. On bright green are the GMM
generated from the GMR.

Once the GMM is encoded, we can use it to interpolate
new outputs given an input by conditioning on the inputs
(Gaussian Mixture Regression -GMR-). In this case con-
ditioning on the desired expression and intensity, and the
time instants for the trajectory. The conditional distribution
P
(
ξ O|ξ I

)
is given by:
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Regarding the parameters of the TPGMM, two frames are
used to learn each animation, the initial and the end point.
All the animations start and end in the origin. The TPGMM
initialization we use to train is the equal bins splitting [22].

To interpolate using this method, we use polar coordinates
on the wheel to find the middle point between the two
animations that we are trying to interpolate. For instance,
if we want to interpolate the animation that correspond with
the expression Agree-Shy with intensity 7, we compute the
average between the polar coordinates position of Agree with
intensity 7 ([ 0.7, π

4 ]) and Shy with intensity 7 ([0.7,0]), and
return that value ([ 0.7, π

8 ]) to the Cartesian coordinate space
again ([ 0.6467, 0.2679]). This is then used as inputs (with
the time instants) to the GMM interpolation. The interpolated
trajectory of ”Agree-Shy 7” and the two hand-made ”Agree
7” and ”Shy 7” are represented in Fig. 3.

B. Binary Regression Decision Tree

The second method considered is a Binary Regression
Decision Tree (BRDT) [23]. The BRDT is employed here to
learn a direct mapping from expressions and their intensities



Fig. 4: Shy on red, Agree on blue and the interpolation
of both, Agree-Shy, on purple, generated using the BRDT
interpolation.

(using the Plutchik’s Wheel-based encoding as before) and
time steps to motor commands at the given time steps. BRDT
is a Classification And Regression Tree (CART) algorithm,
which uses the recursive partition of the input to learn the
model, and predict from it2.

The interpolated trajectory of ”Agree-Shy 7” and the two
hand-made ”Agree 7” and ”Shy 7” using this method is
shown in Fig. 4.

C. Geodesic interpolation

The two previous methods use the Plutchik’s Wheel as
the model to encode the variables representing expressions
and their intensities. This assumes that the model works as
well for people and for robots, which has not been tested.
To avoid using any model, we consider a third case in which
we directly interpolate the trajectories of the hand-made
animations that we want to mix.

We only have one animation example for each expression
and intensity. In order to allow for some variability, we
encode the trajectories of those animations into Gaussian
Mixture Models (GMM), one for each animation. The vari-
ables that we use to encode the GMM are the time and the
joint position of each motor (6 variables).

As the GMMs representing the trajectories related to
expressions lie in a complex manifold, we use the Geodesic
interpolation proposed by Jaquier and Calinon [17]. The
method allows interpolating between the covariances of the
GMMs in the Symmetric Positive Definite (SPD) manifold
as 4th-order tensors.

By applying directly the method to our data, the interpo-
lation result is not the same in both directions (for instance,
between ”Agree-Shy” and ”Shy-Agree”), as we can see in
Fig. 5 for the middle point of the interpolation. Because of
this, we modify this method to obtain the same interpolated
trajectory when commuting the input trajectories.

2To compute this method, we use fitrtree from Matlab 2018b

Fig. 5: Geodesic Interpolation between two trajectories Shy
(in red) and Agree (in blue). With w = 0.5, in purple, the
interpolation of Shy to Agree, and in yellow, the interpolation
of Agree to Shy. In this interpolation, we have not modified
the interpolation of Jaquier and Calinon [17].

To change this, we propose to add to the diagonal of the
covariance matrix of each GMM a regularization term. This
parameter was used by Jaquier and Calinon [17] to avoid that
the covariance matrix is not invertible, but the value is small
(= 10−5). In this work, we notice even small changes (from
10−5 to 10−6 or 10−4) of that parameter provokes a relevant
modification in the interpolation. Due to that, we optimize
the regularization term and number of Gaussians ngaussGeod
that are employed in the method3 that make the interpolations
generated between the first (A) and the second (B) trajectory
the same as the interpolations between the second (B) and
the first (A) one, as:

tra j(A−>B)∗ωA
= tra j(B−>A)∗(1−ωA) = tra j(B−>A)∗ωB (6)

being ωA the weight of the trajectory A in the interpolation,
ωB the weight of the trajectory B, ω ∈ [0,1], ∑ω = 1.

The similarity between both trajectories is computed using
the dynamic time warping [24], [25] (DTW). We use a
genetic algorithm to find the regularization term and number
of Gaussians. The score used in the genetic algorithm is:

∑
ωA

DTW (tra j(A−>B)∗ωA
, tra j(B−>A)∗(1−ωA)) (7)

for ωA = {0.4,0.5,0.6}. These three values are used because
the similarity of the interpolated trajectories are very differ-
ent. We minimize the score of the candidate solution.

The initialization of the population is completely random
for ngaussGeod ∈ [10,4000], and the logarithm of regularization
term (log10(regTerm)) ∈ [−4,2]. The selection operator picks
with higher probability those candidates with lower score.
We use a BLX-alpha crossover [26] with al pha = 0.5. The

3In particular, we employ the demo Riemannian cov interp03 method at
http://www.idiap.ch/software/pbdlib/



Fig. 6: Geodesic Interpolation between two trajectories Shy
(in red) and Agree (in blue). With w = 0.5, in purple, the
interpolation of Shy to Agree, and in yellow, the interpolation
of Agree to Shy. This is the same interpolation as Fig. 5 but
with the variances of both GMM adjusted.

mutation operator changes with the probability of 1% the
value of a parameter for other value in the same range.
The new population is formed by a quarter of the best
candidates, half of the new candidates produced by the
crossover operator and a quarter of new random candidates.
As we can see in Fig. 6, the interpolation is now commutative
and (6) holds.

V. TESTING METHODOLOGY

To test how well the three methods can generate inter-
polated animations and how readable these animations are,
we have carried out a user study. As we have mentioned in
Section IV, we are using the animations of Happy, Sad, Shy,
Agree, and Disagree, each one with two different intensities,
as training data; and we generate the interpolations: Happy-
Agree, Shy-Agree, Shy-Disagree and Sad-Disagree, for each
of the two intensities.

This user study is divided in 3 parts: The first part is an
introduction to the robot. We give the participants a quiz
where they have to answer, for each animation displayed,
which expression do they think Haru is trying to convey. For
that, the quiz is structured like a table with 5 empty columns.
In the first and third columns, there is a Plutchik’s wheel
where the participants can mark pure expressions. We ask the
participants to mark in the first and second columns which is
the most suitable expression of the animation displayed, and
with which accuracy they think their answer is right. In the
third and four columns, we ask the same but with the second
most suitable expression, and its accuracy. The accuracy is a
value between 0 and 100, being 100 if they have no doubts.
Only the results with an accuracy > 20 will be annotated. In
the last column, the participants can write a comment if they
want to mention something. We encourage them to select two
expressions, unless they are sure they know the answer.

We display each animation 3 times. In this part, only
the hand-made animations are shown, to make sure the
participants understand the experiment, the limitations of the
robot, and the expressions they have to choose between.
For each group of participants, we select randomly one
intensity for each expression (5 animations in total), which
are displayed randomly.

After this, the animations are displayed once again in the
same order, and the interviewer explains to which expression
corresponds each animation. This is done to avoid problems
if the participant classify wrongly one or more of the hand-
made animations.

The second part of the user study repeats the same
procedure as the first part, but the animations displayed are
4 of the non-used hand-made animations, and 4 interpolated
animations (1 intensity for each interpolated expression)
for each of the three interpolation methods. In total, 16
animations are presented to the participants (4 + 4*3 = 16).
Also, the order of the animations is different for each group.
The participants have to fill the same questionnaire as before.

In the third and last part, the interviewer asks the par-
ticipants to give a mark to the interpolation methods. Of
course, the method is not indicated, but groups of three
animations are shown, all three conveying the same inter-
polated expression (which in this case is indicated by the
interviewer) with different methods. The interviewer asks
which of the three interpolated animations fits better. The
participants have to give an ”A” to the best one, a ”B” to the
second one and ”C” to the worst one. This is done for the 4
interpolated expressions. The interpolation method order and
the expression order are selected randomly for each group
of participants.

VI. RESULTS

The user study has being carried out with 15 people (9
men and 6 women) that have seen the robot before no more
than three times. The mean of the participants age is 34
years old with a standard deviation of 11. The nationality of
the participant are Japanese, Canadian, American, Mexican,
Brazilian and Philippine. The animations were recorded and
shown to the participants on video to make the experiment
scalable and reproducible.

A. Hand-made animations

As mentioned, in the first step, the interviewer asks the
participants which expressions they feel the animation is
reproducing. The results for the hand made animations are
presented in Fig. 7. The first time the participants saw
Haru’s animations (Figure 7a), we get a matrix in which
the Agree and the Sad animations are really identifiable.
Shy and Disagree are misidentified with Sad. The Happy
animation shown in the first part is confused with the Shy
one. Then, the experimenter explains the shown expressions,
and new ones are presented. After that Shy is perceived as
Sad, meanwhile Disagree gets better results. The animation
of Happy with intensity 7 was removed of the test-bench
because the motions were a bit too aggressive and could have



Fig. 7: Confusion matrix of hand-made expressions before
and after seeing any of the interpolated expressions.

harmed the robot (but it is used as training data). As we do
not have the second animation for Happy, we cannot check
if this impression changes after seeing some interpolations.

B. Synthetic animations results using the 3 methods

To articulate the data collected in the quiz, the results are
presented as a confusion matrix with two diagonals of true
classifications instead of one. For each pair of expressions
in an interpolation, if one of those expressions is predicted,
it is considered as a good prediction.

The Geodesic interpolation (Figure 8a) generates move-
ment which cannot be distinguished among each other. Even
the most extreme expressions, Happy and Sad, are hardly
identified in the interpolations.

The TPGMM interpolation (Figure 8b works well for
all the interpolations. The worst detected interpolation is
Agree-Shy, because Sad is predicted instead. As we see in
Fig. 7, Shy and Sad are usually confounded even in the
hand-made animations, so it is normal that users guess that
both expressions could be possible, but they do not know
which one. We see the same effect in the interpolation Shy-
Disagree. However, Agree-Shy is more recognizable than
Shy-Disagree. Still, all the interpolations have at least one
of the expressions well recognised and the other one more
recognised than any other expression (excepting the one that
classify Shy as Sad).

The last interpolation, made by Binary Regression Deci-
sion Tree (Figure 8c), predicts worse than 8b, but wrong
predictions are not only located in the Sad expression, as
in the TPGMM interpolation. In this method, errors are
bigger than in the previous case, but bad predictions are near
the diagonals, which means people have the feeling if an
animation is ’happier’ or ’sadder’, but cannot identify them
correctly.

If we compare the results of the three methods, we can
see that the best one is the TPGMM interpolation as all the
interpolations are better recognized than the other methods.
And BRDT have better results than Geodesic interpolations,
as people can classify well if an animation is happier or
sadder. This is due to TPGMM and BRDT use a model to
classify and order the expressions meanwhile the Geodesic
interpolation use only the information in the data, which
seems not enough information.

(a) Geodesic interpolation.

(b) TPGMM interpolation.

(c) BRDT interpolation.

Fig. 8: Confusion matrix guessing both expressions.

C. What is the preferred method?

In the third part of the study, we analyze which method is
better when combining expressions from the point of view
of the participants. By comparing these three methods to
each other (see Fig. 9), the TPGMM method in Agree-Shy
and Disagree-Sad interpolations are the best by far. In those
interpolations in which TPGMM is not the preferred one, it
has almost the same rate as the second more selected, the
Geodesic interpolation. Also, in the case of the two best
interpolations of the three of them, the TPGMM method
has the same results, being the best method. The Geodesic
method is preferred more times than the BRDT method
almost always. This may be due it is easier to see the
expressions of the animation if you know what expressions
are you searching for.

Best animation of the 3 methods

Agree-Shy

Disagree-Sad

Happy-Agree

Shy-Disagree
0

2
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6

8

10

12
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TPGMM
BRDT

First and second best animations of the 3 methods

Agree-Shy

Disagree-Sad

Happy-Agree

Shy-Disagree
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5

10

15
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Fig. 9: ”What do you think is the animation generated that
better describe this interpolated expression?” answers. The
first graph is counting only their first option and the left one
is using both first and second options.



VII. CONCLUSIONS

Discussion. The paper considers the automatic genera-
tion of new expressive motions from a set of exemplary
animations provided by humans. We approached this prob-
lem as a learning from demonstration scenario, and have
analyzed three different LfD methods. First, we used the
psychological model of Plutchik’s wheel as inspiration to
encode the expressions associated to the animations. Relying
on a pre-made model makes the solution as good as your
model, so we had to choose between which model we
use or if we wanted to use any model. Then, we studied
three different interpolation methods to learn and generate
the trajectories of the animations. The first two methods,
TPGMM and BRDT, rely on the indicated model to encode
the animations. However, the Geodesic interpolation does not
rely on any model. The results in the Geodesic interpolation
are worse than the TPGMM and the BRDT interpolations.
TPGMM and Geodesic interpolations use GMM to encode
the trajectories of the animations. Due to that, the solutions
depend on how we approximate the GMM to the animations.
In summary, we obtained that the Plutchik’s wheel model
obtains better results than not using any model, and TPGMM
works better than the other two approximations.

Limitations and Future Work. We are working on
generation of expressions in the technical terms through
interpolation and in the future we will be focusing on
analyzing deeper meaning associated to the higher meaning
of expressions. In this work, we assume that the Plutchik’s
wheel is a helpful model to encode the expression-related
variables, as it provides a (qualitative) distance between
expressions. However, the Plutchik’s wheel is made for hu-
man expressions, so extrapolating that to robot’s movement
require a more extended study. Despite we have good results
in the user study with only 12 animations, we would like to
repeat the user study with a larger population and additional
hand-made and interpolated animations, covering a wider
spectrum of expressions. Additionally, we will compare
the methods with those that encode motion styles as cost
functions using IRL, like [6], [8].

The work presented is a first step towards the objective to
generalize the production of these expressions automatically.
As future work, we would like to extend this work to the
combination of motion tasks, like tracking a person while
expressing an expression, as these expressive motions are
not an end in themselves, but they will be used by the robot
when it is performing tasks [8]. The objective is to extract
the relevant information from the demonstrations of ”static”
expressions and combine it in a certain way with the motion
commands resulting from the tracking modules.
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